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ABSTRACT For automatic disease-severity-level estimation, a large-scale medical image dataset with level
annotations is generally necessary. However, attaching absolute-level annotations (such as levels 0, 1, and
3) is very costly and even inaccurate due to the level ambiguity. In this study, we proved experimentally
that using a ranking function for level estimation can relax this difficulty. We propose a multi-task learning
method for automatically estimating disease-severity levels that combine learning to rank with regression.
The ranking function of the proposed method is trainable by relative-level and a small number of absolute-
level annotations. For relative-level annotation, an annotator only needs to specify that one image has a higher
disease level than another—this is much easier than absolute-level annotation. The proposed method enables
disease-severity classification by calibrating the ranking function based on relative-level annotation through
regression. The effectiveness of the method was proved through a large-scale experiment of ulcerative
colitis-severity estimation with colonoscopy images.

INDEX TERMS Computer-aided diagnosis, deep learning, endoscopic image dataset, learning to rank,
relative-level annotation.

I. INTRODUCTION
To realize automatic disease-severity-level estimation,
we often prepare a dataset with level annotation. Fig. 1
(a) shows an absolute-level annotation, where an annotator
attaches an absolute disease level to each image. Using the
annotated dataset, we can estimate the disease-severity level
by using a regression method or classification method.

Even for medical specialists, attaching accurate absolute-
level annotations is difficult. This is because the level of
disease is inherently continuous with gradual tissue and organ
changes; thus, discrete levels such as absolute levels always
have quantization errors. For example, even when a four-level
annotation (0, 1, 2, 3) is requested, they easily find medical
images that should be ‘‘level 1.5’’. Moreover, the level itself
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easily fluctuates among annotators (e.g., [1]) or even with the
same annotator.

The purpose of this study was to relax this difficulty by
using relative-level annotation instead of the above absolute-
level annotation. Fig. 1 (b) shows the idea of the relative-
level annotation. Given a pair of images (xi, xj), the annotator
just specifies the image with a higher severity level. This
task is far easier and even more accurate than the absolute-
level annotation, especially when the paired images have a
clear severity-level difference. Therefore, the difficulty in
annotating a large number of images can be greatly reduced
by using relative-level annotation.

Given a dataset with the relative-level annotation, we can
automatically estimate severity level by training a ranking
function f (x). Fig. 1 (c) shows the idea of the so-called
bipartite ranking problem. The basic objective of this
problem is to train a function f (x) that maximizes the
number of sample pairs whose the relative-level annotation
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FIGURE 1. (a) Absolute-level annotation. (b) Relative-level annotation. (c) Bipartite ranking problem with relative-level annotation and linear
ranking function. (d) Nonlinear ranking function using learning to rank. (e) Nonlinear ranking function calibrated from small number of
samples with absolute-level annotation. (f) Overview of the proposed method. (g) The multi-task learning in the proposed method.

is ‘‘satisfied.’’ More specifically, assume a pair of images
xi and xj and their relative-level annotation stating that xi
has a higher level (i.e., rank) than xj. The annotation is
then satisfied when f (xi) > f (xj). The trained function f is
expected to be relative to the original (continuous) disease
level.

Since there is a nonlinear relationship between the original
image features and the disease levels, a function f should
be highly nonlinear to satisfy the relative level annotations
as many as possible. Therefore, we use representation
learning by a convolutional neural network (CNN) to obtain
a nonlinear f that satisfies the relative annotations as
many as possible. Fig. 1 (d) shows a nonlinear f with
representation learning by using a CNN. The thick green
arrow curve shows the nonlinear f . The dotted curve shows
the isoline where the samples on it have the same rank
values.

It should be emphasized that the above ranking function
is still not enough for practical diagnosis. This is because f
satisfies only the order between the samples, and its value has
no specific meaning for diagnosis. For example, if we realize
a ranking function f for or ulcerative colitis (UC) diagnosis
with colonoscopy images, the value of f does not have a clear
relationship with a common severity level, such as the Mayo
score [2]. Colony images xi and xj with Mayo levels 0 and
2 might have the ‘‘satisfactory’’ rank value −100 and 35,
although it is impossible to guess the Mayo levels from the
rank values.

In this paper, we propose a multi-task learning method for
obtaining a calibrated ranking function f (x) by using a large
amount of (easy) relative annotations and a small amount
of (costly) absolute-level annotations. Roughly speaking,
we train a ranking function f to satisfy the relative-level
annotations while satisfying y ∼ f (x) for the sample x with
the absolute-level annotation y, as shown in Fig. 1 (e). By the
calibration, the ranking function f can estimate the real-
valued absolute levels (such as Mayo scores) of all samples.

