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ABSTRACT Wepresent an algorithm to inductively learnWebOntology Language (OWL) 2 property chains
to be used in object subproperty axioms. For efficiency, it uses specialized encodings and data structures
based on hash-maps and sparse matrices. The algorithm is based on the frequent pattern search principles
and uses a novel measure called s-support. We prove soundness and termination of the algorithm, and report
on evaluation where we mine axioms from DBpedia 2016-10. We extensively discuss the 36 mined axioms
and conclude that 30 (83%) of them are correct and could be added to the ontology.
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I. INTRODUCTION
The Semantic Web, as envisioned in the paper by Berners-
Lee et al. [1], is the Internet where the semantics of infor-
mation is explicitly represented and thus comprehensible for
both humans and machines in an unambiguous way. The
Semantic Web enables services such as personal agents, that
leverage semantic information to perform intelligent tasks on
behalf of their owners. The representation of choice for the
Semantic Web are node- and edge-labeled graphs expressed
in Resource Description Framework (RDF) and accompanied
by formal semantics expressed in Web Ontology Language 2
(OWL 2), both detailed in subsection II-A.

Unfortunately, such a state of the Web is still to be
achieved. One of the main blockers, present not only in the
Semantic Web, but in all other knowledge-oriented systems,
is the so-called knowledge acquisition bottleneck, which rep-
resents the slowness and complexity of collecting and formal-
izing general knowledge, e.g., as a formal ontology.

To address this blocker in the context of the Seman-
tic Web, a problem of ontology learning was posed in
2001 by Maedche and Staab [2], and extensively researched
since then. Ontology learning is a well-developed area in
the research on the Semantic Web, concerned with a (semi-
)automatic creation of ontologies from various, preexisting
resources, structured and unstructured alike. A reader inter-
ested in a general overview on ontology learning is referred
to a book edited by Lehmann and Völker [3]. In this paper,
we are interested in learning an ontology from structured data,
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namely from a preexisting RDF graph, and works in such a
setup were already conduced.

Most of such works concentrated onmining axioms related
to the hierarchy of classes. For example, Potoniec et al.
proposed Swift Linked Data Miner, a method for mining
class expression serving as super-classes in class inclusion
axioms [4]. Völker et al. proposed algorithms for mining
class hierarchy [5] and class disjointness [6] using association
rule mining. Li and Sima developed a method for parallel
learning of an OWL 2 EL ontology from a large Linked Data
repository [7]. Hellmann et al. presented DL-Learner, a tool
for learning class descriptions from very large knowledge
bases [8]. Recently, a method for mining OWL cardinal-
ity restrictions from knowledge graphs has been proposed
by Potoniec [9]. Finally, Melo et al. reported on a method
on adding type assertion to entities in RDF knowledge
bases [10].

The body of work on automatic acquisition of hierar-
chy of properties is far smaller. Ell et al. researched on a
bridge between class hierarchy and property hierarchy by
proposing a method for automatic, joint discovery of domain
and range restrictions from an RDF dataset [11]. Irny and
Kumar presented a work on inverse and symmetric property
axioms [12], while Fleischhacker et al. proposed an appli-
cation of association rule mining to discover property char-
acteristic axioms, such as functionality [13]. An approach for
discovering property characteristic axioms based on recurrent
neural networks was recently proposed by Potoniec [14].

In this paper we consider a subproblem of the ontology
learning, namely learning object subproperty axioms with
property chains, which were introduced by theWeb Ontology
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Language 2 (OWL 2) [15]. Intuitively, a property chain
enables expressing reasoning rules on the chains of relations,
e.g., If X is a parent of Y and Y is a parent of Z, then X is
a grandparent of Z. The goal of the proposed algorithms is
to discover such axioms from frequently repeating patterns
in an RDF graph, and then measuring their confidence to
distinguish between coincidences and true patterns suitable
to be added to the ontology of the graph.

Ontology learning can use various resources, e.g., text,
databases, RDF graphs. In this paper we opt for the RDF
graphs, i.e., we learn axioms directly from the actual use of
vocabulary in an RDF graph. This is rooted in an assumption
that it is much easier to use a vocabulary to describe data
in an RDF graph than to properly axiomatize it to form an
ontology. This is also in line with the vast amounts of RDF
data available in the Linked Open Data [16]. To the best of
our knowledge, this is the first algorithm capable of learning
OWL 2 property chains from the structured data of RDF
graphs. The necessary data structures used by the algorithm
are described in subsection II-B and its details are presented
in subsection II-C.

To evaluate the algorithm, we use DBpedia, a result of a
complex knowledge extraction process from Wikipedia [17].
We mine a set of axioms using DBpedia 2016-10 and dis-
cuss extensively which of them should be included in the
DBpedia ontology and why. The details of the experiment
and the discussion are reported in section III and section IV.
We remark that due to the nature of encyclopedic data, some
of the examples in the paper discuss political entities, their
names and locations. Presented states and conclusions are
drawn from the DBpedia and the Wikipedia and are, by no
means, any reflection of the political views of the author or a
try to solicit one state of affairs over another.

The contributions of the paper are as follows:

• We introduce s-support, a new measure for frequent
pattern mining and prove its properties.

• We introduce a new, efficient algorithm suitable for
construction OWL 2 object subproperty axioms, in par-
ticular axioms containing property chains.

• We evaluate the algorithm on a real-world dataset.

II. MATERIALS AND METHODS
A. PRELIMINARIES
1) RESOURCE DESCRIPTION FRAMEWORK
In the paper, we consider data represented using Resource
Description Framework (RDF) [18]. A basic unit of infor-
mation in RDF is an RDF triple, consisting of a subject,
a predicate and an object. Meaning of the information is
consideredwithin a universe of discourse. Such a triplemeans
that the entity represented by the subject is connected with the
entity represented by the object with the relation denoted by
the predicate. A set of RDF triples is called an RDF graph.
A set of all subjects and objects form a set of RDF nodes.
An RDF node can be one of the following: an Internation-
alized Resource Identifier (IRI), a blank node or a literal.

Listing 1. An RDF graph used as a running example in the paper,
expressed in Turtle.

