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ABSTRACT Convolutional Neural Networks (CNNs) have become a standard approach to many image
processing dilemmas. Consequently, most of the proposed CNN architectures tend to increase the model
deepness or layer complexity. Thus, they are composed ofmany parameters and need considerable computing
resources and training examples. However, some recent works show that either shallow neural networks or
architectures without convolutions can achieve similar results with these models often being used in systems
with limited resources. Consideration of these aspects led us to a relatively simple preprocessing layer that
increases the accuracy of CNN or may reduce its complexity. The layer is composed of two parts: the first is
used to transformRGBdata to binary representation, the second is a neural network that transforms the binary
data into a multi-channel, real-value matrix and is trained in a fully unsupervised manner. Our proposal also
includes a metric that may be used for measuring the similarity of training data, with the latter proving useful
when performing transfer learning. Our experiments show that the resulting architecture not only helps to
improve accuracy but is also more robust to image noise, including adversarial attacks, when compared to
state-of-the-art models.

INDEX TERMS Artificial intelligence, binary patterns, deep learning, local binary pattern, image recogni-
tion, restricted Boltzmann machine.

I. INTRODUCTION
Due to the consolidation in artificial intelligence (AI) many
problems are being approched from the deep learning per-
spective [1]. To date, there were plenty of deep models,
architectures, training methods designed and implemented
for better general solutions efficiency. Also, there has been
many evaluations, surveys or reviews the existing state of the
art models like [2]–[5] to just mention a few recent works.
Having so many existing solutions there are even methods
to compare the models between each other based on their
behavioral responses [6]. The majority of these solutions are
based on the supervised approach since, due to its determin-
istic nature, are easier to evaluate. On the other hand we have
an extremely important, in many applications, parameter that
stands partially for the complexity of the model – the number
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of its parameters. There is a clear trend that shows that more
accurate solutions have more parameters and take more time
to compute the output. Since our work aims to optimize the
model complexity by lowering the number of parameters of
the model and also introduces a hybrid architecture trained
on both: supervised and unsupervised data we would like to
present an overview of the trends in both areas with respect
to the model size as an evaluation factor.

First layers in our hybrid model are trained in a fully unsu-
pervised manner, which means we can use unlabelled data.
Many methods can handle these kinds of problems and for
models with categorical output, the solution most likely leads
to clustering-based methods [7]. Otherwise, the most com-
mon tasks would be either data transformation [8], [9], regres-
sion [10] or any sort of structured predictions [11]. These
are relatively simple techniques with low parameter count,
proving useful in many scenarios. However, these methods
have major disadvantages one of which is primarily the lack
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of simple measures describing how a model fits the data.
Generally, this depends on the model hyper-parameters that
have to be chosen before model fitting which is not simple to
estimate. Moreover, there are no simple methods to measure
howmodels generalize to the new data that have not been seen
in the training process, especially for large inputs like images.
Improved performance may be achieved with models that
combine data transformation and clustering such as the neural
network-based models called auto-encoders [12]. The way
these models work is that they transform one space to another
with lower dimensionality and they fit to auto-associative
memory to recognize potential clusters [13].

A good example of the above-mentioned models is the
Boltzmann Machine (BM) [14] and its simplified version –
the Restricted Boltzmann Machine (RBM) [15] which has
proven to be effective in many tasks such as feature extrac-
tion [16], dimensionality reduction [17], classification [18],
or collaborative filtering [19]. An RBM is a generative model
that can learn the probability distribution in the training
dataset. This feature is extremely useful in many different
tasks when a model can detect the most important features
occurring in the image data [20]–[22]. It is fundamental
in the research presented in this paper since the prepro-
cessing we propose is meant to transfer the input image
into high-dimensional features useful in semantic object
recognition. The RBMs are characterized with rather low
parameter count ranging in thousands which make them
compact and efficient models. Another good examples of
generic machine learning models trained in unsupervised
manner can be observed in projects that use Variational
Autoencoders (VAE) [23]. VAEs are used as a pre-trained
first convolutional layers in the CNN model. There exist
many variations of VAEs [24] that are useful, among others
in image processing [25]. Although VAEs are much more
complex models than RBMs where number of parameters
range between 8 to 40 millions [26] making them quite
complex to compute. They also require two-phase training
for effective solutions [27]. To achieve accuracy comparable
to VAE-based models RBMs have been stacked together to
create Deep Believe Networks [28]. This also allows training
RBM models with similar VAEs training techniques [29].
These methods improved RBM performance (and increased
number of parameters) but not to the level of modern very
deep CNNs [30]. This is due to their binary nature and
complexity for high-dimensional data and leads to the second
challenge taken in this paper which is data preprocessing for
the binary input of RBMs.

