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ABSTRACT Gross primary productivity (GPP) over the Mongolian Plateau (MP) is a vital component of
the global terrestrial carbon cycle. Using the latest MODIS GPP estimates at the best achievable spatial
resolution along with several ancillary datasets, we investigated GPP variations in the MP region during
2001–2018 and attributed these changes to land-surface temperature (Ts), total precipitation (Pt), land-
cover change (LCC), and atmospheric carbon dioxide (CO2) concentrations. The 18-year-averaged annual
cumulative GPP in the MP region was 357.02 ± 24.76 gC m−2 yr−1 during the study period, ranging from
60.51 ± 6.10 gC m−2 yr−1 in deserts to 596.41± 35.49 gCm−2 yr−1 in forests. A linear regression analysis
indicated a significant overall increase in GPP, at a rate of 3.91 gCm−2 yr−1 (p < 0.01). In comparison, GPP
increased at a rate of 0.79 gC m−2 yr−1 in deserts (p < 0.01), 4.79 gC m−2 yr−1 in forests (p < 0.01), and
5.76 gC m−2 yr−1 in grasslands (p < 0.01). Our detailed attribution analysis indicates that GPP is positively
sensitive to surface air temperature (0.15 gC ◦C−1) and total precipitation (0.25 gC mm−1) but negatively
sensitive to atmospheric CO2 concentrations (−0.20 gC mol−1) and LCC (−0.93 gC class−1). Furthermore,
we reported large differences in the spatial patterns and magnitudes among individual variables in the GPP
attribution analysis, with LCC proving to be the dominant factor followed by CO2 fertilization effects;
climatic factors had comparatively little influence on GPP variations during the study period. Although
MODIS GPP does not take CO2 fertilization effect into account, the close relationship between MODIS
GPP and atmospheric CO2 concentrations still pose referencing value in attributing the GPP increase in
this period. Overall, the findings of this study contribute to our understanding of the responses of sensitive
ecosystems to the competing effects of climate change and human disturbance at regional scales.

INDEX TERMS Mongolian plateau, gross primary productivity, climate change, driving factors.

I. INTRODUCTION
Terrestrial gross primary productivity (GPP), defined as the
carbon uptake by terrestrial ecosystems through plant pho-
tosynthesis, is the largest component of the global carbon
cycle and a key indicator of land ecosystem dynamics [1]–[3].
GPP is essential for several ecosystem applications, such as
crop growth and yield prediction [4], vegetation disturbance
monitoring [5], and solar-induced fluorescence retrieval [6]
at regional and global scales. As an important part of the
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East Asian ecosystem, the Mongolian Plateau (MP) not only
represents an important ecological barrier in China but also
plays an important role in the global carbon cycle [7]. There-
fore, accurate information on GPP in this region is vital for
both local ecosystem monitoring and global carbon budget-
ing [8], [9] against the backdrop of a changing climate.

The increasing attention toward patterns and attribution
of GPP change in past few years has been driven by the
global need for accurate peak carbon and carbon neutral cal-
culations [1]–[3], [8], [9]. Statistical interpolation [10], [11],
satellite-based estimation [12], [13], and carbon cycle mod-
els [14]–[17] are three widely employed approaches in GPP
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estimation. Comparedwith statistical interpolation andmodel
simulations, estimation using satellite data has distinct advan-
tages for GPP monitoring, including large spatial coverage,
fine spatial resolution, high temporal resolution, and eco-
nomic and practical in application. Several published GPP
datasets are currently available [12], [13], [18], e.g., the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) [12]
and Global Land Surface Satellite (GLASS) [13] datasets.
Although GPP estimates from carbon models and satellite
observations show similar patterns at a global scale, there
are large differences in the temporal trends, seasonality, and
interannual variability of GPP calculated from individual
regional and local datasets because of varying inputs and
forcing mechanisms [1], [19]. In addition, due to the lack of
observational GPP data over the MP, accurate estimation in
this region remains difficult, and high-quality GPP datasets
are crucially needed.