Fig. 1 (f) shows the three steps of the proposed method.
At the first step, an initial ranking function is obtained
through a training process with only using relative-level
annotations like Fig. 1 (d). At the second step, several samples
are selected based on the estimated rank scores, and their
absolute level annotation is attached by human (e.g., medical
experts). At the final step, the ranking function is calibrated
by multi-task learning of ranking and regression, as shown
in Fig. 1 (g). The calibrated ranking function f will give
a real-valued severity score. If a target severity score is
expected as a discrete one, the score can be quantized into
several levels, likeMayo 0, 1, 2. In other words, the calibrated
ranking function can be seen as a severity classifier.

We applied the proposed method to a UC-level classifi-
cation task. Specifically, we obtained a f that estimates the
Mayo level of the given endoscopic image x. The Mayo level
ranges from 0 (normal) and 3 (the most severe) with discrete
values. We prove that f trained with the proposed method
achieves high classification performance (accuracy and

VOLUME 10, 2022 25689



T. Kadota et al.: Automatic Estimation of Ulcerative Colitis Severity

F1-score) with far less annotation effort, aiding in supporting
UC diagnosis.

The main contributions of this paper are summarized as
follows:

1) To the best of our knowledge, this is the first trial of
using the learning to rank framework for drastically
reducing the annotation effort for a medical image
dataset through relative-level annotation.

2) We developed a new multi-task learning method that
calibrates the rank score to the absolute disease level.

3) Through an experiment to estimate the UC severity, the
proposed method achieved even higher performance
than the conventional classification methods trained
with fully absolute-level annotations. This means that
our method increases the estimation performance with
much less annotation effort.

II. RELATED WORK
In gastrointestinal diseases, various lesions exist in different
parts of the digestive organs, and endoscopy is used
for lesion detection. Research on supporting endoscopic
imaging diagnosis using machine learning is currently
being conducted. There have been many investigations on
automating classification tasks, such as classification of
gastric cancer [3], [4], gastric precancerous disease [5], col-
orectal cancer using narrow-band imaging (NBI) images [6],
and severity using endoscopic and biopsy histological
images of UC [7]. An automatic abnormality detection task
on capsule endoscope images has also been investigated
[8]–[10]. These machine-learning applications aim to support
diagnosis through classification, segmentation, and abnor-
mality detection but do not focus on reducing the annotation
cost of training data.

Learning to rank is widely used for recommendation
systems and has been used for several image-analysis
problems. For example, the ranking function has been
applied to image-quality assessment and image attractiveness
[11]–[15] because it is difficult to give an absolute quality
evaluation for each image in these tasks.

Learning to rank is not common in medical image analysis,
despite its usefulness in drastically reducing annotation
effort. UC-level estimation is still often formulated as a
classification task [16]–[18] and requires a dataset with
absolute-level annotation. To the best of our knowledge,
only a few studies [19]–[22] used the bipartite ranking
problem for medical image analysis. However, none focused
on the advantage of the ranking function for annotation-cost
reduction. Moreover, some of these studies [19]–[21] just
used simple or handcrafted features and thus did not use
representation learning, although it drastically enhances the
performance of the ranking function.

On the basis of a previous study [23], a ranking task is
often converted into a multi-task learning problem (instead
of the original bipartite ranking problem) then used in age
estimation [24]–[26] and medical analysis [27]–[30]. Each
multi-task learning is a binary classification to determine if

the input sample is larger than a certain level. This approach
requires absolute-level annotation, thus cannot use the benefit
of relative-level annotation.

III. TWO ANNOTATION TYPES
In this study, there are the two types of ground-truth labels:
absolute labels (ALs) and relative labels (RLs). In the
proposed method, RLs are initially given, and then ALs are
given to a small number of samples shown in Fig. 1 (f).

A. ABSOLUTE LABELS
AL is a disease severity level. In this study, it corresponds
to one of the four-level Mayo scores. As noted in Section 1,
giving accurate AL for a medical image is a difficult task
even for experts. This is because of large image appearance
variations within each level, and ambiguous samples that
fall in the middle of two levels, say Mayo 1 and 2. These
difficulties increase the annotation costs and thus prevent the
realization of a large medical image dataset with ALs.

B. RELATIVE LABELS
RL is attached by comparing the severity of the disease
between the two images as shown in Fig. 1 (b). A set of
labeled paired images {(xi, xj, P̄ij)}, i, j ∈ [1,N ] is defined,
where P̄ij is an RL of the image pair (xi, xj). The P̄ij takes one
of three values according to the following equation:

P̄i,j =


1, if xi has a higher level than xj,
0.5, else if xi and xj have the same level,
0, otherwise.

(1)

The annotation for RLs is much easier than that for ALs
because annotators do not need to identify the level of difficult
samples that have a middle level of severity, such as level 1.5.

