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ABSTRACT Classification of multiple drones and birds by comparing micro-Doppler (MD) signatures is a
very difficult task because the MD signatures of multiple birds can contaminate the MD signature of drones,
and because a single drone can yield a very similar MD signature to that of multiple drones. In this paper,
assuming a real observation scenario, we propose three protocols and analyze their accuracy in classification
of multiple drones and birds by using the frequency modulated continuous wave radar and a convolutional
neural network classifier. In simulations using models of rotating blades and of flapping wings, the method
that uses training data that include combinations of drone and bird achieved an accuracy ∼ 100 % for the
majority vote classification; this result demonstrates that ours is the most appropriate method to distinguish
multiple drones from birds.

INDEX TERMS Aerial drones, rotating blade model, micro-Doppler, CNN, FMCW radar.

I. INTRODUCTION
Aerial drones are widely used for in many purposes such
as military reconnaissance, aerial mapping, and environ-
mental monitoring. However, they have been used for
illegal surveillance of private land and military facilities.
Therefore, efficient methods are required to detect drones
and distinguish them from similar targets, mainly birds.
Drones and birds can be classified by automatic target
recognition techniques that use radar. High resolution range
profiles (HRRPs) and inverse synthetic aperture radar (ISAR)
images [1]–[3] are not effective for this task, because
birds have similar sizes and radar cross sections (RCSs)
(∼20 dBsm) as drones.

Micro-Doppler (MD) is the time-varying Doppler fre-
quency caused by the time-varying micro-motion of a
target [4]–[8] such as rapid rotation and vibration. A drone
blade is engaged in fast 2D rotation so its MD in the
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time-frequency (TF) domain is symmetric [5], [6] and the
bandwidth is large, whereas the MD of a bird is caused
by slow wing flapping, which is not symmetric, and the
bandwidth is small. Therefore, difference in micro-motion
can be very effective to distinguish drones from birds, despite
their similar RCSs.

Several methods to classify drones by using MD
images (MDIs) in the TF domain have been pro-
posed [9]–[14]. Most of them extract distinctive features from
theMDI in the TF domain, then apply them to awell-designed
classifier, or use MDI itself in classifiers that use neural
networks. One method [9] uses a modified adaptive boosting
algorithm to classify rotating targets, and two recently-
proposed methods [10], [11] propose efficient features in the
time-velocity diagram of the drone and the bird MD, then
apply the developed features to a well-designed boosting
classifier. Other methods use the MDI and cepstrograms for
classification [12], or propose some good features to classify
drones [13], or use a convolution neural network (CNN) with
merged Doppler images to classify drones [14].
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Existing methods use MDIs obtained from a single drone
and a single bird; these MDIs and their features differ greatly
between these two groups, so high classification results
∼100% are achieved by using simple features and classifiers.
However, in real observation scenarios, numerous drones and
birds may fly with similar motion parameters and generally
occur in a single radar beam. In this case, MDIs are totally
different; range profiles (RPs) of each target overlap and
sum to yield MDIs that differ from those of the single
target, so the classification task becomes extremely difficult.
Therefore, the solution to this problem requires an efficient
protocol that can improve the classification accuracy, rather
than an improved classifier. To the best of our knowledge,
no papers have suggested efficient methods for simultaneous
classification of multiple targets.

Here, we suggest three classification protocols that each
use a CNN classifier, and that can be used as a reference
for multiple drone-bird recognition and be further improved
for other multiple-target recognitions. Then we analyze
the advantages and weaknesses of each method in various
classification scenarios, and identify the most adequate
protocol. Protocols are as follows:

1) In the first protocol, the training database (TR) is
constructed using MDIs of a single drone and a single
bird, assuming that targets are separated in the range
domain using RPs. High resolution methods such
as the multiple signal classification (MUSIC) [15]
and relaxation (RELAX) [16] algorithms are applied
to improve the range resolution, and the Zao-Atlas-
Marks (ZAM) [17] method is applied to achieve high
resolution in the TF domain.

2) In the Second protocol, the TR is constructed using
MDIs of a single drone and a single bird, and MDIs
obtained by the random combination (MDIR) of single
drone and the single bird are added.

3) The third protocol is to construct a TR obtained by
MDIs of a drone, a drone+ a bird, a drone+ two birds,
two drones, two drones + a bird, two drones + two
birds, a bird, and two birds.

The remainder of our paper is organized as follows:
Section II introduces the radar signal model, the principle
of MD imaging, the construction of TRs, and the general
procedure for classification using CNN. Section III describes
three proposed protocols for multi-target recognition.
Section IV analyzes and compares the accuracy of each
protocol for various observation scenarios and finally,
Section V presents our conclusions for the classification of
the multiple drones and birds.