Among the published satellite-retrieved estimates, the
good performance of MODIS GPP, based on a light-use
efficiency algorithm, has been highlighted. The validation of
GPP calculated from ground sites and MODIS-based esti-
mates shows good spatiotemporal correlation [10], [11], [20].
Moreover, the newly released gap-filled MODIS GPP esti-
mates (MOD17A2HGF) Version 6 [21] provide spatially
complete GPP data at a 500-m spatial resolution, offering new
opportunities for regional-scale studies.

In addition to studies of GPP variability, the attribution
of GPP anomalies has recently gained significant atten-
tion. Several putative drivers have been attributed to GPP
changes including surface air temperature (Ts) [22], precip-
itation (Pt) [23], [24], atmospheric carbon dioxide (CO2)
concentrations [25], [26], aerosol optical depth (AOD) [27],
plant phenology and physiology [28], and land-cover change
(LCC) [25]. Generally, increases in atmospheric CO2 concen-
trations dominate GPP changes via CO2 fertilization effects;
the Ts and Pt produce similar but lower-magnitude pos-
itive GPP effects; solar radiation (Rs) is associated with
an overall decrease in GPP; and LCC is positively corre-
lated with GPP [25]. However, the mechanisms underlying
regional-scale GPP attribution remain debated. The putative
driving factors of large-scale variability in GPP are deter-
mined by location and biome type. For example, AOD is
positively correlated with GPP in forests but negatively cor-
related with GPP in grasslands over China [27]. Furthermore,
although the sensitivity of GPP to LCC is positive at a global
scale, a negative effect is observed in the rainforests of South
America and Eurasia [25]. Although attribution analyses have
been carried out at different scales, the relative contributions
of different drivers of GPP change remain highly uncer-
tain [25], [29], especially at regional scales.

Affected by the Siberia-Mongolia High in winter, the East
Asian Monsoon in summer, and the westerly circulation,
the MP is extremely fragile and ecologically sensitive to
climate variations [30], [31]. Under the competing effects
of climate change and human activity, the MP has experi-
enced drastic ecosystem shifts over the past several decades

including grassland degradation [32], forest decline [33],
cooling effects from re-vegetation [34], and the rapid loss
of lakes [35]. Nevertheless, evidence of GPP variability in
this region remains limited. To address this gap, here we
investigate the pattern of GPP changes in the MP region
and its drivers using the latest MODIS GPP simulations
from 2001 to 2018. We specifically focus on the relation-
ships between GPP and four major putative drivers (Ts, Pt,
CO2 concentration, and LCC) and their underlying forcing
mechanisms. Results in this study provide valuable evidence
of GPP change and its underlying mechanisms in this glob-
ally important region, having implications for global carbon
budgets as well as understanding ecosystem sensitivities and
responses to climate change and human disturbance.

II. DATA AND METHODS
A. STUDY AREA
Due to its arid and semi-arid climate, habitats of the MP tran-
sition from deserts to grasslands and forests, from southwest
to northeast [31]. As rapid climate and land-cover changes in
this region may have a marked impact on GPP, we attributed
GPP variability in grasslands, forests, and deserts accord-
ing to the global terrestrial ecoregions classification devel-
oped by the Nature Conservancy (TNC) [36], as shown
in Figure 1.

FIGURE 1. Location of the Mongolian Plateau (MP) showing (a) terrestrial
ecoregions, (b) general land-cover types, and (c) area covered by each
land-cover type (%) according to the Nature Conservancy classification.