IV. LEARNING TO RANK WITH CALIBRATION
The proposed method consists of three steps. In step 1,
we first train the initial ranking function by using learning
to rank with RLs. In step 2, we then select a small number
of samples from the training data to annotate them regarding
ALs. The samples are selected using the ranking function
trained using the RLs. In step 3, we finally carry out
multi-task learning with RLs and additionally and adaptively
prepared ALs, for calibrating the ranking function to more
meaningful disease-severity levels. An overview of the
proposed method is shown in Fig. 1 (f).
Before providing further details of the above steps, two

important aspects should be clarified. First, the rank score by
the ranking function in step 1 is not a disease-severity level,
and thus the calibration of step 3 is necessary. Second, an AL
is not given in advance but given after the ranking function
is trained by RLs. This provides a more appropriate choice
of samples where ALs should be attached, resulting in more
accurate severity-level estimation with less AL annotation
cost.
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A. LEARNING TO RANK
In step 1, we train the initial ranking function using learning
to rank. The ranking function f (x) is trained with a CNN for
the representation (i.e., feature extraction) that is suitable for
the ranking. A CNN is composed of multiple convolutional
layers, a single fully connected layer, and a single output
node to give a single scalar value f (x). This can be considered
a powerful extension of the classical RankNet [31] where a
linear ranking function is trained using a very shallow neural
network.

The CNN is trained using sample pairs with RLs. For
training, we input two images to two CNNs with shared
weights and then minimize the loss for the pair. Specifically,
the CNN is trained with the loss function Lrank =∑

(i,j)∈P L i,jrank, where P is the set of sample pairs. The

function L i,jrank is defined as a cross-entropy,

L i,jrank = −P̄i,j logPi,j − (1− P̄i,j) log(1− Pi,j), (2)

where Pij = sigmoid(f (xi) − f (xj)) and P̄ij is an RL of the
image pair (xi, xj).

B. SAMPLING FOR ABSOLUTE-LEVEL ANNOTATION
In step 2, a small number of samples are selected from
the training data and attached ALs. As noted above, the
proposed method assumes that the samples to which ALs are
attached are selected after f (x) is estimated. This is more
reasonable than, for example, a random selection because we
can select samples that are expected to be more necessary for
the calibration step by using the clues from f (x).

To select a small number of samples, we first obtain the
rank score of the training samples using f (x) and represent
the rank score of the training data as a point on a number
line. Next, we select M (� N) samples at equal intervals
on the number line within the maximum and minimum rank
scores. Finally, ALs are attached to the selected M samples
by absolute-level annotations.

C. MULTI-TASK LEARNING
In the final step 3, the proposed method calibrates the ranking
function to give the absolute severity score. This calibration
process can be seen as a fine-tuning process of f (x) so that
the output of f (x) becomes closer to the AL of x. At the
same time, we need to be careful that the fine-tuning process
does not destroy the sample ranks learned in f (x). These two
requirements result in a multi-task learning to fine-tune f (x).

As shown in Fig. 1 (g), the multi-task learning combines
regression to make y ∼ f (x) for the sample x with AL
and learning to rank for the pairs (xi, xj) with RL. The loss
function of learning to rank is cross entropy of Eq.(2). The
loss function for regression, Lreg =

∑
(i,j)∈P L i,jreg is defined

by adding the mean squared error (MSE) loss function for
each sample pair,

L i,jreg = (f (xi)− yi)2 + (f (xj)− yj)2, (3)

FIGURE 2. Colonoscopy image examples with different UC levels.

where yi and yj are the ALs attached by the absolute-level
annotation of xi and xj, respectively. Furthermore, the
multi-task loss function Lmulti is defined as the sum of the
loss functions of learning to rank and regression,

Lmulti = Lrank + λLreg, (4)

where λ is a hyper-parameter to balance the losses. The
trained multi-task f (x) is expected to be a ranking function
corrected for the region of severity levels in the feature space
optimized by representation learning, as shown in Fig. 1 (e).
Note that, in Step 3, we only use M samples with ALs.
Therefore, Lrank in (4) is minimized with the RLs ofM (M−1)
pairs.

Finally, the calibrated rank score f (x) is quantized into
the nearest discrete disease-severity level as the classification
result of x. For example, with the severity levels∈ {0, 1, 2, 3},
the level becomes 3 for x whose f (x) = 2.7.

V. EXPERIMENTS AND RESULTS
A. DATASET
We used 10,265 colonoscopy images of UC from 388 patients
at Kyoto Second Red Cross Hospital as the dataset. These
images were taken from multiple patients (including healthy
participants). The images have different sizes and therefore
were resized to 224× 224 pixels.
Fig. 2 shows several examples of each of four levels of

Mayo, which is the standard disease severity score for UC.
According to Schroeder et al. [2], Mayo 0 is normal or endo-
scopic remission. Mayo 1 is a mild level showing erythema
(i.e., abnormal redness), a decreased vascular pattern, and
mild friability. Mayo 2 is a moderate level showing marked
erythema, an absent vascular pattern, friability, and erosions.
Mayo 3 is a severe level with spontaneous bleeding and
ulceration.