II. MATHEMATICAL MODELING AND CLASSIFICATION
PROCEDURE
A. MATHEMATICAL MODELING OF DRONE BLADE AND
BIRD WING
We used a signal model described previously [18], and
assumed that the drone is a quadcopter, which is the most
widely used type. The quadcopter has four rotors and each

FIGURE 1. Quadcopter model and blade rotation.

FIGURE 2. Geometry of the bird micro-motion.

rotor has two blades that have dimensions 2ab×2bb (ab < bb)
that are 180◦ apart and rotate around the rotor axis at rotation
frequency fb (Fig. 1). In modeling the MD signal of the blade,
the two blades were placed along the x axis and each blade
was twisted by 45◦ around the x axis, in opposite directions.
The blades were rotated around the z axis clockwise in a local
coordinate (Fig. 1) and shifted by the center op of the rotor p
(p = 1, 2, 3, or 4). The coordinate of the blade q is given by

rq(t)

 xqyq
zq

 = R(t)bq

=

 cos(2π fbt) sin(2π fbt) 0
− sin(2π fbt) cos(2π fbt) 0

0 0 1

bq,

(1)

where blade index q = (1 or 2), and bq is the initial
coordinate of blade q; b1 = [−2bb 0 0]T and b2 =
[−2bb 0 0]T. Then position op,q of the blade q at rotor p is
given by

op,q = rq + op. (2)

Assuming a plate that is observed at a line-of-sight vector
line-of-sight (LOS) composed of an azimuth angle φ and an
elevation θ , the RCS of the flat plate twisted by 45◦ is [19]

RCS =
(
cos θ

sin x ′

x ′
sin y′

y′

)
, (3)

where

x ′(2π/λ)ab sin θ sinφ, y′ = (2π/λ)bb. (4)

Using the same R(t) in (1), RCS of each blade is obtained at
each LOS by using (2).
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The birdmotion wasmodeled by considering the pectoralis
major (‘lower’) and supracoracoideus (‘upper’) muscles
(Fig. 2). With the same sinusoidal frequency fw, we assumed
that the lower muscle tip at (x1, y1, z1) rotated by θ1 =
40◦ cos(2π fwt)+ 15◦ and the upper muscle tip at (x2, y2, z2)
rotated by θ2 = 30◦ cos(2π fwt)+40◦. The forward-backward
movement of the upper wing was modeled by rotating (x2, y2,
z2) by φw = 20◦ cos(2π fwt)+40◦ in the x-y plane. As a result,
the lower muscle position w1 and upper muscle position w2
are

w1 =

 0
r1 cos θ1
y1 tan θ1

,
w2 =

 r2 tanφwy1 + r2 cosφw cos(θ1 − θ2)
z1 + (y2 − y1) tan(θ1 − θ2)

, (5)

where

r1 =
√
x21 + y

2
1 + z

2
1

r2 =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (6)

As in (2), (5) is shifted by the center of the bird uc to model
the total MD so the position ga of each muscle is

ga = wa + uc, (7)

where a is 1 (= lower muscle) or 2 (= upper muscle).
Modeling the RCS of the wing muscle is extremely

difficult because the wing muscle is different depending on
bird types and the material of the muscle; in this paper, the
muscle was approximately modeled by the ellipsoid whose
RCS is given analytically. RCS of the ellipsoid observed at
an observation angle θ with respect to the major axis is given
by

RCS =
π (aw/2)4(bw/2)2

((qw/2× sin θ )2 + (bw/2× cos θ)2)2
, (8)

where aw and bw are the lengths of the minor and the major
axes, respectively [19]. For the lower muscle, θ is the angle
between LOS andw1, and for the upper muscle, θ is the angle
between LOS and (w2 - w1).

B. RADAR SIGNAL MODELING FOR MD
We used an FMCW radar signal model described previ-
ously [18]. A FMCW radar continuously transmits and
receives a chirp signal that has a period Tchirp The transmitted
chirp signal is given by

sT (t) = exp
(
j2π (f0t +

Kr t2

2
)
)
, (9)

where f0 is the minimum frequency, Kr = BT chirp is the chirp
rate. The received chirp from a scatterer at r is given by

sR(t) = exp
(
j2π(f0(t − τ )+

K , (t − τ )2

2
)
)
, (10)

where the time delay τ = 2r/c and c is the speed of the light.

After dechirping the received chirp by the transmitted
chirp, the intermediate signal sIF (t) is yielded as

sIF (t) = exp
(
j2π(f0τ + Krτ t −

Krτ 2

2
)
)
, (11)

where Krτ is the beat frequency and is related to r as:

fb = Krτ =
2Kr
c
r . (12)

The third term Krτ 2/2 is the residual video phase and is
removed.