According to the TNC classification, the MP is covered
by nine ecoregions, which were re-classified into forests,
grasslands, and deserts to facilitate statistical analysis. The
‘‘forests’’ classification included temperate conifer forests,
temperate broadleaf and mixed forests, boreal forests/taiga,
and tundra; the ‘‘grasslands’’ category included montane
grasslands and shrublands, flooded grasslands and savannas,
as well as temperate grasslands, savannas, and shrublands;
and the ‘‘deserts’’ category included deserts and xeric shrub-
lands. Forests are mostly distributed in mountainous areas,
including the Altay Mountains in the west, the Khangai
Mountains in the west, and the Khentii Mountains in the
north, which account for 32.58% of the total study area.
Grasslands are distributed in the middle of the MP and
account for 38.84% of the total area. Finally, deserts are
located in the southwest of the MP and account for 28.04% of
the total area. Although the deserts in the north of the region
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are more arid, they receive some precipitation in summer and
support sparse vegetation that contributes to GPP.

B. DATASETS
We used the latest satellite-based MODIS GPP dataset and
datasets of major putative drivers covering the period from
2001 to 2018.

1) GPP DATASETS
To capture the spatial pattern and assess interannual
variability and long-term trends in GPP, eight-day composite
gap-filledMOD17A2HGF data [21] with a 500-m spatial res-
olution were downloaded from the National Aeronautics and
Space Administration (NASA) Land Processes Distributed
Active Archive Center (https://lpdaac.usgs.gov/products/
mod17a2hgfv006/).

MODIS GPP was the first satellite-based modeled GPP
dataset for monitoring global vegetation productivity with
complete spatial coverage and high spatial resolution.
To ensure data quality, poor-quality inputs from the eight-day
Fraction of Photosynthetically Active Radiation and Leaf
Area Index have been removed from the MOD17A2HGF
dataset based on the quality control flag for each grid cell.

2) LAND-COVER DATASET
To attribute GPP changes to LCC, we employed the annual
International Geosphere-Biosphere Programme (IGBP) clas-
sification from the Terra and Aqua combined MODIS yearly
land-cover dataset (MCD12Q1) with a 500-m spatial res-
olution. This dataset covers 17 IGBP categories encom-
passing 11 natural vegetation categories, three land-use and
land-mosaic categories, and three vegetation-free land cate-
gories [37]. For the purpose of our study, the land-cover data
were analyzed in a 0.10◦ grid, in which all 500-m pixels
encompassed in the 0.10◦ cells were used to calculate the
proportions of the dominant land-cover types.

3) ATMOSPHERIC CO2 CONCENTRATION DATASET
To attribute GPP changes to atmospheric CO2 concentra-
tions, we used the Carbon Tracker CT2019B product, pro-
viding global monthly continuous spatial surface-atmosphere
flux of atmospheric CO2 concentrations. CT2019B is dis-
tributed by the Global Monitoring Laboratory (GML) of the
National Oceanic and Atmospheric Administration (NOAA),
and is based on observations from the NOAA Earth System
Research Laboratories (ESRL) greenhouse gas observational
network and collaborating institutions (spatial resolution =
1.0◦) [38]. In this dataset, terrestrial biosphere, wildfire, fossil
fuel emissions, atmospheric transport, and other factors are
assimilated to estimate atmospheric CO2 mole fractions.

4) REANALYSIS TEMPERATURE AND PRECIPITATION
DATASET
Previous studies have reported that climatic factors are
closely related to GPP changes at a regional scale [22]–[24].
To attribute GPP changes to local meteorological variables,

we employed monthly averaged 2-m surface air temperature
(Ts) and total precipitation (Pt) datasets with a resolution
of 0.10◦ (approximately 9 km) from the European Center
for Medium Range Weather Forecasts (ECMWF) Reanal-
ysis v5-Land (ERA5-Land) [39]. These data are widely
considered suitable for ground-level modeling [40]–[42].
Compared with other ERA5 reanalysis data, ERA5-Land
offers more accurate classifications of land parameters and
land status.

5) SOLAR RADIATION DATASET
Incoming solar radiation (Rs) is the energy source for pho-
tosynthesis and causes changes in Ts, relative humidity,
and evaporation, and thus, indirectly affects plant productiv-
ity [43]. Therefore, Rs is the one of the most important envi-
ronmental factors affecting terrestrial ecosystem productivity
and carbon budgets. Here, to explore whether changes in Rs
are associatedwith GPP anomalies over theMP, we employed
the Clouds and the Earth’s Radiant Energy System (CERES)
Energy Balanced and Filled (EBAF) dataset [44] (spatial
resolution = 1.0◦).

