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ABSTRACT A circularly polarized wideband reflectarray is presented using a monofilar single-turn helical
antenna as reflecting element. An 11 × 11 elements reflectarray is designed, simulated and measured in
X-band which demonstrates a wide bandwidth and large-angle beam-scanning performance. Phase range of
360◦ is obtained by rotating off-centred reflecting elements. Full wave simulations show that 1-dB bandwidth
of 29.1% is achieved at the center frequency of 10 GHz with a maximum gain of 23.9 dB at normal angle
of incidence (φ = 0◦, θ = 0◦) where the measured gain for the focused beam is 23.6 dB with an aperture
efficiency of 51.7%. Simulated and tested axial ratio is less than 3 dB from 8.9 GHz to 10.7 GHz. Moreover,
large-angle beam scanning performance is verified by changing the angle of incidence from +30◦ to −30◦

in both orthogonal planes and maximum gain loss is tested to be less than 1.3 dB at all scanned angles.
Feasibility of design is demonstrated by the measured radiation performance and the results are in good
agreement with the simulations.

INDEX TERMS Beam scanning, helical antenna, large-angle, monofilar, reflectarray.

I. INTRODUCTION
High gain antenna is a crucial requirement in case of long dis-
tance communication. Unlike parabolic reflectors and array
antennas traditionally used for high gain applications [1],
reflectarray, transmitarray and resonant cavity antenna have
emerged as very attractive choice in recent times for satel-
lite applications and wireless communication [2]–[4]. These
antennas with planar structures have advantages like simplic-
ity of design, low cost of manufacture and higher efficiency.

The conceptual design of Reflectarray antennas dates back
to 1963, however, there has been rapid advancement in
this type of antennas in last few decades due to advent of
low-profile printed antennas [5]. ‘‘ReflectArray’’ antenna
derives its origin from parabolic reflector and conventional
array antenna. It exploits benefits of reflector antenna and
phased array antenna including high gain, low losses, low
cross polarization and mechanism of electronically control-
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ling the beam scan angle and shape. Reflectarray is made
up of an array of radiating elements which provide appro-
priate phase shift to impinging wave so that reflected beam
is formed in desired directions. On the flip side, reflectar-
ray antenna suffers from limitations of narrow bandwidth
due to the inherent low bandwidth patch element used as
unit cell and phase error introduced at off-centre frequency.
Since phase is compensated at each element for particular
wavelength only, major drift from center frequency results
into high loss as well as phase error [6]. Furthermore, per-
formance of reflectarray deteriorates at oblique angles of
incidence. Various approaches have been used to enhance
the bandwidth of the microstrip reflectarray antenna by
using aperture-coupled elements [7], single-layered multi-
resonant radiating elements [8] and unit element of various
shapes [9]–[11]. Moreover, features of dynamic control of
the phase have been introduced electronically by using p-i-n
diode switches [12], varactor diodes [13] andMicrolectrome-
chanical system (MEMS) RF switches [14], in other imple-
mentations mechanical actuation has been used to change
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TABLE 1. Dimensions of the reflecting element.

physical orientation of reflecting elements by using motors
in [15]. In addition to implementation of beam scanning
methodologies through element phase control, feed tuning
techniques have also been presented using dual reflectarray
antenna [16], [17] and electromagnetic metasurfaces for horn
antenna [18].

Circularly polarized reflectarray has been studied exten-
sively for satellite communications due to certain benefits
like mitigation of polarization mismatching, insensitivity to
‘‘Faraday rotation’’ and reduction of multipath fading [19].
Microstrip patches have been mostly used to design reflec-
tarray for circular polarization [20], [21]. Helical antenna is
known to be one of the best antennas for radiating circularly
polarized waves and it has a broad bandwidth performance,
high gain and good axial ratio as well [22]. Till date, to the
best knowledge of the authors, a single design has been
proposed in X-band using the helical antenna as reflecting
element [23], where a dual-branch Helical antenna is used
as reflecting element to design a reflectarray which demon-
strates a wideband and good beam scanning performance.
However, dual-branch helical element with shaft, which is
otherwise suitable for high power handling requirements,
adds to complexity and mass of the reflectarray. A close to
planar structure needs to be designed which is simpler in
configuration and has a wider bandwidth and a larger beam
scanning.