When a blade or a bird muscle with an RCS A0 is observed
at every slow-time ts = kT chirp during a coherent processing
interval TCPI , the received signal is given by

s0(t, ts) = A0 exp
{
−j

4π f0R(ts)
c

}
× exp

(
jπKr

(
t −

2R(ts)
c

)2
)
, (13)

where R(ts) is the distance to the target at ts. Then the
dechirped signal s0d(t, ts) is given by

s0(t, ts) = A0 exp
{
−j

4π f0R(ts)
c

}
× exp

(
j2π

(
fcτ + Krτ t −

1
2
Krτ 2

))
. (14)

Removing exp(−jπKrτ 2) and Fourier-transforming (FT)
in the t domain to the frequency f -domain yield RPs sr (f , ts)
at ts as

sr (f , ts) = A0 exp
{
−j

4π (f0 + f )
c

R(ts)
}
pr (f − Krτ ), (15)

where pr (·) is a sinc function formed by the rectangular
window with a length Tchirp.

When a target in a range bin is engaged in micro-motion,
the signal in this bin is time-varying and sampled with an
interval ts. Therefore, the signal sMD(ts) = sr (fbt , ts), where
fbt is the beat frequency of the target at r , can be used to
analyze MD. Because of the time-varying nature of MD, it is
more desirable to analyze it in TF domain. In this paper,
we use the short-time Fourier transform (STFT) which is the
successive FT of signals in the window W (ζ ) shifted by ts
STFT of sMD(ts) is given by

MD (ts, fs) =
∫
∞

−∞

SMD(ζ )W ∗(ζ − ts)e−j2π fsζdζ, (16)

where fs is the MD frequency [20]. To analyze the
improvement in the resolution, we also applied the ZAM
method, which removes the cross-term interference by using
a well-designed kernel function.
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FIGURE 3. Method to construct the TR.

FIGURE 4. CNN classifier.

C. CONSTRUCTION OF TR, CNN, AND OVERALL
PROCEDURE
In this subsection, we explain TR, CNN, and the overall
procedure for singletarget classification using a single TFI
because they guarantee high Pc once targets are completely
separated. Those of multiple targets using multi-aspect TFIs
in each protocol are explained introduced in section III.

The TR for classification should be constructed for all
cases; i.e., all combinations of aspect angles, directions
of flight, and frequencies of blade rotation and wing
flapping This computation requires huge time and memory
space, so we constructed the TR for the single target
classification by considering the flight scenario (Fig. 3) [7];
we sampled the 3D training space with a uniform interval
and flew the target in a given direction at each given grid
point.

To consider the variation of flight direction and MD
frequency, the flight direction was also sampled between
±θt in increments 1θt , and fb of the drone blade was
sampled between fb,1 and fb,2 in increments 1fb, and
fw of the bird wing was sampled between fw,1 and fw,2
in increments 1fw. Finally, MDIs were obtained for all
combinations of aspect angles, flight directions, and motion
parameters. In addition, to remove the time-domain vari-
ance of the MDI, the cadence velocity diagram (CVD)
which is FT of the MDI in time-domain, was used for
classification.

The classifier used in this paper is a CNN (Fig. 4), which is
applied for many purposes due to its excellent classification

FIGURE 5. Classification procedure.

accuracy [14], [21]; compared with conventional methods
that rely on the extracted features from the data, CNN
can find features from data and decision boundaries while
minimizing the cost function. Furthermore, in contrast to the
extreme difficulty of the conventional methods in finding
features for multiple target classification, a CNN can achieve
high classification accuracy if an appropriate TR to explain
multiple targets is provided. The cost function used for CNN
is the average classification error

Costtr =
1
Ntr

∑Ntr

i=1

∣∣∣R̂i − Ri∣∣∣, (17)

where R̂i is the output of CNN for the ith training image,
and Ri is the true class of it (drone = ‘0’ and bird = ‘1’).
Many papers and books (e.g., [14], [21]) have described
CNN structure and function, so the principle and details are
omitted.

Classification was conducted following the general targe-
trecognition procedure (Fig. 5). During the training phase,
targets (Fig. 1 or 2) with the uniformly-sampled motion
parameters (= direction, velocity, and micro-motion param-
eters) were placed on the uniform grids (Fig. 3) and the radar
signal was constructed using (14) and (15). Then MDI was
calculated by (16), and CVDs of MDIs were obtained by FT
in the time domain, and CNN is trained using the obtained
CVDs. Then the test MDIs and CVDs of randomly-selected
numbers of drones were obtained by using randomly selected
locations, flight directions, and motion parameters in the
range of each parameter. Finally, classificationwas conducted
by using the trained CNN classifier. The accuracy is
represented by the correct-classification ratio

Pc =
No. of correct classifications

No. of test images
. (18)

III. PROPOSED PROTOCOLS
A. FIRST PROTOCOL
The protocol proposed in this paper uses separation of targets
in the range-domain (Fig. 6). In this protocol, peaks are found
in the RP to extract MD signals of drones and birds, and
MDIs are obtained using the clipped signal. Ourmain concern
is to classify drones from birds, so the first classification is
conducted to determinewhether theMDI belongs to the drone
or the bird. If the MDI is classified as a bird, the classification
ends, but if it belongs to a drone, further classification
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FIGURE 6. First protocol. Procedure is described in the text.

is conducted to determine whether the number of drones
is 1 or 2.