6) DATA PREPARATION
All of the used datasets are summarized in Table 1.

TABLE 1. Summary of datasets used in this study.

Prior to analysis, all the gridded datasets were resam-
pled to gridcells with a spatial resolution of 0.10◦

in geographic projection. Using ‘‘gdalwarp’’ software
(https://gdal.org/programs/gdalwarp.html), datasets with a
spatial resolution coarser than 0.10◦ were regridded using the
‘‘cubic-spline’’ function; datasets with spatial resolution finer
than 0.10◦ were regridded using the ‘‘average’’ function.

C. RELATIVE CONTRIBUTION CALCULATION
The influences of four putative drivers on GPP (Ts, Pt, atmo-
spheric CO2 concentration, and LCC) were analyzed in detail
using multiple linear regression analysis [45], [46]. To avoid
multicollinearity among the four drivers, we employed ridge
regression. First, each driver was normalized to facilitate
cross-comparison between variables with different units and
scales. For variable Xi, the z-score (Xiz) was calculated using
Equation (1) [47]:

Xiz =
Xi − µX
δX

, (1)

VOLUME 10, 2022 25127



X. Chen et al.: Distribution and Attribution of Gross Primary Productivity Increase Over Mongolian Plateau, 2001-2018

where Xiz is the normalized variable Xi, µx is the mean value
of variable Xi, and δx is the standard deviation of variable Xi.
Second, ridge regression analysis was carried out to calcu-

late the sensitivity of GPP to the four putative drivers using
Equation (2):

GPPz =
n∑
i=1

βi × Xiz + α, (2)

where GPPz is the z-score-normalized GPP; Xiz is the nor-
malized putative driver Xi; βi is the standard ridge regression
coefficient for putative driver Xi; α is the residual error, rep-
resenting the contribution of unknown factors to GPP, such as
fire, pests, wind, and disease; and n is the number of putative
drivers.

Third, the relative contributions of the putative drivers
to GPP variability were obtained using the ridge regression
coefficients and the z-score series of each driver, as follows:

ηci = βi × Xiz, (3)

where ηci is the contribution of putative driver Xi to
the z-score-normalized GPP variation, Xiz is the z-score-
normalized Xi, and βi is the linear slope of Xiz.

Finally, the relative contribution (ηrc) of each individual
putative driver to GPP was confirmed using Equation (4):

ηrci =
|ηci|

|ηc1| + |ηc2| + · · · + |ηcn|
, (4)

where ηrci is the relative contribution of Xi to GPP change,
and n is the number of putative drivers.
Ridge regression analysis is an effective approach for solv-

ing collinearity problems between independent variables [48]
and has been successfully applied in GPP trend analysis of the
‘Three North’ region of China (northeastern, northern, and
northwestern regions) [46] and Yellow River Basin [49].

III. RESULTS
In the subsequent subsections, changes in GPP over the MP
are first described for the period 2001–2018. Then, concur-
rent changes in the four putative drivers are described. Finally,
the results of attribution analysis are presented.

A. CHANGES IN GPP OVER THE MP
The spatial pattern of the 18-year-averaged (2001–2018)
annual cumulative GPP over the MP is displayed in Figure 2,
as calculated from the MOD17A2HGF dataset.

With the transition from desert to forest, GPP generally
increases from the southwest to northeast parts of the MP
(Figure 2a). For the 2001–2018 study period, the overall
18-year average annual cumulative GPP of the MP was esti-
mated to be 357.02 ± 24.76 gC m−2 yr−1. However, large
differenceswere identified among the individual biome types,
with the annual cumulative GPP of forests, grasslands, and
deserts calculated as 596.41 ± 35.49, 386.07 ± 37.95, and
60.51 ± 6.10 gC m−2 yr−1, respectively.
The fluctuations in annual cumulativeGPP ranged between

317.31 gC m−2 yr−1 (in 2003) and 410.92 gC m−2 yr−1

FIGURE 2. Spatial distribution of (a) 18-year-averaged (2001–2018)
annual cumulative gross primary productivity (GPP) over the Mongolian
Plateau (MP) and (b) associated change during this period. (c) Interannual
variations in annual cumulative GPP over the MP among different biome
types for the same period. (d) Contributions of different biome types to
GPP changes in MP during the study
period.