The backbone of the hybrid model introduced in this paper
is a classic convolutional network. Since in our experiments
we used it to categorize images it is trained in the supervised
manner. It is done by introducing the preprocessed images
by the RBM layer to the input of the backbone. Due to
the preprocessing technique the backbone can be limitted in
number of parameters making the entire model less complex
to compute. As it was mentioned there exist a number of
models in the unsupervised training category that are featured

with high accuracy together with comprehensive rewievs.
However, the number of parameters in these models ranges
in tens of millions [31] that makes them very complex and
GPU dependant. In addition, newer models usually add com-
plexity with respect to the previous solutions [32].

Our proposition for an efficient and relatively shallow
network is the concatenation of the DBN with the input
preprocessing unit with the classic convolution back-end.
The natural choice is to use binary descriptors, moreover,
the data transformed with binary descriptors contain more
complex features of an image than its raw RGB form. Among
many descriptors we decided to use a Local Binary Pattern
with eight neighbors (LBP8) [33] because it performs best
combined with the RBM layer [33]. In this paper though,
we propose how to expand it to include the colorful nature
of processed images. This model provides us with feedback
on the data that can be used for assessment if the model has to
be retrained for any unseen data. Moreover, it is also featured
with high accuracy, similar to the deep [30] and shallow [34]
counterparts. Due to the RBM layer the robustness to the
noise is increased. This is true even for heavy adversarial
noise which constitutes a serious problem in other state-
of-the-art models [35]. Experimental results show that our
model’s accuracy can be higher by tens of percentage points
in the case of adversarial attacks.

II. MATERIALS AND METHODS
A. COLOR LOCAL BINARY PATTERN
The LBP descriptor performs feature coding in gray-scale
colorspace, hence the color information is lost. What we
also lose is the intensity of the center pixel as this trans-
formation relies only on comparisons of the intensity of
the neighboring pixels. This may be sufficient for simple
tasks and has been successfully used for example in face
recognition [36], [37]. However, more complex classification
problems require including color features as they can add
important information. To compensate, the LBP8 descriptor
was enhanced with another 8 bits that represent the color
and intensity of the processed feature. The value of the addi-
tional binary feature is obtained from the center pixel in the
currently processed blob. For each pair of colors: R - red,
G - green, B - blue 2 bits are computed (d = [b0, b1]). For
single colors pair - C0 and C1 we propose to compute the
corresponding bits according to the following logic formulas:

b0 := (C1 > C2),

b1 := (C2 > (C1 + T )) or

× ((C1 < (C2 + T )) and (C1 > C2)) , (1)

where T = 2−
√
2

2 MAX (C) is a threshold. This procedure
equalizes the probability of each possible descriptor over all
the color pairs.

Assuming the color pixel values are in range [0; 255],
T is equal to 73, the descriptor distribution can be visualized
in Fig. 1.
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FIGURE 1. 2-bit descriptor distribution for single colors pair, the color in
the image indicates the descriptor value according to the legend.

The three comparisons from R-B, G-B, R-G pairs add
another 6 bits to the LBP8 descriptor. To enhance it with
the intensity of the center pixel another 2 bits are added
representing the intensity value in gray-scale compressed
from 8 to 2 bits. The final color LBP descriptor (referred
to further as CLBP) is composed by concatenating all the
descriptors into a single 16-bit vector as presented in Fig. 2.

FIGURE 2. Color LBP descriptor.

It is important to note that since computing the CLBP
descriptors for all pixels in the image is independent, it can
be done at the same time which makes this feature extraction
algorithm very fast, especially on GPU accelerated systems.