Although our method does not require a dataset with
full ALs, we attached ALs to all samples for a quantitative
performance evaluation. Specifically, a four-levelMayo score
is carefully attached to each colonoscopy image by multiple
medical experts. The dataset contains 6,678, 1,995, 1,395,
and 197 samples for Mayo 0, 1, 2, and 3, respectively. Note
that it is common to have such a heavily imbalanced dataset
for colonoscopy, as well as other medical image diagnosis
tasks.

In the following experiments, five-fold cross-validation
was performed. The colonoscopy images were divided into
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TABLE 1. Comparison of ground-truth labels and annotation time for
each method.

60%, 20%, and 20% for patient-disjoint training, validation,
and test sets, respectively. Note that we divide all images
into training, validation, and test sets to have the same
severity proportion for keeping a fair and practical evaluation
scenario.

For a fair comparison with a conventional method (detailed
later), we carefully control several conditions. First, we used
the same number of annotations for the conventional and
proposed methods. More precisely, the conventional method
uses 8,212 images-(80% of the entire data) with AL for
training, and the proposed method uses 8,212−M pairs with
RL at step 1, and M images with AL at step 3. Since AL has
more information than RL, this condition is a handicap for the
proposed method. Nevertheless, we adopted this condition so
that the conventional method would not be disadvantaged.

Second, we allow over/under sampling for class imbalance
removal to the conventional method but not to the proposed
method. This is because the conventional method has ALs for
all samples and thus, such sampling is possible, whereas the
proposedmethod does not. This condition will be another and
large handicap for the proposed method.

B. TIME EFFICIENCY IN ANNOTATION PROCESS
Table 1 shows the number of ground-truth labels (RL andAL)
and the annotation time for each method. In our interview
with endoscopists, AL labeling takes 20 seconds per image,
and RL labeling only takes (less than but roughly) one second.
For the caseM= 400, this indicates that the proposed method
requires just 10% of the annotation time of the conventional
method.

C. IMPLEMENTATION
The implementation environment is shown as follows.
We used an Intel(R) Core(TM) i9-10980XE 3.00 GHz as
the CPU and two NVIDIA TITAN RTX 24 GB as GPUs
for training. We wrote the code in Python 3.6 and used
Tensorflow 1.13.1 and Keras 2.2.4 as the deep learning
library. The CUDA version was 10.0. We used Adam as the
optimizer to train the weight parameters. The learning rate
was set to 5×10−6. The learning was terminated by the early
stopping rule (no decrease in validation loss for 20 epochs).
For λ in Eq.(4), we examined the range of 0.001 to 1 and had
the highest F1-score at λ = 0.01 for the validation set.
We used DenseNet [32] as the CNN. DenseNet has

been widely used in various medical-image classification
and analysis tasks due to its state-of-the-art performance
(e.g., [33], [34]).

TABLE 2. Classification performance evaluation of the conventional and
proposed methods.

FIGURE 3. Classification performance evaluation of the proposed method
using different numbers of ALs. In the conventional method, 8,212 ALs
are used.

D. EVALUATION METRICS
The proposed method is evaluated in four-Mayo class
classification performance by accuracy, recall, precision, and
F1-score. Recall that the class is determined by quantizing
the rank score into its neighboring level, e.g., 2.7 → 3.
We leave the test samples imbalanced to mimic realistic
medical situations. To avoid the under/over-estimation risk
of the accuracy values in the imbalanced situation, F1-score
is also employed.

E. COMPARISON METHOD
The performance of the proposed method was compared
with the conventional CNN-based multi-class classification
method. DenseNet-169 trained by the standard categorical
cross entropy is used for this comparative method. As the
training data, all 8,212 training samples are used with their
absolute-level annotations. This means that it uses all of the
absolute-level annotations.

F. CLASSIFICATION PERFORMANCE
Table 2 shows the classification performance of the proposed
method at M = 400. The proposed method achieves higher
F1-score than the conventional method. This result shows
that the proposed method achieves even higher classification
performance than the conventional method, although the
proposed method only needs 1/10 annotation cost of the
conventional method.
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FIGURE 4. Box-plots of test set’s rank score obtained with (a) the uncalibrated case and (b) the proposed method. ‘M0’
denotes for Mayo 0.

We evaluated the performance of the proposed method for
severity classification with various numbers of ALs (M= 50,
100, 200, 300, and 400). Fig. 3 shows the results of the
performance evaluation with the proposed method using
different numbers of ALs. Acc and F1 represent accuracy
and F1-score, respectively. The F1-score increases as the
number of ALs increases. From M = 300, the F1-score of
the proposed method is higher than that of the conventional
method. The accuracy of the proposed method is higher than
that of the conventional method for M = 200 and over.
Therefore, the proposedmethod achieved higher performance
than the conventional method when the number of ALs is
more thanM = 300.

