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ABSTRACT In this work, we evaluate the application of four different metaheuristic optimisation algorithms
for solving the channel assignment problem in a multi-radio multi-channel Wireless Mesh Network (WMN)
using Dynamic Spectrum Access (DSA). The work advances a near optimal channel assignment (CA)
in a WMN that uses DSA by applying soft computing methods. While CA in a WMN is well-studied,
and CA for secondary user cognitive radio networks has also been studied in the literature, CA for our
specific scenario of an infrastructure DSA-WMN is novel. This scenario poses new challenges because
nodes are spread out geographically and so may have different allowed channels and experience different
levels of external interference in different channels. A solution must meet two conflicting requirements
simultaneously: 1) to avoid interference within the network and with external interference sources, and
2) maintain connectivity within the network; all while staying within the radio interface constraint, i.e.,
only assigning as many channels to a node as it has radios. We present a novel algorithm, used alongside the
metaheuristic optimisation algorithms, which ensures the feasibility of solutions in the search space. Average
Signal to Interference and Noise Ratio (SINR) over the network is used as the performance measure, with the
goal of optimisation being to find the highest average SINR. This is amore realistic performancemeasure than
the binary on/off conflict-based measures most common in the literature. Our energy-based method also has
the unique advantage that it is protocol-agnostic, being able to avoid interference from external sources that
use different protocols and standards. The algorithms that are compared in this work are Simulated Annealing
(SA), the Genetic Algorithm (GA), Particle Swarm Optimisation (PSO), and Differential Evolution (DE).
These algorithms were evaluated through the use of simulation in Network Simulator 3. Various parameters
were experimented with for each of the employed algorithms. The resultant best set of parameters was used
for the comparison of the four metaheuristic algorithms. It was found that the population-based algorithms
(PSO, GA, and DE) all perform satisfactorily for this problem, although DE is superior to the others. SA can
give acceptable solutions, but performs poorly in comparison to the population-based algorithms. The paper
also considers the computational complexity of the methods. It is found that SA and DE perform well in this
regard.

INDEX TERMS Wireless mesh networks, WMN, dynamic spectrum access, DSA, optimisation, channel
assignment, simulated annealing, genetic algorithm, particle swarm optimisation, PSO, differential evolu-
tion, NS3, simulation.
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I. INTRODUCTION
Dynamic Spectrum Access (DSA) has recently been gaining
traction once again, as regulatory bodies around the world are
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opening up the spectrum bands that were formerly reserved
for licensed users, for opportunistic use by other users. Recent
examples are Citizens Broadband Radio Service (CBRS)
Spectrum Access System [1], Automated Frequency Coor-
dination in Wi-Fi 6E [2], and Dynamic Spectrum Sharing for
5G and LTE [3]. A more traditional example is Television
White Spaces (TVWS). Most of the associated spectrum
bands require (or will require) the use of spectrum databases
for secondary users to acquire access to channels within the
bands. Meanwhile, Wireless Mesh Networks (WMNs) have
proven their usefulness in extending Internet access from a
gateway node to a wider area [4]–[6], especially in rural areas
or informal settlements where Internet connectivity infras-
tructure is not reliable. Bringing together the technologies
of DSA and WMNs has not yet enjoyed much attention in
the literature, even though their combination can be very
advantageous. DSA-WMNs can aid in bringing connectivity
to the unconnected, unreliably connected, or underserved.

This novel type of hybrid DSA-WMN comes with new
challenges and avenues for research. One particularly dif-
ficult problem that arises in such DSA-WMNs is Channel
Assignment (CA). The CA problem is already NP-complete1

[8]. Several factors add to the complexity of this problem
in the case of DSA-WMNs. These factors include limited
channel availability evaluated by the spectrum database to
prevent interference with licensed users, the fact that different
nodes may have different allowed channels and experience
different channel conditions and external interference, and
interference within the network. In addition to the require-
ment to minimise interference, the WMN brings the contrast-
ing need to maintain connectivity within the network. This
connectivity requirement, while preventing interference or
high contention for the same channel, complicates the tradi-
tional DSA cognitive radio CA problem. Our work presents
and compares the performance of Simulated Annealing (SA)
and population-based methods (Genetic Algorithm, Particle
Swarm Optimisation, and Differential Evolution) for the
CA problem in a hybrid Wi-Fi-DSA-WMN. To our knowl-
edge, the application of the above-mentioned methods in the
Wi-Fi-DSA-WMN CA domain is one of the novelties of our
work.