The LBP8 is computed in a standard way. For given part of
image:

I (i, j) =

p(i− 1, j− 1) p(i− 1, j) (i− 1, j+ 1)
p(i, j− 1) p(i, j) p(i, j+ 1)

p(i+ 1, j− 1) p(i+ 1, j) p(i+ 1, j+ 1)

 ,
(2)

where p is a single pixel in grayscale, a single bit of the
descriptor is given by this formula:

b(k, l) = s(p(i, j)− p(k, l)), (3)

where

s(x) =

{
1, if x > 0
0, if x ≤ 0

(4)

and j, k pairs start at (i−1, j−1) and are chosen sequentially
clockwise, the LBP8 descriptor is a vector as follows:

LBP8(I ) =
[
b(i− 1, j− 1) b(i− 1, j) b(i− 1, j+ 1)

b(i, j+ 1) b(i+ 1, j+ 1)

b(i+ 1, j) b(i+ 1, j− 1) b(i, j− 1)
]
. (5)

FIGURE 3. Diagram of a restricted boltzmann machine.

B. RBM AS BINARY PATTERNS PROCESSOR
The RBM can be presented as an undirected graph with input
vector v, hidden units h, weights matrix W, visible biases a
and hidden biases b as presented in Fig. 3. The probability of
hidden units activation can be computed as follows [22]:

P(h = 1|v) = σ (b+W · v),

P(v = 1|h) = σ (a+W · h), (6)

where σ is a sigmoid function.
In our pipeline, RBMs are used to transform the binary

data obtained by using the CLBP descriptor into real val-
ues vectors. This data represents image features like edges,
blobs, or simple shapes, that are usually recognizable by
the first layers of the CNNs filters trained in a supervised
way [38]. Usage of the RBMs permits skipping these layers
which results in a smaller architecture to solve given image
classification task. As a consequence, our preprocessing and
the RBM layers allow us to process more complex features in
the first convolutional layers.

Once the CLBP stage is done, the RBM processes the
data. In the simplest form, the descriptor values are passed
directly to the RBM so the number of visible units is 16, but
the receptive fields can be larger which can be achieved by
concatenating CLBP descriptors from a kernel of size K . The
stride S can be also used to adjust the overlapping regions and
the size of an output matrix. The dimension of the RBM input
vector v is n = K 2. Fig. 4 presents how the input vector for
the RBM is formed for K = 2. The input of the RBM layer
is a matrix formed as follows:

RBMinput =


v(1, 1) v(1, 2) · · · v(1, n)
v(2, 1) v(2, 2) · · · v(2, n)
...

...
. . .

...

v(n, 1) v(n, 2) · · · v(n, n)

 , (7)
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FIGURE 4. Preparing CLBP kernels.

FIGURE 5. Preprocessing pipeline.

The RBM in this architecture becomes de facto a standard
feed-forward neural network with the sigmoid activation
function, so the value of hj unit for the visible vector v is given
by:

hj = σ (bj +
∑
i

wijvi). (8)

So, the final equation for RBM layer in matrix notation is:

σ (B+W · RBMinput ). (9)

The dimensionality of output data depends on the number of
hidden units - RH and stride - S, so the matrix computed
by the preprocessing pipeline is of size [WS ×

H
S × RH ]

where the dimensions of input image are [W × H ]. The
CLBP-RBM transformation and the entire preprocessing
pipeline are illustrated in Fig. 5.

C. DATASET COMPARISONS BASED ON RBM ENERGY
RBMs are energy-based models, which means that for every
possible configuration of v,h they assign a scalar value [39]
(named usually as energy), defined as:

E(v,h) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

viwijhj. (10)

The energy is directly related to the probability of occurrence
of given v and h configuration:

P(v,h) =
1
Z
e−E(v,h), (11)

where Z is a partition function that sums e−E(v,h) over all
possible v,h configurations. The partition function is not
tractable for high-dimensional RBMs and has to be esti-
mated [40]. The marginal probability of given v is defined as
a sum of the probabilities over all possible h configurations,
but it may be computed with the use of the free energy

value F(v) [41] by using the following formula:

e−F(v) =
∑
h

e−E(v,h), (12)

where the F(v) is defined as:

F(v) = −
∑
i

viai −
∑
j

log(1+ exj ), (13)

and xj = bj +
∑

i viwij is the total input to hidden unit j.
Finally the marginal probability of a given v vector is defined
by the following equation:

P(v) =
1
Z
e−F(v). (14)