An IRI is a global identifier for an entity from the universe
of discourse, that is the same IRI denote the same entity in
different graph, whereas a blank node is a local identifier for
an entity, that is the same blank node may denote different
entities in different graphs. A literal is a concrete value such
as a string of characters or a number. The subject of a triple
is necessarily an IRI or a blank node and the predicate is an
IRI. An IRI that occurs in the predication position of a triple
is called a property. Let G be an RDF graph, I denote the set
of all valid IRIs, B the set of all valid blank nodes and L the
set of valid literal, then:

G ⊆ (I ∪ B)× I× (I ∪ B ∪ L)

In this paper, we typeset IRIs using a monospace font, e.g,
http://dbpedia.org/resource/Poland. To make
the text more readable, we use prefixes to represent com-
mon namespaces: we replace http://dbpedia.org/
resource/ with dbr: and http://dbpedia.org/
ontology/with dbo:. We use : as the prefix in examples.
To present RDF graphs, we use Turtle notation, in which a
comma separates two triples sharing a subject and a predicate,
a semicolon separates two triples sharing a subject, and a dot
separates two triples with different subjects [19]

Throughout the paper we use an RDF graph presented in
Listing 1 as the running example. The graph describes four
movies by Studio Ghibli (:Ghibli): Laputa: Castle in the
Sky (:Laputa), My Neighbor Totoro (:Totoro), Spirited
Away (:SA) and The Secret World of Arrietty (:Arietty).
Here the movies are ordered from the oldest to the newest
and this is represented in the graph by the :next property,
which links amoviewith all the later movies by StudioGhibli.
The first three movies were directed by Hayao Miyazaki
(:Miyazaki), while the last was directed by Hiromasa
Yonebayashi (:Yonebayashi).

In principle, a single entity may be represented using
multiple identifiers, e.g., :SpiritedAway, :SA and
:Spirited_Away refer all to the same movie Spirited
Away. It is a research problem on its own to identify such
cases, we thus make the Unique Name Assumption (UNA),
that is we assume that different identifiers necessarily denote
different entities. For a given RDF graph, if the assumption
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is not met, but it is known which identifiers correspond to the
same entity, the graph can be easily normalized by selecting
a single identifier for each entity and replacing the remaining
identifiers with the selected one. Otherwise, a method for
entity resolution must be employed prior to using methods
proposed in this paper.

To query an RDF graph, there are multiple query lan-
guages, but SPARQLQuery Language (SPARQL) is theW3C
recommendation and by far the most popular of these. In this
paper we use SPARQL very sparingly and only in section III
to formalize some points in the discussion. The language is
in form similar to SQL, but it denotes variables by prefixing
themwith ? and expresses the conditions in aWHERE clause
as graph patterns, i.e., RDF graphs with some of the entities
replaced by variables. The details on syntax and semantics of
SPARQL can be found in [20].

2) WEB ONTOLOGY LANGUAGE
An RDF graph represents assertional knowledge, i.e., knowl-
edge about concrete entities. It can be accompanied by an
ontology, i.e., a representation of taxonomic knowledge.
Within the Semantic Web, ontologies are usually expressed
using the OWL 2 Web Ontology Language [15]. It is a
language underpinned by the Description Logics, enabling
a very expressive deductive reasoning. There are three basic
notions in OWL: an entity is a reference to an entity from a
universe of discourse; an expression is a complex description
formed as a combination of entities; a axiom is a single
piece of knowledge expressed by the ontology. Entities can be
separated into three types: individuals, representing concrete
entities; classes, representing groups of entities having some
common feature; properties, representing relations between
entities. When OWL is used together with RDF, individuals
correspond to IRIs and blank nodes and properties to (RDF)
properties. Properties in OWL are separated further into
object properties, i.e., properties that link two entities, and
data properties, i.e., properties that link an entity with a
literal. From the RDF point of view, a triple using an object
property must belong to (I ∪ B)× I× (I ∪ B), while a triple
using a data property must belong to (I ∪ B)× I× L.
We express OWL using the Manchester syntax [21].

We present only the relevant part of syntax and seman-
tics of OWL, concerned with the hierarchy of properties.
The paper concentrates on object subproperty axioms, which
define a hierarchy of object properties. Such an axiom is of
form p SubPropertyOf: r , denoting that whenever (s, p, o)
is true, (s, r, o) is also true. The left-hand side of such
an axiom may contain a property chain instead of a sin-
gle property: p1 ◦ p2 ◦ . . . ◦ pn SubPropertyOf: r , meaning
that whenever there exists t1, . . . , tn−1 such that the triples
(s, p1, t1), (t1, p2, t2), . . . (tn−1, pn−1, o) are true, then (s, r, o)
is also true. It may be the case that there are two axioms: p
SubPropertyOf: r and r SubPropertyOf: p. Such a situation
means that p and r are equivalent, i.e., (s, p, o) is true if,
and only if, (s, r, o) is true. For short we denote it by p
EquivalentTo: r .

3) OPEN-WORLD ASSUMPTION
Both RDF and OWL make the Open-world assumption
(OWA), stating that if a piece of information is not known
to be true nor known to be false, its truth value is unknown.
This is very different from the Close-world assumption made
in databases or in Prolog programming language: if a piece of
information is not known to be true, it is assumed to be false.

This poses a serious challenge for learning from RDF and
OWL data, as for a piece of information not present in the
data (e.g., an RDF triple not present in the considered graph)
one cannot easily distinguish between (a) the piece is untrue,
but the negative knowledge was not asserted; (b) the piece is
true and not asserted.

This inseparable overlap of two very different situations
requires making some assumptions to enable mining. First
of all, all the mined axioms may be only considered as
suggestions for an ontology engineer, who must then make
a separate decision for each axiom. The purpose of the
method may be seen as to detect and model knowledge
that is present in the data, but is not reflected in the
ontology.

Secondly, we assume that one can very roughly separate
the overlap in the following way: for a given RDF triple,
if there are no similar triples this probably means that the
triple is untrue (e.g., an ontology does not forbid a river to
be a mountain at the same time, but if in the corresponding
RDF graph there are no objects that are rivers and mountains
that probably means that it is either impossible or at least
unlikely). On the other hand, if there are multiple similar
triples, this hints that the considered triple may be true and
was omitted from the graph. This assumption is formulated
in very broad and coarse terms and the rest of the paper is
dedicated to formalizing it and verifying the efficiency and
efficacy of the method based on it.

The presented approach is based on machine learning
techniques what makes it capable of dealing with noisy and
incomplete data through employing jointly s-support and
confidence measures. Unfortunately, due to the OWA there
is usually very little, if any, negative information to use as
negative examples in machine learning. This may easily lead
to overly general axioms generated by the algorithm mistak-
ing lack of information with negative information. Unfortu-
nately, this cannot be easily addressed in an automated way
without making additional assumptions about the considered
data, particularly because RDF and RDFS do not allow to
express any negative knowledge. In this work we follow
the similarity assumption described above and infer from it
that the entities in the considered knowledge graph rather
suffer from omissions than purposeful lack of information.
In some cases, like in a highly curated, manually-created
graph, this assumption will likely be untrue and many of
the generated axioms may be needlessly and overly general.
This again underlines the necessity of treating the generated
axioms only as suggestions which must be further validated
by the ontology engineer in order to ensure the quality of the
ontology.
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4) REMARKS ON NOTATION
The paper uses multiple complex data structures and opera-
tions on them. To avoid confusion, we consistently use the
following notation: square brackets [] denote a vector of
variable length, while round braces () denote a tuple of fixed
length and curly braces {} denote an unordered set. An ele-
ment with an index (resp. a key) y of a vector (resp. a map)
X is denoted by X [y]. To concatenate two vectors we use
operator ◦, remarking that if an argument of the operator is a
singleton, we omit the braces. Element-wise multiplication is
denoted by�, whereas · and

∏
denote matrix multiplication.