G. ABLATION STUDY
We examined the effect of calibration on rank scores by
multi-task learning with the proposed method. Specifically,
we verified the effect by comparing the classification
performance between calibrated and uncalibrated cases.
To determine the classification result for the uncalibrated
case, we defined the range of the rank score for each Mayo
score by logistic regression usingM = 400 ALs, which were
used for multi-task learning, for a fair comparison.

Fig. 4 shows box-plots for each correct Mayo score of test
samples by (a) the uncalibrated case and (b) the proposed
method. The horizontal and vertical axes correspond to
the correct Mayo score attached by the annotators and the
rank scores, respectively. The rank scores obtained with the
proposed method are located nearer to the Mayo score range
of 0 to 3 than those with the uncalibrated case. Therefore,
these results indicate that the rank scores are calibrated with
the ALs as the anchor by using regression as the anchor task
in multi-task learning.

Table 3 shows the results of the performance evaluation
for the uncalibrated case. The overall precision, recall, and
F1-score of the uncalibrated case were lower than those of
the proposed method. Comparing the F1-score for each class,
Mayo 3 was particularly low with the uncalibrated case,
indicating an imbalance in the classification performance for
each class.

TABLE 3. Classification performance evaluation of the uncalibrated case.

FIGURE 5. Confusion matrices of (a) the uncalibrated case and (b) the
proposed method.

Fig. 5 shows the confusion matrices of the classification
results using the uncalibrated case and the proposed method.
Compared with the proposed method, the uncalibrated case
had a higher rate of incorrectly predicting Mayo 2 and
Mayo 3 as Mayo 1 and could not accurately classify images
with high severity. These results indicate that the calibration
effect improves the performance of classifying images with
high severity and that the proposed method has higher
performance than the uncalibrated case.

VI. CONCLUSION
We proposed a multi-task learning method that combines
learning to rank with regression for automatically estimating
UC severity levels (Mayo scores). The proposedmethod has a
strong advantage in that it can substantially reduce annotation
costs by using relative-level annotation instead of costly
absolute-level annotations. Our experimental result shows
that the proposed method achieved even higher classification
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performance (accuracy and F1-score) than the conventional
classification method while requiring just 1/10 annotation
cost.

The limitation of the proposed method is that it requires
more training time than the conventional method because the
number of pairs increases with the number of images to which
AL is attached. We will investigate ways to make effective
pairs for learning with as few AL combinations as possible.

Future work will involve the proposal of a new
continuous-valued UC severity level. Currently, we discretize
the regression result into four levels to follow the traditional
Mayo-based evaluation. However, the regression result can
show an intermediate score, such as Mayo 1.75 by itself.
Our continuous severity score can be an accurate and precise
alternative to Mayo through discussion with the medical
expert committee.

ACKNOWLEDGMENT
All of the endoscopic images used in this article are approved
by the ethical review committee at the Kyoto Second Red
Cross Hospital.

REFERENCES
[1] F. Hirai and T. Matsui, ‘‘A critical review of endoscopic indices in

ulcerative colitis: Inter-observer variation of the endoscopic index,’’ Clin.
J. Gastroenterol., vol. 1, no. 2, pp. 40–45, Jun. 2008, doi: 10.1007/s12328-
008-0018-z.

[2] K. W. Schroeder, W. J. Tremaine, and D. M. Ilstrup, ‘‘Coated oral 5-
aminosalicylic acid therapy for mildly to moderately active ulcerative
colitis,’’New England J. Med., vol. 317, no. 26, pp. 1625–1629, Dec. 1987,
doi: 10.1056/nejm198712243172603.

[3] J. H. Lee, Y. J. Kim, Y. W. Kim, S. Park, Y.-I. Choi, Y. J. Kim,
D. K. Park, K. G. Kim, and J.-W. Chung, ‘‘Spotting malignancies from
gastric endoscopic images using deep learning,’’ Surgical Endoscopy,
vol. 33, no. 11, pp. 3790–3797, Nov. 2019, doi: 10.1007/s00464-019-
06677-2.

[4] Y. Zhu, Q.-C. Wang, M.-D. Xu, Z. Zhang, J. Cheng, Y.-S. Zhong,
Y.-Q. Zhang, W.-F. Chen, L.-Q. Yao, P.-H. Zhou, and Q.-L. Li,
‘‘Application of convolutional neural network in the diagnosis of the
invasion depth of gastric cancer based on conventional endoscopy,’’
Gastrointestinal Endoscopy, vol. 89, no. 4, pp. 806–815, 2019, doi:
10.1016/j.gie.2018.11.011.

[5] X. Zhang, W. Hu, F. Chen, J. Liu, Y. Yang, L. Wang, H. Duan, and
J. Si, ‘‘Gastric precancerous diseases classification using CNN with
a concise model,’’ PLoS ONE, vol. 12, no. 9, pp. 1–10, 2017, doi:
10.1371/journal.pone.0185508.