(in 2018). Over the entire study period, the linear regression
analysis indicated a significant increase in annual cumulative
GPP at a rate of 3.91 gC m−2 yr−1 (p < 0.01); in deserts,
forests, and grasslands, the rate of increase was 0.79 (p <
0.01), 4.79 (p < 0.01), and 5.76 gC m−2 yr−1 (p < 0.01).
The observed GPP increase was strongest in the south-

eastern part of the MP, coinciding with the grasslands in
this region [50]. Moreover, forests, grasslands, and deserts
accounted for 39.94%, 53.72%, and 6.44% of the overall
change in GPP during the study period.

B. CHANGES IN METEOROLOGICAL VARIABLES OVER
THE MP
Changes in Ts and Pt are shown in Figure 3
for the 2001–2018 study period, as calculated from the latest
ERA5-land atmospheric reanalysis dataset.

The spatial pattern of annual mean Ts exhibited a decreas-
ing trend from south to north over the MP (Figure 3a). The
changes in Ts exhibited a conspicuous warming trend in
grasslands and deserts areas (Figure 3b) compared to a cool-
ing trend in the northwest part of the MP, which is consistent
with the reported Eurasian cooling caused by a strengthening
Siberian High [51].

Compared with Ts, Pt (Figure 3c) and associated over-
all changes during the study period (Figure 3d) exhibited
larger spatial differences within the study area. The 18-year
averaged annual-mean Pt showed an increasing trend from
the deserts in the southwest to the forests in the north-
east. Pt showed an increasing trend in the eastern MP but
decreased at the southern and northern margins of the MP.
Notably, changes in Pt were opposite to the Palmer Drought
Severity Index (PDSI) anomalies in this region during
the 2000s [52].

The detailed changes in annual-mean Ts and Pt are sum-
marized in Table 2.
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FIGURE 3. Distribution of 18-year averaged (2001–2018) annual-mean
(a) Ts and (b) Pt over the Mongolian Plateau (MP) and overall change in
(c) Ts and (d) Pt during the study period. Z-scores of (e) gross primary
productivity (GPP) and Ts, and (f) GPP and Pt, during the study
period.

TABLE 2. Changes in TS (◦C) and Pt (mm), and their linear correlations (r)
with gross primary productivity (GPP) over the Mongolian Plateau (MP)
for the period 2001–2018.

In most regions, the changes in Ts and Pt were insignif-
icant, except for the desert regions. In deserts, Pt decreased
by −3.21 mm between 2001 and 2018, which was posi-
tively correlated with the increase in GPP in this region (r =
0.52, p < 0.05). In addition, although grassland Pt showed
an insignificant increasing trend between 2001 and 2018,
this was positively correlated with GPP changes (r = 0.45,
p < 0.10).

C. CHANGES IN ATMOSPHERIC CO2 CONCENTRATION
AND LAND COVER
The spatial pattern of 18-year-averaged atmospheric CO2
concentrations and the dominant land-cover types over the
MP are shown in Figure 4.

FIGURE 4. Distribution of 18-year annual-mean (a) atmospheric CO2
concentration and (b) dominant land-cover types and overall change in
(c) atmospheric CO2 concentration and (d) dominant land-cover types in
the Mongolian Plateau (MP) region during the period 2001–2018. Z-scores
of (e) gross primary productivity (GPP) and atmospheric CO2
concentration, and (f) GPP and dominant land-cover types during the
study period.