We denote the presence of a triple (s, p, o) in an RDF graph
G by (s, p, o) ∈ G. To shorten the notation we abbreviate

∃t1, . . . , tn−1 : (s, p1, t1), . . . , (tn−1, pn, o) ∈ G

to (s, p1 ◦ p2 ◦ . . . ◦ pn, o) ∈ G. When p = p1 ◦ p2 ◦ . . . ◦ pn,
we write (s, p, o) ∈ G with the same meaning.

B. DATA STRUCTURES
1) ENCODING IRIs AS NUMBERS
To enable efficient representations, described in the next
subsections, we begin with encoding all the IRIs in the con-
sidered RDF graph G as numbers. Let nso be the number of
distinct IRIs occurring in the subject or object positions in the
triples of the graph G, i.e.,

nso = |{s : ∃p, o : (s, p, o) ∈ G} ∪ {o : ∃s, p : (s, p, o) ∈ G}|

Let np be the number of distinct IRIs occurring in the predi-
cate position of the triples of the graph G, i.e.,

np = |{p : ∃s, o : (s, p, o) ∈ G}|

In the paper we assume that the IRIs in the subject and
object positions are represented by integer numbers from
0 to nso − 1 and IRIs in the predicate position are represented
by integer numbers from 0 to np − 1. In the case when an IRI
is used in both contexts, it is assigned two, possibly distinct,
numbers. The encoding from IRIs to numbers is done while
loading the data, when it can be efficiently executed using
two hash-maps from IRIs to numbers. The decoding from
numbers to IRIs is needed only when outputting the final pat-
terns and can be efficiently realized using two arrays mapping
numbers to IRIs. In the remainder of the paper wewill assume
that IRIs are represented as numbers and that the graph G is
composed of triples of numbers. However, for clarity, we will
still be referring to them as to IRIs, to underline the semantic
of the numbers.

A sample encoding of IRIs from Listing 1 is presented in
Listing 2.

2) MAP-BASED INDICES FOR EFFICIENT SEARCHING
The algorithm proposed in subsection II-C requires an effi-
cient way to query for all predicate and object pairs present
in the graph for a given subject s. To address this, we propose
to use a double index based on hash maps, which we denote

henceforth by SPO. An example of such an index, repre-
senting the graph from Listing 1 using the encoding from
Listing 2, is presented in Figure 1. The first level of the index
consists of a map from subjects present in the graph to the
pointers to separate maps in the second level. Each map in
the second level maps properties present for the given subject
in the graph to the vectors in the third level. Each vector in
the third level contains all the objects present in the graph for
the subject and property determined by the higher levels.

Later in the paper we use another index, called PSO. Its
structure is the same, but the order differs: the first level
contains properties, the second subjects and the third objects.

3) MATRIX-BASED INDICES FOR EFFICIENT QUERYING AND
COUNTING
The algorithm requires an efficient way to jointly consider
pairs of subjects and objects for a given property p. For this,
we use the following matrix PSOp:

PSOps,o =

{
1 (s, p, o) ∈ G
0 otherwise

A single matrix is created for each property in the graph.
These matrices are sparse, so a suitable representation, sup-
porting efficient matrix multiplication and element-wise mul-
tiplication, is needed. Moreover, we are interested in efficient
iterating over of all non-zero elements and efficient counting
them. These properties can be achieved by using compressed
sparse row representation (CSR) [22].

ACSRmatrix of type n×n, containing k non-zero elements
is represented as three vectors of numbers: AA a vector of
length k of real values representing the non-zero elements
of the matrix, ordered row-by-row; JA a vector of length k
of integer values representing the column numbers of the
corresponding elements of the previous vector; IA a vector
of length n + 1 of integer values representing the beginning
of each row in the previous vector, with the last element being
k + 1.
For example, consider the following matrix M :

M =

1 0 0
2 3 0
4 0 5


Its CSR representation is as follows:

AA =
[
1 2 3 4 5

]
JA =

[
1 1 2 1 3

]
IA =

[
1 2 4 6

]
Observe that with such a definition, matrix multiplication

is equivalent to computing all the resources connected by the
chain corresponding to the used matrices. Similarly, element-
wise multiplication corresponds to computing all the pairs
that share the corresponding properties.
Theorem 1: For a given property chain p1 ◦ p2 ◦ . . . ◦ pn

(n ≥ 2) and for any IRIs s, o:

(s, p1 ◦ p2 ◦ . . . ◦ pn, o) ∈ G ⇐⇒ Ys,o 6= 0
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Listing 2. An example of encoding of IRIs as numbers using the IRIs from the graph in Listing 1.

FIGURE 1. A map-based index encoding the sample RDF graph presented in Listing 1, using the IRIs as
numbers encoding from Listing 2. There are three levels, the first representing subjects, the second predicates
and the third objects. Each cell consists of a number and a pointer to the corresponding part of the next level.
Cells with shared borders are represented together in a single structure that can be easily iterated over. For
example, the path from 2 to 3 to 3 represents the triple :Laputa :next :Totoro.

where

Y =
n∏
i=1

PSOpi

Proof: Assume n = 2, that is

(s, p1 ◦ p2, o) ∈ G ⇐⇒ (PSOp1 · PSOp2 )s,o 6= 0 (1)

From the definition of matrix multiplication:

(PSOp1 · PSOp2 )s,o =
∑
t

PSOp1s,tPSO
p2
t,o

This sum is nonzero if for at least one t

PSOp1s,t = 1 ∧ PSOp2t,o = 1

From the definition of the PSO matrices, this means that

(s, p1, t) ∈ G ∧ (t, p2, o) ∈ G

This is the left-hand side of Equation 1, which concludes the
proof for n = 2. For n > 2, the proof is by induction. �
Theorem 2: For any given set of properties {p1, p2, . . . , pn}

(n ≥ 2) and for any IRIs s, o:

(s, p1, o), (s, p2, o), . . . , (s, pn, o) ∈ G ⇐⇒ Ys,o 6= 0

where

Y = PSOp1 � PSOp2 � . . .� PSOpn

Proof: Assume n = 2, that is

(s, p1, o), (s, p2, o) ∈ G ⇐⇒ (PSOp1 · PSOp2 )s,o 6= 0

From the definition of the PSO matrices:

PSOp1s,o = 1 ⇐⇒ (s, p1, o) ∈ G
PSOp2s,o = 1 ⇐⇒ (s, p2, o) ∈ G

It follows that PSOp1s,o · PSO
p2
s,o = 1 if, and only if,

(s, p1, o) ∈ G and (s, p2, o) ∈ G.
For n > 2, the proof is by induction. �
Recall the graph from Listing 1 and encoding from List-

ing 2. For the property :next, we obtain the following
matrix:

PSO:next =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 1 0 0 0
1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


Multiplying PSO:next by itself we obtain:

PSO:next · PSO:next =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
2 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


The coordinates of non-zero values are (2, 0), (2, 1), (3, 0)
and decoding with Listing 2 we obtain the pairs con-
nected through the property chain :next ◦:next:
(:Laputa,:Arietty), (:Laputa,:SA), (:Totoro,
:Arietty).
The functions using the proposed theorems are presented

as function Query in Algorithm 1 and as function Count in
Algorithm 2. The arguments of the functions are n property
chains p1, . . . , pn. The result of Query is the set of pairs
(s, o) such that for all i = 1, . . . , n (s, pi, o) ∈ G, i.e., o is
reachable from s by each of the property chains p1, . . . , pn.
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The second function only returns the number of such pairs,
as it is more efficient than running Query and counting the
results.

Algorithm 1 An Algorithm for Querying for Pairs (s, o)
Such That o Can Be Reached From s on All the Property
Chains p1, . . . , pn
function Query(p1, . . . , pn)

for i = 1, . . . , n do
Xi←

∏
p∈pi PSO

p

end
Y ← X1 � . . .� Xn
return {(s, o) : Ys,o 6= 0}

end

Algorithm 2 An Algorithm for Counting the Number of
Pairs (s, o) Such That o Can Be Reached From s on All
the Property Chains p1, . . . , pn
function Count(p1, . . . , pn)

for i = 1, . . . , n do
Xi←

∏
p∈pi PSO

p

end
Y ← X1 � . . .� Xn
return number of non-zero elements in Y

end

C. MINING PROPERTY INCLUSION AXIOMS
1) USED MEASURES
The proposed algorithm is based on frequent pattern mining.
For this, we must first define what constitutes a pattern and
when a pattern becomes frequent. In this paper, any property
chain is a pattern and to avoid confusion we avoid the word
pattern and use property chain instead.
Definition 3: The support set for a property chain p in an

RDF graph G, denoted SG(p), is the following set of pairs:

SG(p) = {(s, o) : (s, p, o) ∈ G}
Definition 4: The subject support set for a property chain

p in an RDF graph G, denoted SsG(p), is the following set:

SsG(p) = {s : ∃o : (s, o) ∈ SG(p)}
Theorem 5: For any property chain p and any property p,

the subject support set of a property chain p ◦ p is a subset of
the subject support set of the property chain p:

∀p∀p : SsG(p) ⊇ SsG(p ◦ p)
Proof: Starting from the right-hand side:

SsG(p ◦ p) = {s : ∃o : (s, o) ∈ SG(p ◦ p)}
= {s : ∃o, t : [(s, t) ∈ SG(p) ∧ (t, p, o) ∈ G]}

= {s : ∃t : [(s, t) ∈ SG(p) ∧ ∃o : (t, p, o) ∈ G]}

⊆ {s : ∃t : (s, t) ∈ SG(p)} = SsG(p)

�

Definition 6: The support of a property chain p in an RDF
graph G, denoted σG(p), is the cardinality of the support set:

σG(p) = |SG(p)|
Definition 7: The s-support (an abbreviation of subject

support) of a property chain p in an RDF graph G, denoted
σ sG(p), is the cardinality of the subject support set:

σ sG(p) =
∣∣SsG(p)∣∣

Theorem 8: For any property chain p and any property p
the following holds:

σG(p) ≥ σ sG(p) ≥ σ
s
G(p ◦ p)

Proof: Follows directly from 4 and 5. �
Definition 9: The limited subject support set for a property

chain p limited to the set O in an RDF graph G, denoted
SsO,G(p), is the following set:

SsO,G(p) = {s : ∃o ∈ O : (s, o) ∈ SG(p)}
Definition 10: The limited s-support for a property chain

p limited to the set O in an RDF graph G, denoted σ sO,G(p),
is the cardinality of the corresponding limited subject support
set:

σ sO,G(p) =
∣∣SsO,G(p)∣∣

Theorem 11: For any property chain p and any set O the
following holds:

σ sG(p) ≥ σ
s
O,G(p)

Proof: Follows directly from 4 and 9 �
Definition 12: A frequent property chain is a property

chain p such that σG(p) ≥ minsup, where minsup is a
user-defined support threshold.

A conclusion from the presented definitions and theorems
is that the s-support and the limited s-support can be used
as a monotonic measure for pruning during frequent pattern
mining, meaning that if the (limited) s-support of p is below
a predefined threshold, any property chain extending p also
has the (limited) s-support below this threshold. Moreover,
if σ sO,G(p) ≥ minsup, then σG(p) ≥ minsup, meaning that
p necessarily is a frequent property chain. In practice we
use both: the s-support to decide whether a property chain is
worth considering further and the limited s-support to decide
whether a property chain is frequent within the set of IRIs that
are of interest from the point of view of the task at hand.

The final measure of importance for this paper is confi-
dence, measuring the percent of occurrences of the property
chain supporting the axiom as a whole. On the first glance
confidence may seem like a superfluous measure in the con-
text of ontological knowledge, which is not statistical by
nature. However, it may be the case that the RDF graph is
noisy, e.g., due to humans errors arising from misunderstand-
ing of the purpose of a property, or from incompleteness of
the graph. Thus, it may be worth considering axioms with
confidence less than 1, as they may still be correct axioms.
Definition 13: The confidence of an axiom

p SubPropertyOf: r in an RDF graph G is given by the
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following formula:

|SG(p) ∩ SG(r)|
σG(p)

2) PROBLEM STATEMENT
As stated in the introduction, we are interested in discovering
OWL 2 object subproperty axioms with a special emphasis
on axioms with property chains. We formalize the considered
problem as follows: given an RDF graph G, an object prop-
erty r in this graph and three thresholds: the minimal con-
fidence threshold minconf , the minimal s-support threshold
minsup and the maximal length of the considered property
chainsmaxlen, generate all axioms of form p SubPropertyOf:
r such that σ sG(p) ≥ minsup, |SG(p)∩SG(r)|

σG(p)
≥ minconf and

|p| ≤ maxlen.