The advantage of this protocol is that TR of the single target
can be used for classification in the first step. Drones and
birds have very differentMD bandwidth and frequency, so the
first classification is a very easy task that can be conducted
with a small number of features or a simple CNN classifier.
During the second classification, the effect of bird can be
minimized because its MD is assumed to be separated in the
first classification, and the single target TR can be used to
determine whether the MD belongs to a single drone or two
drones. However, construction of the TR for two drones in
a range bin is a very difficult task, because drones can have
different flight directions and motion parameters. Therefore,
we construct the TR for two drones in a random manner; i.e.,
we select a random position, place two drones within a range
resolution from the selected position, then store in the TR
the MDIs of drones flying in random directions and motion
parameters. A radar signal can contain>2 drones, but we did
not consider that many, because simultaneous occurrence of
these numbers of drones is very rare, and because Pc can
degrade considerably due to the similar MDIs of multiple
drones ≥2 (results shown in IV.B).

This protocol may yield classification errors once targets
are not properly separated. If birds and drones occur
simultaneously in a range bin, or if parts of bird and drones
overlap with complete bodies of birds or drones, the MDIs
can be seriously contaminated, so Pc can be considerably
decreased due to MDIs being different from those in the TR.
Considering all cases of overlaps is very difficult and uses
enormous memory; therefore, separation of the targets before
MD imaging is very important for classification. In this paper,
we used three existing techniques to separate targets in the
range domain.

The first technique is to zero-pad in the frequency domain.
FT and inverse FT provide samples spaced at the inverse of
the signal length, so zero-padding in the frequency domain of
the RP can increase the number of range samples so targets
are better separated.

The second technique is the MUSIC algorithm, which
takes advantage of the fact that the direction vector e(r) at
a range r is orthogonal to the noise subspace that consists of

L noise eigenvectors u1,u2, . . . ,uL [15]. The RP is given by

p(r) =
1∑L

i=1

∣∣uHi e(r)∣∣2 , (19)

The third technique is to use the RELAX algorithm which
is a nonlinear least squares relaxation algorithm to extract
information such as the location and the amplitude of the
scatterer by minimizing the cost function

cost =

∥∥∥∥y−∑K

k=1
w(fk )ak

∥∥∥∥, (20)

where K is the total number of the scatterers, y is the FT of
the complex RP, fk and ak are the frequency and the amplitude
of the scatterer k; fk contains the information on the range of
the scatter k .w is the FT vector that corresponds to fk (details
in [16]).

To further increase the resolution of TFI, we used the ZAM
method which is a high-resolution TF transform method
derived from the Wigner-Ville distribution [17], which is
a transform that exploits autocorrelation and provides high
resolution but suffers from cross-term interference. The
ZAMmethod removes the cross-term experience by applying
a well-designed kernel function 8(γ, τ ) to the ambiguity
function AF(γ, τ ) of a signal s(t) as follows [19]:

Z (t, ω) =
∫
∞

−∞

∫
∞

−∞

AF(γ, τ )8(γ, τ )

× exp (−j(γ t + ωτ ))dτdγ, (21)

where

AF(γ, τ ) =
1
2π

∫
∞

−∞

s(t +
τ

2
) ∗ s(t −

τ

2
)ejγ tdt, (22)

8(γ, τ ) =
sin (πγ τ)
πγ τ

e−2πατ
2
, (23)

and * is the complex conjugate operator and α is a proper
constant.

In addition, TFIs at various aspect angles are obtained in
the real observation scenario, so we used the CNN classifier
combined with the majority-vote rule; according to this rule,
for the multiple classifications at various aspect angles, the
class that has the most classification results is determined to
be the class to which the test data belong. The final class CF
is determined as [22]

CF = max︸︷︷︸
k

Nk , k = 1, . . . ,CT , NT =
CT∑
k=1

Nk , (24)

where Nk is the number of cases determined to be the class k
by CNN, and NT is the total number of TFIs observed.