By using this value in trained RBMs, we can compute how
often a given v vector occurred in the training dataset.We pro-
pose to use this to check if previously trained RBMs can be
used for transfer learning, if so, the weights in the preprocess-
ing layer do not have to be optimized when the entire network
is trained on new data. This is possible because if the datasets
have a similar probability distribution over all the images the
RBM should give similar responses in further CNN training.
The obvious way to compare two datasets in our case would
be to compare their histograms of binary pattern occurrences,
but for high dimensionality patterns the histogram becomes
very large because we cannot use binning. After transforming
v vector into P(v) value we can create a histogram for P(v)
that has a small number of bins. The histogram of the original
data used for training has to be remembered as a reference
when compared to the unknown data. For practical purposes,
we recommend using the interquartile range (IQR) to get the
most important part of the histogram, and then using Scott’s
rule [42] to optimize the number of bins.

Intervals for P(V ) to generate a histogram may be con-
stant, given as max(P(V ))

number of bins or chosen automatically to
flatten the reference histogram, then height of each bin
is ≈ 1

number of bins . Flattening the histogram allow to avoid
empty bins and large missbalance bettwen heights of partic-
ular bins, in this case the width of each bin is computed for
reference histogram, then same widths are used to cumpute
histograms for other datasets.

To measure the similarity of two datasets (T1 and T2) using
their histograms(P and Q) with a scalar value d we can use
the Chi-Squared (χ2) distance [43] defined as:

d(T1,T2) =
1
2

∑
i

(Pi − Qi)2

(Pi + Qi)
, (15)

where i denotes a particular histogram index.

D. NOISED PATTERN RECONSTRUCTION WITH RBMs
Since the RBMs are similar to Hoppfield network models,
they may be used for data reconstruction [44]. The binary
patterns processed by the network may be noised or cor-
rupted. Especially in real-time systems, the data is being
gathered directly from image sensors and there is no time
for re-send procedures in the case of transmission failures.
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For reconstruction, we propose using CLBP patterns. The
RBM is a recurrent neural network, so the noised pattern may
initialize the Markov Chain and after running several Gibbs
steps, the data is closer to the patterns the RBM has been
trained for. The simplified process of the reconstruction is
presented in Fig. 6.

FIGURE 6. The simplified process of pattern reconstruction by RBM.

The algorithm that obtains the data for CNN for given v
vector with reconstruction is as follows:

Algorithm 1 RBM Preprocessing Using Reconstruction
ph := update_ph_given_v(v)
step := 0
while step < number of steps do
h := stochastic_bernoulli(ph)
pv := update_pv_given_h(h)
v := stochastic_bernoulli(pv)
ph := update_ph_given_v(v)
step := step + 1

end while

So the output is always a real-value vector as it is without
reconstruction, but the intermediate values are binary. It is
hard to predict howmanyGibbs steps should be run to achieve
the best reconstruction results, because in general, too few
stepsmay not denoise the pattern correctly. On the other hand,
too many steps may result in the RBM tending to meander in
the atractor space. A detailed investigation of the number of
Gibbs steps for our case is given later in the results section.

III. RESULTS
The previous section presents the idea of how Restricted
Boltzmann Machines can be applied for input data prepro-
cessing for convolutional neural networks. The main assump-
tion is that the RBM is a relatively small and fast structure but
its use may result in better performance of the overall image
recognition pipeline. This section presents experiments that
we performed to check this hypothesis. The experiments are
split into 4 cases:
A) input data preprocessing in order tomake use of unlabeled

data,
B) input data preprocessing in order to reduce the size of

convolutional neural network,
C) input data denoising for better recogniton ability,
D) images dataset comparison.

FIGURE 7. Image features taken from an RBM latent space, the left
section of the image is the input data, the middle shows 64 features
computed by 64 hidden units of an untrained RBM, the right section
features an RBM trained over 30 epochs.

For the experiment A we trained RBM to show visualize
how it can learn to images features without labeling input
data then we compared how use of CLBP-RBM layer affects
the recognition ability of convolutional network. For the
experiment B we were reducing the number of convultional
layers in CNN and testing how the accuracy decreases when
the CLBP-RBM layer was used and when not. These tests
showed that the preprocessing layer proposed by us improves
the overall effectivness of CNN in terms of generaliztion
ability and possible size reduction. For the experiment C we
used two types of noise added to input data:

• random pixel noise,
• gradient distortion.