3) CONSTRUCTING OBJECT SUBPROPERTY AXIOMS OUT OF
FREQUENT PROPERTY CHAINS
We begin the description by presenting an algorithm that,
given a generator of frequent property chains, is able to
construct object subproperty axioms. Its pseudocode is pre-
sented in Algorithm 3. The most important input to the algo-
rithm is the property r that is to be placed in the right-hand
side of the resulting axioms. There are also three numeric
parameters that govern the behavior of the algorithm: the
minimal s-support threshold minsup, the minimal confidence
threshold minconf and the maximal length threshold maxlen.
Finally, the graph for mining must be provided in the form
of a hash-map index SPO and a family of matrix-based
indices PSO.
The algorithm starts by querying for pairs of IRIs con-

nected through the property r and constructing: a set of all
objects O and a map from each subject to a set contain-
ing only this subject. Then, the MineChains function is
called, which is detailed in the next section. For each of
the returned frequent property chain p confidence is com-
puted using the function Count, presented in Algorithm 2.
If the computed confidence reaches the minimal confidence
threshold minconf , an axiom p SubPropertyOf: r is added
to the set of results. Finally, the set of results is returned to
the user.

4) MINING FREQUENT PROPERTY CHAINS
The recursive function MineChains presented in Algo-
rithm 4 mines frequent property chains using the limited s-
support, as established in subsubsection II-C1. The function
requires four arguments: a mapping S from the current nodes
reached by the property chain to the starting points, a set of
IRIsO representing end points for the property chain, current ,
a property chain constructed so far. In addition to that, the
function uses the hash-map index SPO and two thresholds:
minsup denoting a minimal value of s-support for a prop-
erty chain to be kept as a candidate for a frequent property
chain and maxlen denoting a maximal length of a property
chain.

Algorithm 3AnAlgorithm to Construct Object Subprop-
erty Axioms With the Right-Hand Side Being a Given
Property r
input : r , minconf , minsup, maxlen, SPO, PSO
S ← empty map
O← ∅
foreach s, o ∈ Query([r]) do

S[s]← {s}
O← O ∪ {o}

end
result ← ∅
foreach p ∈ MineChains(S,O,∅) do

conf ← Count(p,[r])
Count(p)

if conf ≥ minconf then
result ← result ∪ {p SubPropertyOf: r}

end
end
return result

First, the algorithm checks whether the property chain
current successfully connects starting points and O by
computing the limited s-support and comparing it with the
threshold, and checks whether the property chain current is
different from the property r , to avoid a trivial solution r
SubPropertyOf: r . If it is so, the property chain current is
returned and the execution of the function terminates. Then
the length of the property chain current is checked and if it
reached the thresholdmaxlen, the execution of the function is
terminated. If both checks fail, the actual computation begins.
A new index POS is constructed and filled by iterating over
the index SPO using IRIs present in S. POS uses the same
data structures as SPO, described in subsubsection II-B2, but
it does not necessarily contain a subgraph of G and uses
different ordering: properties in the first level, objects in the
second and subjects in the third. After the execution of the
triple-nested foreach, POS maps pairs (p, o) to sets of IRIs
from which these pairs are reachable. Now POS is iterated
over: for each property p in POS, the s-support is computed
using the content of POS. If it reaches the threshold minsup,
the function is executed recursively by using POS[p], i.e.,
a map from IRIs to sets of IRIs from which they are reachable
on the property chain current ◦ p. Any results obtained this
way are then returned from the function.

5) EXAMPLE
To better explain the proposed algorithm and highlight its
capabilities, we use the sample RDF graph from Listing 1.
For clarity of the example, we use IRIs instead of their
encodings presented in Listing 2. We assume minsup = 2,
maxlen = 2 and minconf = 95%.

a: SINGLE SUBPROPERTY
In the first example, we mine for object subproperty
axioms with :participant in the right-hand side, i.e.,
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Algorithm 4AnAlgorithm forMining Frequent Property
Chains
input : minsup, maxlen, SPO, r

function MineChains (S,O, current)
if |current| > 0 ∧ current 6= r ∧

∣∣⋃
s∈S∩O S[s]

∣∣ ≥
minsup then

return {current}
end
if |current| ≥ maxlen then

return ∅
end
POS ← an empty index
foreach s ∈ S do

foreach p ∈ SPO[s] do
foreach o ∈ SPO[s, p] do

POS[p, o]← POS[p, o] ∪ S[s]
end

end
end
result ← ∅
foreach p ∈ POS do

sup←
∣∣∣⋃o∈POS[p] POS[p, o]

∣∣∣
if sup ≥ minsup then

result ← result ∪
MineChains(POS[p],O, current ◦ p)

end
end
return result

end

r = :participant. We begin by computing S and O:

S = {:Arietty 7→ {:Arietty},:SA 7→ {:SA}}

O = {:Miyazaki,:Yonebayashi}

Then, MineChains is called. Neither condition in the
beginning is met and the algorithms starts by constructing
the index POS, iterating over all triples having :Arietty
or :SA as the subject. The final index is presented in List-
ing 3. Now, the algorithm iterates over the properties in
POS. Lets first consider p = :participant: sup =
|{:Arietty} ∪ {:SA}| ≥ minsup = 2, so a recursive call
is made with S = POS[:participant] and current =
:participant.

In the beginning of the recursive call the limited s-support
condition is fulfilled, but the second part of the condition is
not, so the computation continues. The length of current does
not reach maxlen, so POS in the recursive call is computed:

POS = {:member 7→ {:Ghibli 7→ {:Arietty,:SA}}}

Again, the s-support is high enough and yet another recursive
call is made with current = :participant ◦:member,
but it returns ∅ due to reaching the maximal length threshold
maxlen. We are now back at current = :participant,
but result = ∅ and this call also terminates.

We are back to the initial call to MineChains and
consider p = :director. Again, the minimal support
requirement is fulfilled and we make a recursive call with
S = POS[:director] and current = :director. In the
recursive call current 6= r and we compute the limited s-
support: |S[:Miyazaki] ∪ S[:Yonebayashi]| = 2 ≥
minsup. Both conditions are satisfied and the recursive call
returns a set containing a single frequent property chain:
{:director}.

We are again back to the initial call to MineChains
and consider p = :studio. A recursive call is made with
current = :studio and the condition current 6= r is
satisfied, but the second part is not: S ∩ O = ∅ and thus
further computation is executed. As there are no triples with
the subject :Ghibli in the sample graph, POS is empty and
the call returns with ∅.