[6] T. Tamaki, J. Yoshimuta, M. Kawakami, B. Raytchev, K. Kaneda,
S. Yoshida, Y. Takemura, K. Onji, R. Miyaki, and S. Tanaka, ‘‘Computer-
aided colorectal tumor classification in NBI endoscopy using local
features,’’ Med. Image Anal., vol. 17, no. 1, pp. 78–100, Jan. 2013, doi:
10.1016/j.media.2012.08.003.

[7] K. Takenaka, K. Ohtsuka, T. Fujii, M. Negi, K. Suzuki, H. Shimizu,
S. Oshima, S. Akiyama, M. Motobayashi, M. Nagahori, E. Saito,
K. Matsuoka, and M. Watanabe, ‘‘Development and validation of a deep
neural network for accurate evaluation of endoscopic images from patients
with ulcerative colitis,’’ Gastroenterology, vol. 158, no. 8, pp. 2150–2157,
Jun. 2020, doi: 10.1053/j.gastro.2020.02.012.

[8] H. Alaskar, A. Hussain, N. Al-Aseem, P. Liatsis, and D. Al-Jumeily,
‘‘Application of convolutional neural networks for automated ulcer
detection in wireless capsule endoscopy images,’’ Sensors, vol. 19, no. 6,
p. 1265, Mar. 2019, doi: 10.3390/s19061265.

[9] T. Aoki, A. Yamada, K. A. M. Math, H. Saito, A. Tsuboi, A. Nakada,
R. Niikura, M. Fujishiro, S. Oka, S. Ishihara, T. Matsuda, S. Tanaka,
K. Koike, and T. Tada, ‘‘Automatic detection of erosions and ulcerations in
wireless capsule endoscopy images based on a deep convolutional neural
network,’’ Gastrointestinal Endoscopy, vol. 89, no. 2, pp. 357–363, 2019,
doi: 10.1016/j.gie.2018.10.027.

[10] M. K. Bashar, T. Kitasaka, Y. Suenaga, Y. Mekada, and K. Mori,
‘‘Automatic detection of informative frames from wireless capsule
endoscopy images,’’ Med. Image Anal., vol. 14, no. 3, pp. 449–470,
Jun. 2010, doi: 10.1016/j.media.2009.12.001.

[11] K. Ma, W. Liu, T. Liu, Z. Wang, and D. Tao, ‘‘dipIQ: Blind image
quality assessment by learning-to-rank discriminable image pairs,’’ IEEE
Trans. Image Process., vol. 26, no. 8, pp. 3951–3964, Aug. 2017, doi:
10.1109/TIP.2017.2708503.

[12] X. Jiang, L. Shen, L. Yu, M. Jiang, and G. Feng, ‘‘No-reference
screen content image quality assessment based on multi-region
features,’’ Neurocomputing, vol. 386, pp. 30–41, Apr. 2020, doi:
10.1016/j.neucom.2019.12.027.

[13] J. Yan, S. Lin, S. B. Kang, and X. Tang, ‘‘A learning-to-rank approach
for image color enhancement,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 2987–2994, doi: 10.1109/CVPR.2014.382.

[14] N. Ma, A. Volkov, A. Livshits, P. Pietrusinski, H. Hu, and M. Bolin,
‘‘An universal image attractiveness ranking framework,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Jan. 2019, pp. 657–665, doi:
10.1109/WACV.2019.00075.

[15] Y. Murata and Y. Dobashi, ‘‘Automatic image enhancement taking into
account user preference,’’ in Proc. Int. Conf. Cyberworlds (CW), 2019,
pp. 374–377, doi: 10.1109/CW.2019.00070.

[16] A. Dahal, J. Oh, W. Tavanapong, J. Wong, and P. C. de Groen, ‘‘Detection
of ulcerative colitis severity in colonoscopy video frames,’’ in Proc. 13th
Int. Workshop Content-Based Multimedia Indexing (CBMI), Jun. 2015,
pp. 1–6, doi: 10.1109/CBMI.2015.7153617.

[17] A. Alammari, A. R. Islam, J. Oh, W. Tavanapong, and J. Wong,
‘‘Classification of ulcerative colitis severity in colonoscopy videos using
vascular pattern detection,’’ in Proc. Int. Conf. Inf. Manage. Eng. (ICIME),
2017, pp. 139–144.

[18] R. W. Stidham, W. Liu, S. Bishu, M. D. Rice, P. D. R. Higgins, J. Zhu,
B. K. Nallamothu, and A. K. Waljee, ‘‘Performance of a deep learning
model vs human reviewers in grading endoscopic disease severity of
patients with ulcerative colitis,’’ JAMANetw. Open, vol. 2, no. 5,May 2019,
Art. no. e193963, doi: 10.1001/jamanetworkopen.2019.3963.