In this protocol, drones and birds are assumed to be
completely classified, so TFIs in classifying the number of
drones do not contain MD of birds. However, when birds
fly very close to drones, the task of separating drones from
birds is very difficult, so combinations of birds and drones
should be considered. Drones and birds can be located at
the same range bin with random flight directions and motion
parameters, so the training data for this combination should
be considered. The second protocol does this.
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FIGURE 7. Second protocol Procedure is described in the text.

B. SECOND PROTOCOL
The second protocol proposed in here still uses single-target
recognition but considers combinations of a single target
+ a single bird (Fig. 7). The single-drone training data
is constructed as in the second classification of the first
protocol, by using the uniformly sampled location, flight
direction, and motion parameters. The target is assumed to
be completely separated, so training data for multiple drones
was not included. The reason that multiple drones in the
TR are not considered is that the TFIs of multiple targets
are very similar; a quadcopter has four blades, and their
MDs fill considerable portions of the MDI; MDs of many
blades of multiple drones may fill the entire MDI, so TFIs of
multiple drones may become very similar, and therefore not
distinguishable. In our simulations, classification results were
seriously degraded due to multiple targets (results shown in
Section IV).

Combinations of a single drone + a single bird were
considered, assuming that a drone and a bird occur in the
same range bin. Due to the difficulty in considering all
combinations of the bird and the drone parameters, the
training data were constructed in a random manner; i.e., the
position of a drone was fixed with a random flight direction
and motion parameters, then a bird with a random flight
direction and random motion parameters was placed within
the range resolution from the drone, thenMD training images
were constructed. In addition, the TR of a single bird was
constructed by using a birdmodel that has uniformly-sampled
positions, flight directions, and motion parameters.

The disadvantage of the second protocol is that classi-
fication may fail when multiple targets occur in a range
bin because multiple targets are not considered in the TR.
However, our simulations demonstrated that the Pc decrease
caused by estimating the exact number of multiple drones
was larger than the decrease caused by excluding multiple
cases (results in Section IV). Also, modern high-resolution
FMCW radars can effectively resolve different targets in a
close range, so the effect of missing multiple targets is much
smaller than the effect of classifying multiple drones.

C. THIRD PROTOCOL
The third protocol is to construct the TR considering a drone,
a drone + a bird, two drones, two drones + a bird, two
drones + two birds, a bird, and two birds (Fig. 8). This

FIGURE 8. Third protocol. Procedure is described in the text.

protocol considers two drones that can occur in a range bin,
to the protocol can be effective in classifying up to two
simultaneous drones; to consider the effect of birds, MDs of
the single bird and the two birds are added to the TR. This
assumption is valid because a high-resolution FMCW radar
can separate multiple drones in the range domain without
many drones overlapped; we assumed that at most two drones
can overlap. In some situations, many drones can occur
simultaneously, but we did not consider this rare case, and
our simulations demonstrated that estimation of the number
of multiple drones ≥3 decreased Pc considerably (results in
Section IV). Likewise, the maximum number of overlapped
birds was set to 2, assuming a bird of similar size to the drone.

The training data were constructed using MDIs obtained
in similar observation geometries to those mentioned in the
two protocols: TR for the single drone was constructed using
uniformly-sampled position, flight direction, and motion
parameters. For two drones, a random position was randomly
selected and two drones with random directions and motion
parameters were placed within the range resolution from the
selected position. Similarly, for single drone + single bird
and single drone + two birds, the position of the drone was
first selected randomly with a random direction and random
motion parameters, then the bird was placed within the range
resolution from the drone with the random direction and the
random motion parameters. Likewise, two drones + single
bird and two drones + two birds were placed with random
direction and the random motion parameters. A single bird
was placed with uniformly-sampled position, flight direction,
and motion parameters, and finally, two birds were placed as
in the case of the two drones (Fig. 8).

IV. CLASSIFICATION RESULT
A. SIMULATION CONDITION
Simulations were conducted using X-band FMCW radar that
had center frequency = 9.6 GHz and Tchirp = 0.25 ms,
and observation was conducted for TCPI = 0.0385 s. B =
150 MHz (1-m range resolution) was assumed. We assumed
a normal-sized drone composed of four wings, each of
which had four blades with the rotation frequency between
40 (= fb,1) and 50 (= fb,2) Hz. ab = 8 cm and bb = 1.5 cm
were used for each blade (Fig. 1). For the bird, we assumed
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TABLE 1. Simulation parameters.