The rest of this paper is organised as follows: In Section II,
we offer background on DSA, Channel Assignment in
WMNs, and the metaheuristic optimisation algorithms
employed in this work. In Section III, we present related
studies. The problem is formulated in detail in Section IV.
We present our methodology in Section V, including our
new algorithm for ensuring solution feasibility. Finally, our
results are provided in Section VI before concluding with
Section VII.

1‘‘NP’’ stands for ‘‘non-deterministic polynomial time’’. The class NP is
the class of problems for which a given proposed solution for a given input
can be verified by a polynomial-time algorithm but, thus far, no polynomial-
time algorithm has been found for solvingmembers of this class of problems.
The class of problems consisting of the ‘‘hardest’’ problems in NP are called
NP-complete problems [7].

II. BACKGROUND
A. DYNAMIC SPECTRUM ACCESS
It was found that large parts of the radio spectrum remain
unused while being licensed to certain users, creating an
artificial spectrum scarcity. This set the stage for Dynamic
Spectrum Access to emerge as a way for the radio fre-
quency spectrum to be used more efficiently. DSA refers
to techniques whereby wireless frequency bands can be
shared between the primary (licensed and thus legally pro-
tected from interference) users of the spectrum and sec-
ondary (unlicensed) users. DSA is enabled by Cognitive
Radios (CRs) through spectrum sensing and/or the use of
Geolocation Spectrum Databases (GLSDs). While spectrum
sensing still remains in the research stage, GLSD-based
approaches have received wide acceptance and practical
application, e.g., [9]–[11]. By applying these methods, radios
can adjust their spectrum access and use according to cur-
rent environmental conditions while ensuring that Primary
Users (PUs) or incumbents are protected from harmful
interference.

TVWS is one such band in which DSA based on GLSD
technology is used. TVWS refers to the unused portions of
the spectrum in the 470-694MHz range traditionally licensed
to TV broadcasting. (This TV broadcasting band is particular
to Europe; other countries may have slightly different but
mostly overlapping bands.) Secondary Users (SUs) have been
allowed to access this spectrum by a number of national reg-
ulatory bodies, including the Federal Communications Com-
mission (FCC) in the United States of America, the Office
of Communications (Ofcom) in the United Kingdom, and
the Independent Communications Authority of South Africa
(ICASA) in South Africa. Most regulations require the
use of a GLSD to ensure compliance and protection
of PUs.

Another DSA band is the Citizens Broadband Radio Ser-
vice (CBRS). The CBRS is a band of spectrum in the 3.5 GHz
range that was recently opened for sharing with incumbents
for commercial use in the United States [1]. Service providers
can deploy networks in this band without requiring spectrum
licenses. Access is divided into three tiers: incumbent access,
priority access, and general authorised access. CBRS uses a
Spectrum Access System (SAS), which grants requests by
SUs to access channels in the band, using a database of CBRS
radio base stations, similar to the GLSD in TVWS.

In order to minimise interference with satellite links, Wi-Fi
6E is set to use an Automated Frequency Selection (AFC)
system, as the 6 GHz band has been opened up for unli-
censed use by either low-power indoor Access Points (APs)
or standard-power outdoor Wi-Fi APs [2]. The AFC system
will also use a spectrum database to coordinate spectrum use
among users. To obtain available channels and request access,
APs must consult the registered database of an AFC provider
before starting to transmit.

Our work can be extended to any and all of these DSA
bands or any future bands, and so we expect it to become
increasingly useful in time.
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B. CHANNEL ASSIGNMENT IN WIRELESS
MESH NETWORKS
Different channels may be optimal for use by different nodes
in a WMN, and different channels may experience differing
levels of external interference and utilisation. So, different
channels would be good choices for different nodes placed in
different locations. WMN nodes also have to share a common
channel to be able to communicate. Thus, the problem of
assigning channels optimally is an important and difficult
one in WMNs. Proper channel assignment can improve spec-
tral efficiency while also minimising interference, increasing
throughput, and maintaining connectivity in the network. The
CA problem is well-known to be NP-complete since it is,
in essence, a graph-colouring problem [8], [12], [13]. Despite
considerable attention to the question in the literature, there
is currently no universally good solution to this CA problem
in WMNs. Additionally, substantial opportunities for further
research and improvements exist in the case of DSA- and
CR-using WMNs.

A good CA must:

• minimise the interference experienced within the net-
work and from external interference sources,

• maximise SINR,
• maintain connectivity along necessary paths between
nodes, and

• improve overall network capacity and performance.