[19] W. Huang, K. L. Chan, H. Li, J. H. Lim, J. Liu, and T. Y. Wong,
‘‘A computer assisted method for nuclear cataract grading from slit-lamp
images using ranking,’’ IEEE Trans.Med. Imag., vol. 30, no. 1, pp. 94–107,
Jan. 2011, doi: 10.1109/TMI.2010.2062197.

[20] F. Pedregosa, E. Cauvet, G. Varoquaux, C. Pallier, B. Thirion, and
A. Gramfort, ‘‘Learning to rank from medical imaging data,’’ in Proc.
Int. Workshop Mach. Learn. Med. Imag. (MLMI), 2012, pp. 234–241, doi:
10.1007/978-3-642-35428-1_29.

[21] B. Peng, X. Yao, S. L. Risacher, A. J. Saykin, L. Shen, and X.
Ning, ‘‘Prioritization of cognitive assessments in Alzheimer’s disease via
learning to rank using brain morphometric data,’’ in Proc. IEEE EMBS
Int. Conf. Biomed. Health Informat. (BHI), May 2019, pp. 1–4, doi:
10.1109/BHI.2019.8834618.

[22] J. Lyu, S. H. Ling, S. Banerjee, J. J. Y. Zheng, K.-L. Lai, D. Yang,
Y.-P. Zheng, and S. Su, ‘‘3D ultrasound spine image selection using
convolution learning-to-rank algorithm,’’ in Proc. 41st Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2019, pp. 4799–4802, doi:
10.1109/EMBC.2019.8857182.

[23] L. Li andH. T. Lin, ‘‘Ordinal regression by extended binary classification,’’
in Proc. Adv. Neural Inf. Process. Syst., 2007, pp. 865–872, doi:
10.5555/2976456.2976565.

[24] S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao, ‘‘Using ranking-CNN
for age estimation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jul. 2017, pp. 5183–5192, doi: 10.1109/cvpr.2017.86.

[25] K. Y. Chang, C. S. Chen, and Y. P. Hung, ‘‘A ranking approach for human
age estimation based on face images,’’ in Proc. Int. Conf. Pattern Recognit.
(ICPR), 2010, pp. 3396–3399, doi: 10.1109/ICPR.2010.829.

[26] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, ‘‘Ordinal regression
with multiple output CNN for age estimation,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 4920–4928, doi:
10.1109/CVPR.2016.532.

[27] B. Liu, Y. Zhang, M. Chu, X. Bai, and F. Zhou, ‘‘Bone age assessment
based on rank-monotonicity enhanced ranking CNN,’’ IEEE Access, vol. 7,
pp. 120976–120983, 2019, doi: 10.1109/ACCESS.2019.2937341.

[28] X. Liu, Y. Zou, Y. Song, C. Yang, J. You, and B. V. Kumar, ‘‘Ordinal
regression with neuron stick-breaking for medical diagnosis,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 335–344, doi: 10.1007/978-3-030-
11024-6_23.

25694 VOLUME 10, 2022

http://dx.doi.org/10.1007/s12328-008-0018-z
http://dx.doi.org/10.1007/s12328-008-0018-z
http://dx.doi.org/10.1056/nejm198712243172603
http://dx.doi.org/10.1007/s00464-019-06677-2
http://dx.doi.org/10.1007/s00464-019-06677-2
http://dx.doi.org/10.1016/j.gie.2018.11.011
http://dx.doi.org/10.1371/journal.pone.0185508
http://dx.doi.org/10.1016/j.media.2012.08.003
http://dx.doi.org/10.1053/j.gastro.2020.02.012
http://dx.doi.org/10.3390/s19061265
http://dx.doi.org/10.1016/j.gie.2018.10.027
http://dx.doi.org/10.1016/j.media.2009.12.001
http://dx.doi.org/10.1109/TIP.2017.2708503
http://dx.doi.org/10.1016/j.neucom.2019.12.027
http://dx.doi.org/10.1109/CVPR.2014.382
http://dx.doi.org/10.1109/WACV.2019.00075
http://dx.doi.org/10.1109/CW.2019.00070
http://dx.doi.org/10.1109/CBMI.2015.7153617
http://dx.doi.org/10.1001/jamanetworkopen.2019.3963
http://dx.doi.org/10.1109/TMI.2010.2062197
http://dx.doi.org/10.1007/978-3-642-35428-1_29
http://dx.doi.org/10.1109/BHI.2019.8834618
http://dx.doi.org/10.1109/EMBC.2019.8857182
http://dx.doi.org/10.5555/2976456.2976565
http://dx.doi.org/10.1109/cvpr.2017.86
http://dx.doi.org/10.1109/ICPR.2010.829
http://dx.doi.org/10.1109/CVPR.2016.532
http://dx.doi.org/10.1109/ACCESS.2019.2937341
http://dx.doi.org/10.1007/978-3-030-11024-6_23
http://dx.doi.org/10.1007/978-3-030-11024-6_23


T. Kadota et al.: Automatic Estimation of Ulcerative Colitis Severity

[29] T. J. Jun, Y. Eom, D. Kim, C. Kim, J.-H. Park, H. M. Nguyen, and D. Kim,
‘‘TRk-CNN: Transferable ranking-CNN for image classification of
glaucoma, glaucoma suspect, and normal eyes,’’ 2019, arXiv:1905.06509.