Influenced by the intensity of human activity in the MP
region, atmospheric CO2 concentrations are high in Inner
Mongolia relative to lower values in the southwestern deserts
(Figure 4a). The dominant land-cover types exhibit a remark-
able spatial transition from the deserts in the southwest to the
grasslands in the central area and the forests in the northeast
(Figure 4b).

The linear regression analyses revealed a significant
increase in atmospheric CO2 concentrations in the MP region
between 2001 and 2018 (1.99 mol m−2, p < 0.05). Notable
regional differences were revealed, however, with signifi-
cant decreases in the northeast forest region and increases
in the grassland regions, especially at the southern mar-
gin. These changes are similar to the decrease in CO2
concentrations previously reported in this region for the
period between 2009 and 2018 [53]. The dominant land-
cover types exhibited a decreasing trend during the study
period (−0.11 class−1, p < 0.05), indicating an overall
transition from desert to grassland and from grassland to
forest. As shown in Figure 4d, the most remarkable changes
have occurred near the transition regions between deserts
and grasslands, which corroborates the findings reported
by Jiang et al. [34].

The observed changes in annual-mean atmospheric CO2
concentrations and the dominant land-cover types during the
study period are detailed in Table 3.
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FIGURE 5. Sensitivity of annual cumulative gross primary productivity
(GPP) to changes in (a) Ts (gC ◦C−1), (b) Pt (gC mm−1), (c) CO2
concentration (gC mol−1), and (d) land-cover class (LCC) (gC class−1) over
the Mongolian Plateau (MP) during the period
2001–2018.

As shown in Table 3, atmospheric CO2 concentra-
tions over grassland and desert areas increased at rates
of 4.83 (p < 0.05) and 0.68 mol m−2(p < 0.05) between
2001 and 2018. Moreover, atmospheric CO2 was highly cor-
related with annual GPP augmentation in the forest (r =
−0.54, p < 0.05), grassland (r = 0.72, p < 0.05), and desert
(r = 0.68, p < 0.05) areas.

In comparison to CO2 concentration, the dominant land-
cover types in the forest, grassland, and desert areas showed
an overall decreasing trend, with rates of −0.10 (p < 0.05),
−0.04 (p < 0.05), and −0.23 (p < 0.05), respectively. These
trends were negatively correlated with annual GPP variability
in these regions, with r corresponding values to −0.58 (p <
0.05), −0.71 (p < 0.05), and −0.81 (p < 0.05), respectively.

D. ATTRIBUTION ANALYSIS
The changes in annual cumulative GPP over the MP during
the period 2001–2018 and their sensitivities to individual
putative drivers, calculated using Equation (3), are shown in
Figure 5.

Annual cumulative GPP shows a conspicuous rising trend
in the central and southeastern regions of the MP (Figure 2b),
and this is positively correlated with increases in Ts
(Figure 5a) and atmospheric CO2 concentrations (Figure 5c)
in these regions. As shown in Figure 5d, the evident LCC
decrease is also associated with the increase in GPP at the
eastern margin of the MP.

Detailed ridge regression coefficients reveal that GPP
change was positively correlated with Ts (0.1495 gC ◦C−1)
and Pt (0.2424 gC mm−1) but negatively correlated with
atmospheric CO2 concentration (−0.1993 g C mol−1)
and LCC (−0.9348 gC class−1) during the 2001–2018
study period. However, there were large differences among
the desert, grassland, and forest land-cover categories.

FIGURE 6. Relative contributions of different putative drivers to annual
cumulative gross primary productivity (GPP) changes over the (a) entire
Mongolian Plateau (MP), (b) forest areas, (c) grassland areas, and
(d) desert areas for the period 2001–2018.

TABLE 3. Changes in atmospheric CO2 concentration (mol m−2) and land
cover class (LCC), and their linear correlations (r) with annual gross
primary productivity (GPP) over the Mongolian Plateau (MP) during the
period 2001–2018.