In this article, a monofilar single-turn helical element has
been used for the first time to design a simple and efficient
reflectarray antenna. It has been demonstrated that the pro-
posed design has better performance in terms of bandwidth
and wide angle beam handling capability improving therefore
the state of the art. Moreover, being monofilar and single
turn, the proposed antenna is a good competitor for use in the
satellite applications where stowed volume is required to be
minimized. Mutual coupling between the elements has been
mitigated effectively at oblique angle of incidence, hence
introducing flexibility in design for beam scanning within
the range of 60◦ in both orthogonal planes. This article is
organized as follows: In Section II, the basic helical reflecting
element is discussed along with its phase range, design and
optimization. A detailed account of 11 × 11 elements circu-
larly polarized helical reflectarray is presented in Section III.
Simulated and measured results of the proposed reflectar-
ray are presented and discussed in Section IV validating the
broad bandwidth and beam-scanning performance. Conclu-
sions are drawn in Section V.

II. HELICAL ELEMENT DESIGN
Helical element is selected with diameter of a 10 mm
so that circumference is equal to the wavelength at the

FIGURE 1. Configuration of helical element design (a) Side-view and
(b) Top-view.

design frequency of 10 GHz to achieve a perfect axial mode
radiation [24]. ANSYS High Frequency Structure Simula-
tor (HFSS) is used to design and simulate the entire design.
Floquet port excitation and master-slave boundaries are used
to impinge a right-handed circularly polarized plane wave on
the reflecting element in an infinite periodic array environ-
ment. An extensive parametric analysis of the helical element
is carried out by varying pitch and number of turns. Based
on the results of the parametric analysis, a single turn helical
element is proposed and designed, as shown in Fig. 1(a)
and (b). Table 1 shows the optimized dimensions of the heli-
cal element. Fig. 2(a) shows simulated reflection coefficient
of helical element plotted against frequency from 8 GHz
to 12GHz. The amplitude of reflection coefficient is expected
to be close to 0 dB because dielectric and conduction losses
are small in amplitude and there are no grating lobes due
to ground plane [5]. Phase range of the helical element is
obtained at the center frequency of 10 GHz by the rotation
of the reflecting element. The angle of reflected beam varies
by twice the angle of rotation of the helical element which is
in agreement with theory [25]. The phase range obtained by
rotation of the helical element from 0◦ to 180◦ under normal
angle of incidence at 10 GHz is shown in Fig. 2(b). Results
of co-polar and cross-polar phase amplitudes are shown in
Fig. 2(c). Helical element has cross polar (left-handed circu-
larly polarizedwave) amplitude of−23 dB and−17 dB at two
spot frequencies; 9 GHz and 11.5 GHz respectively which
shows the wideband behaviour of the reflecting element,
whereas minimum difference between co-polar and cross-
polar amplitude is observed at 10.5 GHz. A high gain and
wideband performance is expected from the optimized helical
reflecting element due to accurate circumference matching
with wavelength and dual resonance observed at two fre-
quency spots, as shown in Fig. 2(c).

III. REFLECTARRAY DESIGN
Keeping the size of the helical reflectarray similar to [23],
a reflectarray of 11 × 11 elements was designed. As the
radius of unit cell has been selected as 5 mm as compared
to unit cell radius of 6.5 mm in [23], an additional row of
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FIGURE 2. Simulated (a) Reflection coefficient versus frequency (b) Phase
response versus rotation angle and (c) Amplitude response versus
frequency of proposed helical element.