FIGURE 9. Examples of the MDIs of the combinations of the drone and
the bird; D1 and D2 mean one and two drones, and B1 and B2 mean one
and two birds.

wingspan = 60 cm, i.e., aw = bw = 15 cm with a flapping
frequency fw between fw,1 = 4 Hz and fw,2 = 7 Hz (Table 1).
TR of the single target was obtained by uniformly sampling

the space and the parameter. The range was divided into
10 grids between 300 - 1500 m, the altitude was divided into
5 grids between 10 - 1000 m, and the azimuth angle for each
range was divided into 5 grids between −45− 45◦. On each
sampling point, the flight direction was sampled between
−θt = −30◦ and +θt = 30◦ in increments 1θt = 1◦, and
for each flight direction, the MDI was obtained by varying
fb and fw in increments of 1 Hz. The function findpeaks()
provided by MATLAB was used to clip the MD signal in
the range bin containing the target. For the multiple targets,
the position in the training space was randomly selected and
the targets were randomly placed within the resolution cell
(Table 1).

The MDI of the model looks very similar to that of
the quadcopter in [23] (Fig. 9); due to the plate-shape
of the blade, the blade flashes occur with a period that
corresponds to the period of rotation (Fig. 12b in [23]). The
low-frequency birdMD is similar to the measured bird except
for the rigid-body MD that is caused by the uncompensated
translational motion (Fig. 23 in [23]).

In the test, each target was flown in a random direction with
a random parameter. In total, 2500 tests were conducted for
each classification simulation. At a random position in the
training space, a randomly-selected number of targets were
flown in random directions with random motion parameters.
Single-aspect classifications, i.e., classification using a single
TFI, were first conducted to quantify the classification
accuracy of each protocol (subsections IV.B-D), thenmajority

FIGURE 10. CVD samples for 1, 2, and 3 drones. CVDs of Drone 2 and 3
are similar CVDs because both have many blades; the normalized cross
correlation was larger than 0.74.

TABLE 2. Pc [%] for cases of drones.

FIGURE 11. Variation of cost function vs iteration for classifying 2 and
3 drones (6000 training data). Due to the similarity of CVDs of 2 and
3 drones, the cost function did not converge.

vote was applied to further increase Pc (subsection IV.E) by
using TFIs obtained for every 3 s.

B. SIMULATION RESULTS OF THE FIRST PROTOCOL
The first protocol does not consider overlapped multiple
drones, so Pc may be affected considerably; therefore,
a simulation was conducted to test the classification accuracy
of CNN classifier for multiple drones, assuming SNR =
30 dB. Three CVDs for one drone were different from those
for two drones and three drones (Fig. 10). However, due to the
presence of 8 blades in the quadcopter and the limited space
in TFI, the CVDs of two drones were very similar to those
of three drones; the normalized correlation of similar figures
were larger than 0.74 (formula defined in [22]).
Pc obtained by classifying each number of test targets were

influenced by the shape of CVDs (Table 2). Because CVDs of
a single target is very different from those of multiple targets,
Pc ≥ 94.1 % were obtained but the decreased Pc compared
with single-drone classification = 100 % demonstrates that
separation of multiple drones into a single drone in range
domain is a very important factor for improving Pc. The
cost function for classifying two and three drones did not
converge, due to the similarity of their CVDs, so Pc was only
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FIGURE 12. Pc s for the first (left) and the second (right) classifications of
the first protocol. Pc s of the first classification degraded due to the
overlap of the bird and the drone and the second classification degraded
due to the similarity of TFIs of multiple drones.

FIGURE 13. HRRPs before (left) and after (right) zero-padding to
1100 samples. A missed target is detected by zero-padding.

FIGURE 14. Pc s of HRRPs obtained by IFT of the zero-padding
64 samples to 1100 in the time-domain.

66.4 %; this result demonstrates the difficulty in predicting
the exact number of multiple drones (Fig. 11). For these
reasons, Pc from the first step was reduced by ∼ 14 %
and those in the second step was further reduced by ∼9 %
at SNRs ≥ −10 dB, with the reduction caused by the
occurrence of multiple drones in a range bin (Fig. 12).

The effect of zero-padding in time-domain before FT in
the first step was also studied. The second step reduces Pc
considerably, so simulations were conducted for the first step;
the classification error was caused by overlap of drones,
birds, or drone and birds. Zero-padding of 64 samples up
to 1100 improved the separation of targets, so five peaks
were detected even though one was missing before zero-
padding (Fig. 13). However, overlapping of multiple targets
was random and increased samples also increased the width
of the target in HRRP, so Pc increased only by 3 - 4 %
(Fig. 14).

FIGURE 15. Comparison of HRRPs obtained by IFT and MUSIC.

FIGURE 16. Comparison of HRRPs of three drones obtained by IFT and
RELAX. Due to the unknown K , the RELAX algorithm failed to obtain the
TFI of each drone, whereas the IFT algorithm successfully detected the
peaks, and formed the TFI of each drone.

FIGURE 17. Comparison of STFT (left) and ZAM (right). Periodic MD of the
blade is shown with a larger resolution in ZAM method than in STFT
method.