For example, annual cumulative GPP was negatively corre-
lated to atmospheric CO2 concentration (−0.3958 gCmol−1)
in forests but significantly and positively correlated with
grasslands (0.3247 gCmol−1) and deserts (0.1101 gCmol−1)
over the same period.

The relative contributions of each putative driver to GPP
anomalies as calculated from Equation (4) are shown in
Figure 6; the contributions of Ts, Pt, atmospheric CO2
concentration, and LCC over the entire MP were 9.16%,
14.87%, 12.64%, and 63.32% for the period 2001–2018,
respectively.

Notably, our analysis revealed large-scale spatial differ-
ences in the relative contributions of each putative driver
to GPP changes in forest, grassland, and desert areas. The
contributions from Ts, Pt, atmospheric CO2 concentration,
and LCC were 26.90%, 8.59%, 21.09%, and 43.42% for
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FIGURE 7. Interannual variations in eight-day cumulative gross primary
productivity (GPP) over the (a) entire Mongolian Plateau (MP) and
(b) forest, (c) grassland, and (d) desert regions during the period
2001–2018.

FIGURE 8. Distribution of 18-year annual-mean (a) Rs and (b) its
associated changes during 2001–2018.

forests; 3.50%, 27.22%, 29.73%, and 39.54% for grass-
lands; and 13.74%, 27.31%, 9.29%, and 59.92% for deserts,
respectively.

IV. DISCUSSION
A. INTERANNUAL VARIATION IN GPP
According to Sun et al. [25] and Alexandrov [54], an increase
in both the amplitude of the GPP seasonal cycle and in
growing season length can lead to elevated GPP.

To comprehensively analyze the reasons for observed GPP
increases in the MP region, we mapped eight-day seasonal
variations in cumulative GPP for the entire region based on
four sub-periods (2001–2005, 2006–2010, 2011–2015, and
2016–2018), as shown in Figure 7.

Notably, the multi-year averaged annual GPP for the ear-
lier (2001–2010) and latter (2011–2018) sub-periods showed
a remarkable change in amplitude (height of peaks in
Figure 7a) whereas changes in growing season length were
negligible (width of peaks in Figure 7a). We also found
similar patterns for the amplitudes of the GPP seasonal
cycle in forest (Figure 7b), grassland (Figure 7d), and desert
(Figure 7e). Based on this, we suggest that changes in the
length of the growing season can be excluded from the attri-
bution of GPP changes during our study period.

B. CHANGES IN SOLAR RADIATION
Previous studies have shown that Rs changes significantly
in response to AOD anomalies, which may lead to GPP
changes [27] and [55]. To explore whether Rs changes Con-
tributed to the observed increase in GPP in the MP region,
we mapped the 18-year annual mean Rs and its associated
overall change in Figure 8.

Between 2001 and 2018, the 18-year averaged annual
mean Rs in the MP region was 293.31 (± 0.12) W m−2, with
a clear latitudinal gradation from south to north (Figure 8a).
However, overall changes during the study period were mini-
mal (Figure 8b). Detailed statistical analysis showed that the
regions with Rs changes between −0.05 and 0.05 W m−2

and between −0.10 and −0.05 W m−2 account for 89%
and 11% of the study area, respectively. This indicated that
Rs had little influence on annual GPP variability during the
study period, and thus, could be excluded from the attribution
analysis.

C. UNCERTAINTY ANALYSIS
Global terrestrial GPP has increased by 31± 5% since 1900,
driven by the effects of a changing climate and increas-
ing atmospheric CO2 concentrations on several ecosys-
tem processes including vegetation productivity, harvesting,
deforestation, and secondary forest regrowth [29]. How-
ever, the patterns of GPP changes in terrestrial ecosys-
tems demonstrate high spatial variability because of the
coupled interactions between vegetation characteristics and
environmental variables, e.g., rising atmospheric CO2 con-
centrations, changing land cover, AOD, and climatic
variability [2], [25], [27].