FIGURE 3. (a) Reflectarray proposed design, and (b) Radiation pattern of
feed horn in two principal planes at 10 GHz.

elements was adjusted on either sides of the proposed array
while keeping the physical aperture size of the antenna similar
to the design in [23]. The proposed design of reflectarray is
shown in Fig. 3(a). The equation used to rotate the off-center
elements for compensation of the phase delay is

φm,n in degrees=k[lm,n−f ]− integer multiple of 360◦ (1)

where φm,n is the phase required at each element, k is the
wavenumber in free space, lm,n is path length of individual
element from the feed horn and f is feed horn distance from
center element. After calculations of phase required at indi-
vidual element, each element is manually rotated at an angle
which is half in value to the phase calculated using (1) where
the normal angle of incidence is assumed for all elements in
an array. However, as reflecting element off-center distance
increases, an error in the phase calculation is introduced
which has adverse effects on the gain of reflectarray. This
error is of the order of 25◦ at an angle of incidence of 40◦

as compared to normal incidence response, whereas this cal-
culation error increases to 50◦ when the feed horn is inclined
at an angle of 60◦ [5].

FIGURE 4. (a) Fabricated reflectarray on foam backed by substrate and
ground, (b) Schematics of measurement setup, and (c) Measurement
setup.

FIGURE 5. Measured and simulated radiation patterns of reflectarray
at 10 GHz, normalized to the measured gain of 23.6 dB and simulated
gain of 23.9 dB, respectively, in (a) XZ plane, and (b) YZ plane.

FIGURE 6. (a) Measured and simulated gain versus frequency, and
(b) Measured and simulated axial ratio versus frequency under normal
angle of incidence.

Two measures have been introduced in the design to
increase the oblique angle beam handling capability of the
reflectarray antenna. It was found in [26] that by decreasing
the inter-element spacing, the gain bandwidth performance
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FIGURE 7. Normalized radiation patterns in (a) XZ plane and
(b) orthogonal plane at 9 GHz, 10 GHz and 11 GHz.

of the reflectarray at the oblique angle of incidences can be
improved. This is due to the reduction of the inter-element
spacing, beamwidth narrowing and beam shape deformation
is comparatively less pronounced at an oblique angle of inci-
dence. Keeping this factor in focus, inter-element spacing
has been kept as 0.6λ while designing reflectarray instead
of 0.65λ which was selected by authors in [23]. In this way,
a design with optimized inter-element spacing has been used
to avoid grating lobes and mutual coupling effects as well
as to handle waves impinging at an oblique angle. Secondly,
it is known that elements which are in the central area of the
reflectarray aperture, scatter back re-radiated and reflected
component in the desired direction. The elements close to
the edge re-radiate the wave in the desired direction however
the reflected components travel to undesired directions due
to the larger angles of incidence and consequently cause side
lobes [5]. In order to mitigate this effect of the reflected
components of the edge elements, larger values of f/D ratio
are suitable (f is focal length and D is array diameter). Hence,
f/D ratio of 1 has been selected for the proposed reflectarray.
Normalized radiation pattern of feed horn in two orthogonal
planes is shown in Fig. 3(b).

The fabricated reflectarray is shown in Fig. 4(a), schemat-
ics of measurement setup are shown in Fig. 4(b) and actual
measurement setup is shown in Fig. 4(c). A reflectarray pro-
totype of 11×11 helical elements has been fabricated. A total
of 121 helical elements have been placed on substrate using
RF transparent foam. Rogers RT/duroid 5880 (tm) is used as
dielectric substrate with εr = 2.5, tan δ = 0.0005, thickness
= 1 mm. The inter-element spacing is 18 mm so that the size
of the reflectarray is 200 × 200 mm2. A feed horn is placed
at a distance of 200 mm (f/D = 1) from reflectarray aperture
which impinges a right-handed circularly polarized beam on
the reflectarray under the normal angle of incidence. The feed
horn has a gain of a 15.1 dB at 10GHzwith−3 dB beamwidth
of 34◦ and reflection coefficient of −25 dB. Beam scanning
capability of proposed antenna is measured by moving feed
horn from normal angle of incidence to 30◦ and −30◦ with
the hop of±15◦ keeping f= 200 mm from center of antenna
aperture.

IV. RESULTS
Full wave simulations are carried out using ANSYS HFSS
from 8 GHz to 12 GHz at a center frequency of 10 GHz

FIGURE 8. Measured and simulated normalized radiation pattern of
beams from θ = −30◦ to 30◦ in (a) XZ plane and (b) YZ plane at 10 GHz.