The MUSIC and RELAX algorithms were both ineffective
(Figs. 15, 16). Compared with HRRP by inverse FT (IFT),
MUSIC provided RPs with a higher resolution but a single
peak was divided into many peaks so targets could not be
separated successfully in the range domain (Fig. 15). RELAX
provided a better HRRP than MUSIC but failed to separate
targets when the number K of scatterers was not correctly
estimated; when K was larger than the number of scatterers,
many peaks occurred, so targets were poorly separated and
as a result, TFI of each target could not be formed (Fig. 16).
This excessive number of peaks yielded low Pc which were
∼50 %, so these methods were not appropriate for multiple-
target classification.

ZAM method was also tested for classifying two and
three drones, and yielded Pc for various numbers of TR
samples. The TFI of a quadcopter obtained using ZAM had
higher resolution than that by STFT (Fig. 17). However,
the time interval between large RCS values of blades was
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FIGURE 18. Comparison of Pc s obtained by STFT and ZAM for classifying
two and three drones. Due to the similarity of TFIs of multiple drones,
ZAM did not improve Pc .

FIGURE 19. Classification results of the second protocol.

very short due to the high rotation speed of the blade,
so most of the TFI of three quadcopters was filled, and the
distinct characteristics for classification were lost. As a result,
the cost function did not converge to 0 as in Fig. 11 so
Pc obtained using ZAM were slightly lower than those of
STFT, because of the cross-term interference among many
scatterers (Fig. 18). This result supports our conclusion that
classification of multiple drones in a range bin is a very
difficult task (see Fig. 12).

Our conclusion on the first protocol is as follows: The
most important factor for multiple target classification is
the separation of the single target in the range domain so
that the numbers and types of targets can be estimated
with accuracy ∼100 %. Estimation of the number of drones
considerably degrades Pc so this estimation should not be
conducted in the first protocol. Zero-padding is helpful for
separating targets by increasing the number of samples, but
the two high-resolution methods are not adequate due to
many peaks in a target. High resolution TF methods do
not improve Pc, because fast rotation of many blades fills
TFIs considerably, so TF images are similar. This conclusion
provides a good direction for multiple drone-bird recognition.

C. SIMULATION RESULTS OF THE SECOND PROTOCOL
The second protocol is similar to the first step of the first
protocol, because both assume that targets are separated in the
range-domain, but the second protocol further assumes that a
drone and a bird overlap in a range bin. Six thousand random

FIGURE 20. Classification results of the second protocol for multiple
targets. Pc decreased considerably because the second protocol did not
consider multiple drones and birds.

combinations were considered in the training database. Our
main concern is to distinguish the drone from the bird, so a
drone + a bird were considered as a drone while training the
classifier.

The advantage of the second protocol is represented in the
classification result; Pc of the second protocol was increased
by 5 - 7 % compared with the result of the first step of
the first protocol (Fig. 19). However, compared with the
single-drone classification (Table 2), random occurrence of
multiple drones, multiple birds, and combinations of birds
and drones degraded Pc by 8 - 11 %. This result provides
another direction for multiple drone classification in addition
to that of the first protocol: The best way is to separate targets
in the range domain, and the effect of the bird should be
considered in the training database.

The disadvantage of the second protocol is that it does
not consider multiple targets. To study the effect of multiple
targets, we conducted another simulation. With the same
training condition as in the first simulation, at least two targets
were overlappedwithin a range resolution when the randomly
selected number of targets ≥2; this condition caused more
than two targets (drone-drone, drone-bird, bird-drone, bird-
bird) to occur in a range bin. Compared with the result in
Fig. 19, Pc decreased by 20 - 22 % (Fig. 20). This result
demonstrates that the second protocol must consider possible
combinations of drones and birds.

D. SIMULATION RESULTS OF THE THIRD PROTOCOL
The third protocol is similar to the second protocol, but
considered overlaps of up to two drones and two birds. As in
the second protocol, 6000 random cases for each combination
were considered in the training database, and training was
conducted considering the number of drones. The cases of
a drone + a bird, and of two birds were considered as a
drone. The cases of two drones + a bird and two birds
were considered as two drones. Compared with the result
of the second protocol, Pc of the third protocol were lower
by 1 - 3 % than those of the second protocol because of
adding TR of two drones (Fig. 21); adding TR of the two
drones caused additional classification error in single drone
classification due to the similar TFIs of one and two drones
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FIGURE 21. Classification results of the third protocol.

FIGURE 22. Classification results of the third protocol for multiple targets.

FIGURE 23. Multi-aspect classification results (K = 5).

(1 vs 2 drones in Table 2). In addition, the small decrease of
Pc demonstrates that addition of two birds in TR did not affect
the classification result considerably.