Satellite-based GPP estimates have been considered highly
reliable because of the advantages they offer, with respect
to consistent spatial and temporal information on vege-
tation dynamics. Compared with other satellite-based and
model-simulatedGPP estimates, theMOD17A2HGF product
has proven a feasible and useful means of evaluating GPP in
the MP region. We observed a remarkable increase in GPP in
this region between 2001 and 2018, and this has partly coin-
cided with enhanced net CO2 uptake by terrestrial and marine
ecosystems, as reported for the period 1959–2010 [56]. Nev-
ertheless, our results differ from recent reports suggesting
that there has been no proportional augmentation in terres-
trial gross carbon sequestration from enhanced greening of
the Earth’s surface [57]. Moreover, in contrast to the find-
ings of Zhou et al. [28], our analysis reveals a remarkable
increase in the amplitude of the seasonal GPP cycle rather
than an increase in the length of the growing season. There-
fore, we excluded phenological shifts from our attribution
analysis.

Previous work has indicated that atmospheric CO2 concen-
tration is the dominant factor driving global GPP increases
between 1982 and 2015 [25]. However, our attribution anal-
ysis revealed that LCC dominated the GPP changes in the
MP region over the last few decades, which contrasts with
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the findings of regional- and global-scale GPP attribution
studies by Sun et al. [25] and Zhang et al. [27]. Since
MOD17A2HGF does not take CO2 fertilization effect into
account, the MOD17A2HGF-based analysis on CO2 fertil-
ization effect is not valid. However, the close relationship
between MOD17A2HGF and atmospheric CO2 concentra-
tions still pose referencing value in attributing the GPP
increase in this period. Furthermore, as shown in Figure 4d,
land-cover change has dominated the transition between
desert and grassland, and between grassland and forest, in the
MP region, with GPP showing a significant and sensitivity
to LCC in these regions. In addition, although we found that
Pt has not been the dominant factor affecting GPP change
overall, it has played a key role in the grassland area of theMP
region. This is corroborated by findings of Yuan et al. [24],
suggesting that Pt plays an important role in GPP dynamics
in the grasslands of northern China. Moreover, different from
the general global rising trend, atmospheric CO2 concen-
trations have decreased in the forested areas of MP, and
this has been negatively correlated with the increase in GPP
across the region. This is not unexpected, as CO2 fertiliza-
tion only partially accounts for changes in GPP, as reported
by Keenan et al. [58].

V. SUMMARY AND CONCLUSION
The estimation and attribution of GPP changes are of great
significance for understanding regional terrestrial carbon
cycling, the response of vegetation to climate change and
human activity, and for assessing ecosystem health. Using
satellite-based and model ensemble GPP estimates and sev-
eral ancillary datasets, we mapped the pattern of annual
GPP over the MP and explored its associations with both
climate change and human activity indicators. Our results
help fill the current gap in GPP studies in the MP region
and can inform future regional-scale terrestrial ecosystem
studies.

Using the latest MODIS GPP dataset, we found a gen-
eral increase in GPP in the MP region from southwest to
northeast, with remarkable spatial variability among forest,
grassland, and desert areas between 2000 and 2018. Over-
all, our linear regression analysis indicates that annual GPP
has shown a significant increase during this period, at a
rate of 3.91 gC m−2 yr−1 (p < 0.01). Based on multiple
datasets, we attribute these trends to climatic factors, LCC,
and atmospheric CO2 concentrations, with LCC accounting
for 63.32% of the observed increase followed by atmospheric
CO2 concentration (12.64%). In comparison, we suggest that
climatic factors have had a limited influence on the GPP
increase in the MP region during this period.

Distinguishing the effects of climate, LCC, and atmo-
spheric CO2 concentrations not only provides valuable
insight into the impacts of future climate change on produc-
tivity, but also reveals the ecological consequences of ongoing
LCC and rising CO2 concentrations. As such, in addition to
being relevant to the MP region, our results can inform local-
scale GPP studies in inland arid and semi-arid regions, as well

as provide additional motivation for mitigating the nega-
tive impacts of ongoing human activity and future climate
change.
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