FIGURE 9. Gain versus scan angle of beams from θ = −30◦ to 30◦ in
(a) XZ plane and (b) YZ plane at 10 GHz.

with 500 MHz step. The proposed model is simulated first
with a normal angle of incidence and a right-handed circu-
larly polarized beam is radiated in broadside direction. The
simulated gain is 23.9 dB in both orthogonal planes and
measured gain is 23.6 dB. The normalized radiation patterns
under normal angle of incidence in two principal planes are
plotted in Fig. 5(a) and (b) along with measured results. Aper-
ture efficiency is 51.7% and a symmetrical beam is formed in
both orthogonal planes. The 1-dB gain bandwidth of 29.1%
is obtained from 8.6 GHz to 11.5 GHz with simulated gain
of 23.9 dB and measured gain of 23.6 dB at 10 GHz. Sim-
ulated and measured results are shown in Fig. 6(a). Ampli-
tude of cross-polar (left-handed circularly polarized wave)
remains less than 10 dB from 8 GHz to 10.8 GHz (70% of
entire band) and is 17.8 dB less than co-polar (right-handed
circularly polarized wave) at 10 GHz. Excellent wideband
performance of proposed design is attributed to the selection
of the reflecting element with broadband performance based
on an extensive parametric analysis, as already shown in
Fig. 2(c). Axial ratio of design is less than 3 dB from 8.9 GHZ
to 10.7 GHz and shown in Fig. 6(b). Normalized radiation
patterns at 9 GHz, 10 GHz and 11 GHz in orthogonal planes
are shown in Fig. 7(a) and (b). Beam is symmetrical and the
sidelobe level is less than−10 dB at three frequencies in both
principal planes.

Beam scanning feature is simulated by changing angle of
incident beam from θ = −30◦ to 30◦ in both XZ and YZ
plane. Movement of feed horn in an angular curve is simu-
lated at −30◦, −15◦, 0◦, 15◦ and 30◦. Simulated and mea-
sured normalized radiation patterns for angle of incidence
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TABLE 2. Comparison table.

TABLE 3. Comparison table.

from −30◦ to 30◦ in both planes are shown together in
Fig. 8(a) and (b). Due to the appropriate adjustment of
inter-element spacing and f/D ratio, the proposed design
demonstrates a very good beam handling capability at oblique
angles. Maximum gain loss in nine beam scan cases is
simulated and tested to be less than 1.3 dB from normal
to the most oblique angles. The measured gain is plotted
against the scanned angles in XZ and orthogonal YZ plane
in Fig. 9(a) and (b). A maximum gain of 24.8 dB is obtained
at ±15◦ due to the reduced shadowing effect at the offset
feed position. The measured results are in good agreement
with simulated results. The difference between the simulated
and the measured results is attributed to a manual rotation of
each helical element which resulted into slightly inaccurate
phase calculation of the reflected wave. Moreover errors in
the fabrication and measurement setup also led to certain
degree of imprecision. However the overall results are within
acceptable limits. A comparison of bandwidth and beam
scanning feature between reflectarrays using other shapes
of unit cell and this work has been presented in Table 2.
Moreover, a detailed comparison of the design configuration
proposed in this paper and the results from reference [23] are
presented in Table 3.

V. CONCLUSION
A wideband circularly polarized helical reflectarray with
a large-angle beam scanning capability has been designed,

manufactured and measured. Taking [23] as a reference,
the proposed design has exhibited superior performance in
terms of 1-dB gain bandwidth and beam scanning angle
range with simpler configuration and low mass even if the
manufacturing imprecision is relatively large. The simulated
1-dB gain bandwidth is 29.1% and beam scanning angle
is demonstrated in ±30◦ in both XZ and YZ planes with
gain loss less than 1.3 dB. Measured axial ratio is less than
3 dB from 8.9 GHz to 10.7 GHz and from −30◦ to 30◦

in both XZ and YZ plane. Helical reflectarray proposed is
low cost and easy to manufacture due to simplicity of the
design as compared to the dual-branch helical element with
shaft as proposed in [23]. Moreover, being close to a planar
design, the proposed reflectarray has improved the state of
the art for circularly polarized antenna arrays for satellite
applications.
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