Comparison of the third protocol with the second protocol
for the multiple target cases demonstrates the effectiveness
of the third protocol. Pc of the third protocol decreased only
by 1 - 3 % (Fig. 22), which is much smaller than decrease
of ∼22 % caused by the second protocol. The decrease was

FIGURE 24. Classification results in clutter environment.

small because most of the cases were included in the TR
and the cases of drones ≥3 and birds ≥3 were very rare.
Therefore, our conclusion is as follows: even though best way
to classify multiple targets is to separate them in the range
domain (subsections IV.B and C), random combinations of
two targets in the training database are required to cope with
simultaneous occurrence of them.

E. SIMULATION RESULTS OF THE MULTI-ASPECT
CLASSIFICATION
The accuracies of the protocol were compared using the
majority vote introduced in (23). Five targets were randomly
selected and NT = 5 TFIs sampled at 3 s were
used for classification according to the rule of majority
vote (Fig. 23). For the first protocol, Pc increased by
approximately 1 - 6 % compared with the single-aspect
classification, as a result of the increased number of TFIs for
SNR ≥ −10 dB. Simultaneous targets occurred frequently,
so the improvement was as large as expected. Pc of the
second protocol increased by 5 - 6 % and those of the third
protocol increased by 10 - 12 %; these results demonstrate
that the third protocol is the most adequate for multi-aspect
classification. The third protocol includes most combinations
of targets, so a target that is incorrectly classified by a TFI
at a certain time can be correctly classified by other TFIs
at different times. The result of multi-aspect classification
may be dependent NT and the sampling interval of TFIs,
so further study to improve the classification accuracy must
be conducted.

F. EVALUATION OF PROTOCOLS 2 AND 3 IN CLUTTER
ENVIRONMENT
Pcs in Figs 12, 14, and 19 - 23 were obtained in clutter-free
environments, however, the radar signal can be contaminated
by clutter. In this subsection, we tested the second and third
protocols by using the clutter signal of a building model
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computed using physical optics (Fig. 24a). Using the center
frequency and the bandwidth (Table 1), the radar signal
was calculated at a random observation angle in increments
of 1 MHz (unambiguous range = 150 m) and the calculated
signals were transformed to an RP by inverse FT. Then, for a
given clutter-to-signal ratio (SCR), RPs of the building model
were adjusted and added to RPs of the target; to consider the
random position, targets were positioned at random positions
within the RP of the building. The other parameters were the
same as in Fig. 19 and 21.

Peaks of the target in RPs were detected by applying the
method that uses singular value decomposition [24], [25]
and the ordered statics constant false alarm rate detector
(OS-CFAR) [26]; clutter was removed by selecting the largest
singular value and its vector, then OS-CFAR was applied
to detect the target in the clutter-removed RP (Fig. 24b).
Classification results demonstrate that SCR ≥ 15 dB is
required for both methods (Fig. 24c and d). Compared
with the result in Figs 19 and 21, Pc decrease was up to
12 % for SCR ≥ 15 dB; this reduction demonstrates that a
poorly-detected target can degrade the accuracy considerably.
This result can vary depending on the type of clutter; further
research on this effect is required.

V. CONCLUSION
In this paper, we proposed three protocols to classify multiple
drones and birds by using TFIs, and analyzed the accuracy of
the protocols in various conditions. The classification results
of the first protocol indicated that the most important factor
for multi-target classification is to separate the target in the
range domain; success at this task yielded Pc ≈ 100 %,
because the TR of the single target can be used. Estimation
of the exact number of drones decreased Pc significantly
because completely-filled TFIs of multiple drones were
very similar. The second protocol that assumes drones are
completely separated and that a bird can overlap with a drone;
this protocol increased Pc by 5 - 7 % compared with the
first step of the first protocol but was vulnerable to multiple
targets within the resolution cell. Finally, the third protocol
that considers the combination of two drones and a bird was
the most adequate; ≥3 drones and ≥3 birds occurred very
rarely, so Pc degraded only by 1 - 3 % compared with the
second protocol. Multi-aspect classification using the rule of
majority vote improved Pcs of the three protocols but the
amount of Pc improvement for the third was much higher
than that of the other two protocols because the third protocol
included the possible combination of targets.

Real MDIs of multiple drones and birds are difficult to
obtain, so classification results shown in this paper were
obtained using simulated data, assuming the specifications of
the radar that we are currently developing. For this reason,
further study should consider measured data that include
the effects of real-world interference such as noise, clutter,
antenna beam pattern, and multi-path reflection. In addition,
Pc should be analyzed using various real classification
scenarios of multiple targets. We are currently conducting

experiments to analyze the MD signal of real flying drones
and birds, and multiple target classification will be conducted
based on the measured data.
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