Then tested how the CNN network recognizes validataion
data. For both types of noise the accuracy of the network
decreases as the noise factor increases, but we showed that
CLBP-RBM can significantly reduce the decrease in effi-
ciency. The experiment D consisted of comparing the proba-
bility histograms computed by RBMs from different datasets,
it showed that this type of measure can be used in order to
check the similarity of input data.

A. TRAINING RBMs TO LEARN SIMPLE IMAGE FEATURES
The first step in investigating whether an RBM is able to rec-
ognize image features is to visualize its responses to hidden
units. Single hidden units should react to particular features,
like edges, corners, blobs, colors, etc. Visualization of the
RBM filters is not useful in this case because they process
the binary patterns that are not a part of the image directly.
That is why we processed a testing image containing different
features and colors and visualized the RBM responses in each
hidden unit which is presented in Fig. 7. The middle part of
Fig. 7 presents how the RBM processes the image when it
has not been trained, the hidden units respond in a random
way independently of the image features. The responses for
trained RBMs in each channel differ depending on what
particular unit is reactive to. For example, the regions marked
with blue rectangles present the connection between the blue
color in the image and the high response in filter number 37
(row 5, column 5), so this hidden unit is trained to recognize
blue regions. Similar connections may be observed in regions
marked with red and green rectangles but they are reactive on
lines or blobs.
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FIGURE 8. The CNN network with CLBP-RBM preprocessing.

B. CLBP-RBM PREPROCESSING VALIDATION
This section presents how a CLBP-RBM preprocessing layer
affects the overall validation accuracy of CNN. To make use
of unsupervised learning we utilized the STL-10 dataset [45]
which is composed of three parts:

• 100000 unlabeled images for unsupervised learning,
• 5000 labeled images per category for supervised
training,

• 8000 labeled images per category for testing.

For the CNN part of the network we chose 3 commonly used
backbones:

• VGG16 [46],
• Resnet50 [30],
• DenseNet121 [47].

We also added a small backbone network composed of six
convolutional layers followed by max pooling layers. It is
referred to further as ‘‘our’’ network. For all the backbones
after the convolutional layers, we added global average pool-
ing [48] (GAP) and dropout [49] before the last fully con-
nected layer (FC) as shown in Fig. 8. First step was to
investigate best parameters for preproprocessing layer. For
kernelsize and numberofhiddenunits we tested the accuracy
of entire network and time od response in preprocessing
layer. The visualization of results is shown in Fig. 9. All
the results are relative to the lowest point (kernel size = 1,
number of hidden units = 16). The best accuracy with the
low response time is for kernel size= 2 and number of hidden
units= 48. Therefore we use this set of parameters for further
experiments.

We trained an RBM on the unlabeled data for 30 epochs,
then the CNN and FC on training data for 150 epochs with
cross-entropy loss function and RMSProp optimizer. Then
compared the validation accuracy when CLBP-RBM prepro-
cessing is used and when it is not. The measured value is a
standard relative error given as:

accuracy CLB_RBM − accuracy no CLBP_RBM
accuracy no CLBP_RBM

(16)

The results in table 1 illustrate that using the proposed
preprocessing, the final neural network achieves higher val-
idation accuracy, this was proven using four backbones, the
accuracy metric for all of them was better when CLBP-RBM
was used. The table also includes the size of the network
and the time needed to process the image relative to CLBP-
RBM time. This indicates that adding the preprocessing layer
does not increase the overall processing time and that we can
achieve better accuracy independently of the size of the CNN
backbone. Fig. 10 presents learning curves on our backbone.

FIGURE 9. RBM performance versus hyperparameters.

FIGURE 10. Validation learning curves with our backbone as CNN.

TABLE 1. Accuracy improvements achieved by different types of network
backbones with CLBP-RBM preprocessing.

The network with CLBP-RBM preprocessing outperforms
the version without it.