This concludes the loop in the initial call to MineChains
and it returns result = {:director}. The confidence for
the axiom:director SubPropertyOf::participant is
now computed as 2

2 ≥ minconf and thus the axiom is returned
to the user.

b: TRANSITIVITY
We now consider r = :next and we will show that the
algorithm is capable of finding the transitivity axioms of form
p ◦ p SubPropertyOf: p. We begin again be preparing

S = {:SA 7→ {:SA},:Laputa 7→ {:Laputa},

:Totoro 7→ {:Totoro}}

and O = {:Totoro,:SA,:Arietty}. We call
MineChains and construct POS (for brevity, we omit
remaining properties that will be dropped further on in the
process):

POS[:next]

= {:Arietty 7→ {:SA,:Laputa,:Totoro},

:SA 7→ {:Laputa,:Totoro},

:Totoro 7→ {:Laputa}}

Now, a recursive call is made with S = POS[:next] and
current = :next. The conditions in the beginning are
not fulfilled and POS is computed again: POS[:next] =
{:Arietty 7→ {:Laputa,:Totoro},:SA 7→

{:Laputa}}. The s-support is computed
sup = |{:Laputa,:Totoro}| ≥ minsup and another
recursive call is made with S = POS[:next] and current =
:next ◦:next, but now the first condition is fulfilled:
|S[:SA] ∪ S[:Arietty]| = |{:Laputa,:Totoro}| =
2 ≥ minsup. After returning from all the calls of
MineChains p = :next ◦:next. The confidence of the
axiom :next ◦:next SubPropertyOf: :next is 1 and the
axiom is returned to the user.

c: ARBITRARY PROPERTY CHAIN
Finally, we mine r = :studio. We begin by constructing
S = {:Arietty 7→ {:Arietty},:SA 7→ {:SA}}
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Listing 3. A POS index constructed in the example described in paragraph II-C5.a.

Listing 4. A POS index constructed in the example described in paragraph II-C5.c.

and O = {:Ghibli}. We then make an initial call to
MineChains and compute POS, presented in Listing 4.
We iterate over the properties in POS and make recursive
calls to MineChains. Here, we consider only the one for
:director, remarking that the call for :participant
is identical, while the call for :studio leads nowhere and
returns ∅. In the recursive call the limited s-support computed
in the beginning is 0 and the maximal length is not reached,
so POS is computed again:

POS = {:member 7→ {:Ghibli 7→ {:Arietty,:SA}}}

A recursive call is made with current = :director
◦:member, but now the limited s-support is 2, which
is enough to accept the the property chain as frequent.
MineChains terminates returning two frequent prop-
erty chains: :director ◦:member and :participant
◦:member. Each of them is transformed to an object sub-
property axiom and the confidence is 1 in both cases.

6) SOUNDNESS, COMPLETENESS AND TERMINATION OF
MINING FREQUENT PROPERTY CHAINS
From subsubsection II-C1 it directly follows that
MineChains is sound, i.e., any property chain returned by
the function is a frequent property chain. Unfortunately, the
following does not necessarily hold for any property chain p
and any property p:

σG(p) ≥ σG(p ◦ p)

For a counterexample, consider the following RDF graph
G = {(a, p, b), (b, r, c1), (b, r, c2)}. Now SG(p) = {(a, b)}
and thus σG(p) = 1, while SG(p ◦ r) = {(a, c1), (a, c2)}
and thus σG(p ◦ r) = 2. However, in both cases, σ sG(p) =
σ sG(p ◦ r) = |{a}| = 1.
Due to this MineChains is heuristic: it is sound, but

not complete, i.e., there may be frequent property chains
of arbitrary length, that will not be returned by the algo-
rithm. We also observe that a complete algorithm would be,
necessarily, non-terminating. Consider the following graph:
G = {(a, p, a)}. Assuming minsup = 1, we observe the
following frequent property chains: p, p ◦ p, p ◦ p ◦ p etc.
To avoid this problem, we require that all the mined frequent
property chains must be no longer than maxlen properties.

This ensures termination, at a cost of omitting all the property
chains longer than maxlen.

III. RESULTS
To validate whether the proposed method is useful, we posed
the following research question: Are the axioms proposed by
the method true, or are they rather statistical coincidences?
To answer the question, we conducted a computational exper-
iment described below.

A. DATASET
In the evaluation, we used DBpedia, an effect of knowledge
extraction from Wikipedia [17]. DBpedia consists of two
main parts: the DBpedia ontology, containing the termino-
logical knowledge, and the DBpedia datasets, containing the
actual results of extraction. We used Mappingbased Objects,
a subset consisting of RDF triples using only object properties
from the DBpedia ontology, containing 18, 111, 905 triples.

The process of construction of this subset requires
detailed description, as we use artifacts used in the pro-
cess to discuss the results of the experiment. To describe
it, we must first introduce Wikipedia infoboxes, that is
tables of attribute-value pairs present on most of the
Wikipedia pages, typically displayed in the top right
corner of the page. Each infobox follows a template,
that specifies a list of allowed attributes in the infobox.
There is a plethora of templates (e.g., a separate tem-
plate for a Swiss town Infobox_swiss_town and for
a German town Infobox_town_de), each defining its
own set of attributes, not necessarily consistently with other
templates (e.g., one uses birthplace, while another
placeofbirth). On top of that, editors of Wikipedia
not necessarily follow the guidelines for using the tem-
plate, making the infoboxes as a whole quite a noisy envi-
ronment for knowledge extraction. The effect of a sim-
ple transformation: an attribute of an infobox to the prop-
erty in a triple and its value to the object in the triple is
in Infobox Properties subset and uses properties from the
http://dbpedia.org/property/ namespace.

In order to obtain more consistent and cleaner results,
an additional step is executed. A set of mappings
from infoboxes and their attributes to DBpedia ontology
classes and properties is used. The mappings are edited
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collaboratively on DBpedia Mappings Wiki.1 These map-
pings form a documentation about the intended usage of
properties, which is not necessarily reflected in the ontol-
ogy. For example, in the ontology there is the property
dbo:intercommunality, with unspecified domain and
the range of dbo:PopulatedPlace. It is only through
analysis of the mappings, that one can discover that this prop-
erty is used exclusively for Infobox_French_commune,
and that its intended domain is, in fact, dbo:Settlement
and dbo:country hasValue dbr:France. The result
of application of the mappings to Infobox Properties is
the Mappingbased Objects subset. DBpedia Mappings Wiki
is currently relatively stable with apparently no edits in
the mappings for the English Wikipedia infoboxes since at
least 28 September 2018 [23]. Due to these properties, we use
MappingsWiki as a documentation for the ontology, to verify
whether the mined axioms are meaningful and justified.