[30] B. Wu, X. Sun, L. Hu, and Y. Wang, ‘‘Learning with unsure data for
medical image diagnosis,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 10589–10598, doi: 10.1109/ICCV.2019.01069.

[31] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, ‘‘Learning to rank using gradient descent,’’ in
Proc. 22nd Int. Conf. Mach. Learn. (ICML), 2005, pp. 89–96, doi:
10.1145/1102351.1102363.

[32] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
‘‘Densely connected convolutional networks,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2261–2269, doi:
10.1109/CVPR.2017.243.

[33] Y. Yuan, W. Qin, B. Ibragimov, B. Han, and L. Xing, ‘‘RIIS-DenseNet:
Rotation-invariant and image similarity constrained densely connected
convolutional network for polyp detection,’’ in Proc. Int. Conf. Med. Image
Comput. Comput. Assist. Intervent. (MICCAI), 2018, pp. 620–628, doi:
10.1007/978-3-030-00934-2_69.

[34] R. Bise, K. Abe, H. Hayashi, K. Tanaka, and S. Uchida, ‘‘Efficient
soft-constrained clustering for group-based labeling,’’ in Proc. Int. Conf.
Med. Image Comput. Comput. Assist. Intervent. (MICCAI), vol. 5, 2019,
pp. 421–430, doi: 10.1007/978-3-030-32254-0_47.

TAKEAKI KADOTA received the B.E. and M.Eng.
degrees from Kyoto University, Kyoto, Japan,
in 2007 and 2009, respectively, and the M.D.
degree from the Shiga University of Medical
Science, Shiga, Japan, in 2020. He is currently
pursuing the Ph.D. degree with the Graduate
School of Information Science and Electrical
Engineering, Kyushu University, Fukuoka, Japan.
From 2009 to 2012, he joined Kansai Electric
Power Company, Inc., Japan. His current research

interests include medical image analysis and machine learning.

KENTARO ABE received the B.E. and M.E.
degrees from Kyushu University, in 2018 and
2020, respectively. His research theme in the
master’s degree was medical image analysis.

RYOMA BISE (Member, IEEE) received the M.S.
degree from the Graduate School of Informa-
tion Science and Electrical Engineering, Kyushu
University, Japan, in 2002, and the Ph.D. degree
in interdisciplinary information studies from The
University of Tokyo, in 2015. He was engaged
in the research and development on informatics
at Dai Nippon Printing Company, Ltd., Japan,
from 2002 to 2015. Hewas at the National Institute
of Informatics, from2015 to 2017. He joined

the Faculty of Information Science and Electrical Engineering, Kyushu
University as an Associate Professor, in 2017. His research interest includes
computer vision, particularly biomedical image analysis.

TAKUJI KAWAMURA received the M.D. degree.
He is an Endoscopist working as the Vice Director
of the Gastroenterological Department, Kyoto
Second Red Cross Hospital. His specialty is
colonoscopy. He received the Distinguished Paper
Award of Japan Gastroenterological Endoscopy
Society (JGES), in 2018. Currently, he is an
Associate Editor ofDigestive Endoscopy—official
journal of JGES.

NAOKUNI SAKIYAMA received theM.D. degree.
He is an Endoscopist working with the Kyoto
Second Red Cross Hospital. He treats a wide range
of diseases from biliopancreatic to gastrointestinal
diseases, especially specializes in inflammatory
bowel disease, such as ulcerative colitis and
Crohn’s disease. He is currently engaged in clinical
practice and clinical research in this area.

KIYOHITO TANAKA received the M.D. degree.
He is an Endoscopist for gastorointestinal
endoscopy and pancreatobiliary endoscope. He is
the Chief Information Officer with the Kyoto
Second Red Cross Hospital (K2RCH). In K2RCH,
international tele-conference and live demonstra-
tion were performed over ten times by year.

SEIICHI UCHIDA (Member, IEEE) received the
B.E., M.E., and Dr.Eng., degrees from Kyushu
University, in 1990, 1992, and 1999, respec-
tively. He is currently a Distinguished Professor
with Kyushu University. His research interests
include pattern recognition and image processing.
He received the 2007 IAPR/ICDAR Best Paper
Award, the 2010 ICFHR Best Paper Award,
and many domestic awards. Currently, he is an
Associate Editor ofPattern Recognition (Elsevier).

VOLUME 10, 2022 25695

http://dx.doi.org/10.1109/ICCV.2019.01069
http://dx.doi.org/10.1145/1102351.1102363
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1007/978-3-030-00934-2_69
http://dx.doi.org/10.1007/978-3-030-32254-0_47