Based on the assumption that CLBP-RBM preprocessing
enriches the input features for CNNs, we tested how the
reduction of the number of convolutional layers affects the
overall validation accuracy. The table 2 presents the results
achieved by the network relative to ‘‘our’’ network with
six convolutional layers. For a CNN network without pre-
processing, the deletion part of convolutional layers affects
the accuracy metric more significantly than for the network
using our preprocessing, so our approach may lead to the
possibility of using smaller networks performing the same
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TABLE 2. Accuracy reduction versus CNN layers reduction.

tasks with higher accuracy. For example, the deletion of
two convolutional layers reduced the accuracy by 5% while,
when no preprocessing was used, the reduction was 10%,
therefore designing the CNN network for resource-limited
systems when the trade-off between size and accuracy of
the network is significant may be simpler with the proposed
preprocessing.

C. PATTERN RECONSTRUCTION
As mentioned in the previous section RBMs may be used to
reconstruct noised data and we use this ability with binary
patterns. Since the LBP transformation is not linear, we can-
not inverse it to visualize the reconstructed patterns, but
we can measure the Hamming distance between the CLBP
descriptor taken from the original and reconstructed pattern
and compare the distance between the CLBP from the orig-
inal and from the noised pattern. In order to investigate the
reconstruction ability. We trained RBMs on input vectors
obtained from STL-10 dataset, since the time of response is
not critical for this experiment we used kernel size= 4, which
gives 256 visible units in an RBM. Then we chose random
patterns from the dataset and added rndom noise in n pixels.
Some examples are shown in the table 3.

TABLE 3. Example patterns used for reconstruction, the original and with
added random noise.

Using this noising method we defined a metric to measure
the reconstruction ability:

D(CLBP(OP), CLBP(NP))− D(CLBP(OP), R), (17)

where D is a Hamming distance [50], OP is the original pat-
tern,NP is a noised pattern,R is a reconstructed pattern. Ham-
ming distance is a natural method to compare binary vectors,
thus this metric allows to observe the general improvement
of reconstruction, the higher value the better reconstruction.
The comparison was carried out 100 times on 50 randomly
chosen patterns from a training dataset, then we averaged the
value for each noise and each number of Gibbs steps. Results
in table 4 show that the reconstruction efficiency increases

TABLE 4. Reconstruction results.

with an increase in noise. The ideal number of Gibbs steps for
reconstruction is 1 because this results in the most significant
improvement compared to other numbers of steps and needs
the least computing.

Since the previous experiments seem to show that a
CLBP-RBM layer may help in recognition of noised images,
we added random noise to the images being classified in a
validation set in STL-10. Noise was added randomly in each
validation stage with three noise factor values. The noise fac-
tor is the proportion of noised pixels in the image. Examples
of noised samples are shown in Fig. 11. The accuracy and loss
over the epochs are presented in Fig. 13 and Fig. 12a.

FIGURE 11. Examples of noised images with different noise factors.

FIGURE 12. Validation accuracy curves for different noise factors.

The results show the impact of the noise effects on the
generalization ability of the entire network. The accuracy
decreases as the noise factor increases, but the influence of a
CLB-RBM layer is also significant. We can observe that the
CLB-RBM layer improves the accuracy independent of the
noise factor. For the highest noise factor = 0.75, the accuracy
was 18% higher with RBM layer than without.

Another type of perturbation of an input image is the fast
gradient sign method [51] which relies on noising the image
based on the gradient computed by the network. The formula
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FIGURE 13. Validation loss curves for different noise factors.

FIGURE 14. Decrease of accuracy on validation dataset versus epsilon in
adversarial attacks.

for obtaining the distorted image is as follows:

x = x + ε(∇xJ (θ, x, y)) (18)

where x is an input image assuming the value of pixels are
in range [0, 1], J is a loss function, y is an output label, ε is
noise factor.

In this case, the distortion is performed on an already
preprocessed image (i.e., after the CLBP-RBM layer), how-
ever, an RBM may reconstruct the data with regard to the
algorithm 1 assuming v is the noised input. We tested how
the fast gradient method affects the generalization ability
in the network with CLB-RBM preprocessing compared to
a network without. The results are shown in Fig. 14. This
distortion affects both networks, but for the network that
uses CLB-RBM preprocessing the decrease of accuracy is
significantly smaller. That demonstrates that ’our’ method
may also be applied for this use case.

D. RBM ENERGY FOR MEASURING THE SIMILARITY
OF TWO DATASETS
For measuring the similarity of data from different datasets,
we used the previously mentioned STL-10, and two others:

FIGURE 15. Histograms for P(V) taken from different datasets.