B. SETUP
We ran the proposed method on DBpedia 2016-10 with
the following parameters: minsup = 100,minconf =
0.95,maxlen = 2. We removed the properties with the
following words in their labels (rdfs:label): spouse, suc-
cessor, predecessor, previous, following, subsequent, as we
observed that such properties, while yielding a substantial
amount of patterns, do not lead to axioms worth consid-
ering. The full implementation used during the experiment
is available at https://github.com/jpotoniec/PropertyChains.
The results of the experiment are presented in Table 1.

IV. DISCUSSION
First, we checked whether any of the presented axioms
logically follow from the DBpedia ontology. This is the
case only for axiom 7, dbo:owningOrganisation
SubPropertyOf: dbo:owner.

A. AXIOMS WITH A SINGLE PROPERTY
We observe that axioms that have a single property on
the left-hand side can be discussed and verified using
the DBpedia Mappings Wiki. For each such a prop-
erty we searched the mappings for it and analyzed from
what infobox attributes and templates it could be derived.
We used an RML representation of the mappings, available at
https://github.com/dbpedia/mappings-tracker. The mappings
validated an axiom if all the mappings yielding a triple with
the subproperty of the axiom also yielded a triple with the
superproperty of the axiom. In 18 out of 19 cases we were
able to validate the axiom and we report the details in Table 2,
with the sole exception of axiom 28.

The mappings for the infobox template Infobox_
football_club_season confirm axiom 28, whereas
the mappings for the infobox template Infobox_CFL_
team do not. This hints on a usage inconsistency, possibly
due to the differences between American and British English,

1http://mappings.dbpedia.org/

as the later infobox template is intended for American foot-
ball teams. Nevertheless, we conclude that the axiom is
incorrect.

There are also 9 counterexamples to axiom 24. Searching
for these 9 pairs in DBpedia Live [24] shows that this is
no longer the case: except for dbr:TolumiDE, which got
removed, in the remaining 8 cases both properties occur.
This hints on extraction problems in DBpedia 2016-10, which
were later solved.

We remark here that, while the results are consistent with
DBpedia Mappings Wiki, they are not necessarily correct
from the ontological point of view. For example, source of
a river (dbo:sourcePlace) is not necessarily a moun-
tain (dbo:sourceMountain). Nevertheless, the proposed
axioms are consistent with intended usage, as defined by
DBpedia Mappings Wiki, and with the actual dataset.

B. AXIOMS WITH PROPERTY CHAINS
There is not much to say about axioms 14, 18 and 22: they
have 100% confidence and follow common sense. Axioms
19 and 20, on the other hand, look very suspicious and
they both transpire from a confusion of dbr:Azores (an
archipelago in Portugal) and dbr:Atlantic/Azores,
a time zone of the Azores. Even though their confidence
is 100%, they must be rejected as caused by a mis-
take in the data. Axiom 21 is correct, but very narrow:
dbo:intercommunality can be extracted only from the
infobox template Infobox_French_commune (infobox
property: intercommunality), so one can immediately
suspect that the country in question is France, and the data
fully confirms.

Starting from axiom 25, we must also discuss the coun-
terexamples that were observed during mining, as these
axioms have confidence below 100%. For axiom 25,
dbo:metropolitanBorough can be extracted only
from the infobox template Infobox_UK_place, hint-
ing that the country in question must be the Unitied
Kingdom. However, there are six boroughs that do not
fit the pattern: dbr:Aston,_South_Yorkshire and
dbr:Swallownest, both located in the metropoli-
tan borough of Rotherham (denoted in both cases
by dbr:Rotherham, not by dbr:Metropolitan_
Borough_of_Rotherham), which has two objects for
the property dbo:country: dbr:United_Kingdom,
which is expected, and the unexpected dbr:England_
football_team. The remaining four counterexamples
are dbr:Hare_Hatch, dbr:Holme_Green, dbr:
Gardeners_Green, dbr:Upper_Culham, all four
located in dbr:Wokingham. The single object for the
dbo:country property for them is dbo:United_
Kingdom, whereas there are two such objects for
dbr:Wokingham: dbo:United_Kingdom and dbo:
England. This does not pose any contradiction to the
proposed axiom, but merely shows the incompleteness of the
data.
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TABLE 1. The axioms mined using the proposed algorithm and the setup described in subsection III-B. The column conf. contains the confidence of the
axioms, while CE reports the number of pairs in the considered graph that do not follow the axiom, but follow its left-hand side. The summary of the
discussion in the main body of text is in the column correct.

There is a single counterexample for axiom 26:
dbr:Inchgarvie, with a very similar problem as previ-
ously, reflected in the following three triples:

dbr:Inchgarvie dbo:country dbr:Scotland;
dbo:unitaryAuthority dbr:Edinburgh.

dbr:Edinburgh dbo:country
dbr:United_Kingdom.

Again, no contradiction here, only data incompleteness.
For axiom 27 the number of counterexamples is quite large.

However, if we assume transitivity of dbo:isPartOf, e.g.,
using the star operator in a SPARQL property path, as in the
following query, the number of counterexamples decreases
to only 13, hinting that the problem is mostly due to the data
incompleteness.

SELECT DISTINCT ?s ?o
WHERE {

?s dbo:isPartOf ?x.
?x dbo:state ?o.
FILTER NOT EXISTS
{?s dbo:isPartOf* ?o.}

}

However, in these 13, one can find real counterexam-
ples. For example, the dbr:Herring_Bay is a bay in
the state of Maryland in the United States and a part of
dbr:Chesapeake_Bay, which is located in the state
of Maryland and in the state of Virginia. However, the
dbr:Herring_Bay is not in the state of Maryland. This
hints that the axiom is, in fact, incorrect, as there may be
entities that span acrossmultiple states, yet some of their parts
lie strictly within a single state.

Axiom 29 has two counterexamples in DBpedia:
dbr:Albany_County,_New_York and dbr:
Rensselaer_County,_New_York, both located in
dbr:New_York_(state) instead of dbr:New_York.
These are due to the UNA rather than to any real problem
with the axiom.

There are 40 counterexamples for axiom 30. Of these,
33 are due to the UNA: dbr:America, dbr:United_
States_of_America and dbr:United_States
denote the same entity, but they are not recognized as such.
Of the remaining 7 counterexamples, 4 are due to non-unique
names, e.g., dbr:Athens_County,_Ohio with county
seat in dbr:Athens instead of dbr:Athens,_Ohio;
similarly for dbr:Isle_of_Wight_County,
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TABLE 2. The axioms that could be justified using DBpedia Mappings Wiki, along with the respective infobox properties and templates.