• DTD [52] - composed of images presenting different
textures,

• Indoor Scene [53] - composed of images from different
room scenes.

For humans, the DTD images differ from the other two while
the Indoor Scene and STL-10 seem to be similar, although
they present different objects they are taken from the real
world as pictures, so the features, in general, should be
similar.

Table 5 includes the distances between those datasets.
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TABLE 5. Distances to datasets based on RBM probabilities histogram.

The first two rows in Table 5 show the distances for RBMs
trained on STL-10 and Scene dataset. For these two rows,
the distance to the DTD dataset is much higher than the
distances to other rows. Furthermore, for an RBM trained
on the DTD dataset, the distances to Scene and STL-10
datasets are similar but significantly higher than it was for
the other two RBMs. This implies that the RBMs should not
be transferred between Scene or STL-10 datasets to the DTD
dataset and vice versa.

Fig. 15 presents the histograms for all trained RBMs and
different datasets. For visualization purposes the number of
bins is 10, no IQR is used and the histograms are flattened.
Despite the comparisons are simplified, viusalizations lead to
the similar conclusions as we had for Table 5.

IV. CONCLUSION
This paper aims to describe and investigate the potential
of Restricted Boltzmann Machines as Local Binary Pattern
processors in terms of a preprocessing tool for Convolu-
tional Neural Networks. First, we introduced the improved
Local Binary Pattern, which enhances the original LBP by
an additional 8 bits that describe the color and simplified
intensity of processed pixels, in further tests, we showed that
an RBM is capable of recognizing these additional features.
Fig. 7 shows an example of how hidden units are trained to
recognize the basic image features. These are then efficient
representations for the CNN to classify complex objects. The
enhanced LBP is an efficient solution to provide additional
information about image features.

The primary aim of this project was to achieve an improved
generalization ability with the use of an RBM as a pre-
processor for the CNN by using an unlabeled datset and
unsupervised learning. We addressed that with a CLBP-RBM
layer, which can be trained in a fully unsupervised manner.
This layer used in image preprocessing increased overall
accuracy for the entire model on the validation dataset by
2.6%-7.5%. We tested several commonly used CNN back-
bones plus one small custom backbone created by us. They
differ in the number of convolutional layers and the num-
ber of parameters. This implies that a CLBP-RBM layer
is a good choice for any CNN backbone architecture. The
time measurements show that the preprocessing layer does
not greatly affect the overall processing time. Another test
revealed that by using a CLBP-RBM we can reduce the
number of convolutional layers without a significant decrease
in accuracy. This feature can be extremely useful for sys-
tems with limited resources. An additional advantage of the
preprocessing layer proposed by us is its potential use in
denoising of input images. We performed a range of tests
with recognition of noised images. The results of these tests

lead to the conclusion that the CLBP-RBM layer improves
image recognition quality. Thanks to their recurrent struc-
ture and reconstruction capability, they may also denoise the
corrupted patterns by running a number of Gibbs steps. This
proved useful in corrupted images when the noise factor was
very high. Furthermore, the proposed denoising method was
effective in adversarial attack problems, we showed that our
method achieves significantly better accuracy in this type of
perturbation than a network without any preprocessing.

We were also challenged with a problem to measure the fit
of trained RBMs in transfer learning tasks. This is achievable
since the free energy of an RBM can be used to compute
the marginal probability of a given input vector. This way
we can create a histogram of these probabilities taken from a
subset of data and then measure the distance to the reference
histogram that was created during training the RBM on the
original data. In our opinion, this is an essential feature of
the preprocessing step since it introduces the ‘‘awareness’’ of
themodel of the input data. In other words, themodel can esti-
mate if it is fitted well to the input data or has to be retrained.
Most of the images used in training for the presented models
depict natural objects, therefore they have a similar binary
pattern distribution. This way, if the preprocessing model is
fitted well to the data, time can be saved in the retraining
procedure.

Since we have shown that a CLBP-RBM preprocessing
layer is applicable in classification tasks, we believe that it
may be useful in other image processing problems, such as
object detection or segmentation because the first layers in
CNNs for those rely on similar feature extraction methods.
Therefore, there are potentially many other areas in image
processing where this preprocessing may be successfully
applied.
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