_Virginia, dbr:Medina_County,_Ohio and dbr:
Somerset, _County_Pennsylvania. The remain-
ing 3 are: dbr:Marathon_County,_Wisconsin,
dbr:Wilkes_County,_North_Carolina and
Wasco_County,_Oregon. For the county seats of these
states, the dbo:country property links to the county itself
instead to the country where the state lies. This is an irregular
usage of the property and does not contradict the axiom.

Axiom 31 is a transitivity axiom for the property
dbo:locatedInArea and there are 29 counterexamples
for it. However, these are only due to the incompleteness
in the data. If we instead consider the transitive closure of
the property, e.g., by using the star operator of SPARQL,
we obtain no counterexamples whatsoever, as in the following
SPARQL query:

SELECT DISTINCT ?s ?o
WHERE {

?s dbo:locatedInArea ?x.
?x dbo:locatedInArea ?o.
FILTER NOT EXISTS
{?s dbo:locatedInArea* ?o}

}

As for 4 counterexamples for axiom 32, three of them
are due to the confusion between dbr:New_York and
dbr:New_York_(state). The fourth is a non-typical
usage:

dbr:Delaware dbo:largestCity
dbr:Wilmington,_Delaware.

dbr:Wilmington,_Delaware dbo:state
dbr:Delaware.

However, the triple dbr:Delaware dbo:
state dbr:Delaware is not present (nor is any other
triple with dbo:state for dbr:Delaware).

The counterexamples for axiom 33 are apparently due to
the incorrect values for dbo:frazioni, due to the lack
of appropriate page in Wikipedia and corresponding lack
of resource in DBpedia (e.g., dbr:Castiglione_di_
Garfagnana) or due to the name confusion (e.g.
dbr:Triei). We also remark that frazioni is an Italian
administrative structure, and thus, by definition this axiom
is correct, but somewhat limited, similarly to axiom 21.

Consider axiom 34. According to the DBpedia ontol-
ogy, the property dbo:starring is equivalent to
http://schema.org/actors, which expects a movie,
radio series etc. on the left-hand side and a person on the right-
hand side, and the DBpedia generally follows suit. However,
in all 15 counterexamples for this axiom, this is not the case
and the right-hand side of dbo:starring is not a person,
but a media content of sorts, e.g. dbr:Poor_Paul. From
this, we conclude that the axiom is correct.

Axiom 35 is a political rather than ontological topic and we
abstain from discussing the counterexamples here, counting
the axiom as an incorrect one.

Finally, axiom 36 assumes that country and national-
ity are denoted by the same resource. This is generally,
but not necessarily, true in DBpedia, e.g., there exists
dbr:Belgian_people. We thus conclude that the axiom,
however well supported by the statistics, is incorrect.

C. FURTHER EVALUATION
The considered problem may be viewed in terms of infor-
mation retrieval measures, based on a confusion matrix con-
sisting of four parts: true positives TP, false positives FP,
true negatives TN , false negatives FN . Each mined axiom is
either correct or incorrect, which immediately translates to,
respectively, a true positive or a false positive. From Table 1
we can compute the number of true positives TP = 30 and the
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TABLE 3. The axioms mined using the proposed algorithm on the Lehigh University Benchmark. The column conf. contains the confidence of the axioms,
while CE reports the number of pairs in the considered graph that do not follow the axiom, but follow its left-hand side. The prefix univ: corresponds to
the namespace http://swat.cse.lehigh.edu/onto/univ-bench.owl#.

number of false positives FP = 6 and from this the precision:

precision =
TP

TP+ FP
=

30
36
= 83%

On the other hand, computing TN and FN is impossible,
as it requires having an ontology complete w.r.t. all sub-
property axioms which could be relevant. In particular, the
most interesting piece of information, namely the set of false
negatives, i.e., axioms that should have been generated, but
were not, is not available andwould require a collective effort
of a group of experts to complete the ontology first in that
regard.

D. COMPUTATIONAL COMPLEXITY
Consider a graph using m different predicates, each used in n
triples. In MineChains, when constructing the index POS
each triple is visited at most once, yielding the worst-case
complexity of n ·m. Then, for each predicate it is possible to
make a recursive call to MineChains, yielding m recursive
calls in the worst-case. This cost can be formalized as the
following function c(i), where l is the maximal recursion
depth:

c(l) =

{
1 l = 0
m(n+ c(l − 1)) l > 0

This definition can be simplified to c(l) = n
∑l

i=1 m
i
+ml+1,

which yields the worst-case complexity of
O(c(maxlen)) = n · mmaxlen+1.

E. SUMMARY
We presented an approach to mine OWL object subproperty
axioms from usage of properties in an RDF graph. The mined
axioms can be used by an ontology engineer to extend an
ontology. To the best of our knowledge, this is the first
algorithm capable of mining object subproperty axioms with
property chains in their left-hands sides. We discussed the
theoretical properties of the algorithm: its soundness and
termination, and we explained why such an algorithm cannot
be complete. We evaluated the algorithm using the newest
DBpedia available, i.e., DBpedia 2016-10 and extensively
discussed the obtained results. We argued that from the
36 mined candidate axioms, 30 (83%) is correct and could
be added to the DBpedia ontology.

This paper considered only a static ontology and a static
RDF graph. Further work could include the dynamic aspect
where the graph and the ontology are modified in time and
one should detect axioms that become plausible to suggest
their addition to the ontology engineer, and conversely, detect
axioms that become implausible to suggest their removal.

APPENDIX
EVALUATION USING THE LEHIGH UNIVERSITY
BENCHMARK
To check whether the proposed approach is extendable
to other datasets, we performed the following experiment.
We used the data generator UBA 1.7 from the Lehigh
University Benchmark [25] and executed it with the param-
eters -index 0 -seed 0, as suggested on its web-
site http://swat.cse.lehigh.edu/projects/lubm/. This yielded
an RDF graph distributed over 15 files, from which we
extracted all triples such that their object is an individual or
a class, obtaining a subgraph of 67, 494 triples. On the sub-
graph, we executed the proposed algorithm, settingminsup =
10,minconf = 0.8,maxlen = 10. The axioms obtained are
reported in Table 3.

We verified the first axiom with the source code of the data
generator and it indeed follows the behaviour of the generator,
which always selects an advisor for a student from within
the department being generated, as per methods _getId and
_selectAdvisor of the class Generator. The second
axiom is also correct, as according to the ontology accom-
panying the generator, univ:headOf is a subproperty of
univ:worksFor. Finally, the third axiom is asserted in the
ontology, and thus correct as well.

We observe that our approach helped to uncover a
behaviour that is implemented in the generator, but it is not
documented in the ontology.
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