CA and routing are interdependent. Optimal channels change
with the routes selected by the routing algorithm, which links
are used, and where the bottleneck links are in the network.
Conversely, routing depends on the capacity of links, which
is dependent on the conditions of the channels assigned to
those links. However, every new packet that is offered to
the network may need new routing. Hence, routing is a fast-
changing process. On the other hand, changing channels is
usually a slower process since it takes on the order of seconds
for a Network Interface Card (NIC) to find an alternative
channel, switch its channel, and reconnect the link for all cur-
rent hardware. A CA algorithm that could take into account
parameters that change more quickly, e.g., link quality, traffic
conditions, and routes, would be more adaptive to changing
conditions in the network. However, it would likely result in
loss of connectivity more often. Overall, this degrades the
network’s performance. A too rapidly changing CA would
also result in the routing having to re-adapt often and may
result in a race condition between routing and CA, causing
the network to become unstable. Additionally, frequently
propagating the required monitoring and control information
through a large network would significantly consume the
network’s bandwidth and reduce the achievable goodput, as is
the case in WMNs [14], [15]. For these reasons, routing must
be taken into account in a CA, but the CA must be a more
global longer-term solution than routing. An optimal CA
algorithm would have to take spectrum measurements over
time covering a variety of routing configurations and use this
information as an input.

CA algorithms might increase the overhead in the net-
work due to the communication required to distribute chan-
nel information, exchange decision-making information, and
update the state of the network. We do not consider the effect
of overhead on network performance in this work. It is kept
as possible future work.

C. METAHEURISTIC ALGORITHMS FOR OPTIMISATION
We give some brief background on the metaheuristic stochas-
tic optimisation algorithms employed in this work. We have
selected these algorithms because they are some of the
most well-known, tried-and-tested and readily available algo-
rithms [16]. This means these algorithms are easier to imple-
ment in a real network. It also means that our experiments can
be replicated readily using the same algorithms, perhaps in
other coding languages or with other simulation frameworks.

1) SIMULATED ANNEALING
Simulated Annealing (SA) is a probabilistic search heuristic
used in optimisation problems with complex, often discrete,
search spaces. It is based on, and analogous to, the physical
process of annealing (of a metal, for example) in statistical
mechanics, whereby atoms are cooled in a specific slow
way until reaching the state of minimum energy [17]. The
algorithm starts with the system in a certain arbitrary con-
figuration or state, i.e., a solution, and then it computes the
‘‘energy’’, which is the value of the objective function or cost
of that solution at that iteration. From there, a new candidate
neighbour solution is generated by applying a slight alteration
to the system state. Then, the candidate solution’s cost value
is computed and compared to the original cost. The candidate
solution is either accepted or rejected based on its cost value.
It is always accepted if the cost has improved (‘‘energy’’
has decreased). The candidate is accepted probabilistically
if the new solution is worse, with the probability based on
the difference in cost between the new candidate solution
and the old solution, as well as the temperature parameter.
The accepted solution is then the starting point for the next
iteration.

The temperature parameter is related to how likely the
algorithm is to choose a worse solution than the current one
to prevent the algorithm from getting stuck in a local mini-
mum. The temperature must initially be set to a higher value
and decreased every iteration according to a defined cooling
function, the choice of which is up to the implementer. Some
examples are exponential multiplicative cooling, logarithmic
multiplicative cooling, and linear multiplicative cooling [18].
The aim of SA is always to find/converge to the lowest
‘‘energy’’ configuration, which is the solution with the lowest
cost. As the number of iterations increases, the probability of
finding the true optimal solution increases. The process of
generating a new neighbour solution and accepting or reject-
ing the solution continues until predetermined termination
criteria are met. For example, a specified number of iterations
or acceptable running time is reached, and a satisfactory
solution has been settled on. Certain tests and rules-of-thumb

26656 VOLUME 10, 2022



N. Zlobinsky et al.: Comparison of Metaheuristic Algorithms for Interface-Constrained CA in Hybrid DSA

can be followed to determine whether to stop or continue
with the algorithm or estimate the convergence time, e.g., the
Geweke test [19].

2) GENETIC ALGORITHM
The Genetic Algorithm (GA) is a well-known metaheuristic
based on the evolution of genes through generations. In GA,
the fittest individuals are selected as parents and the fittest
genes are carried on in future generations. The selected par-
ents reproduce and occasional mutation occurs to the genes.
The required elements of a GA are:
• a fitness function (optimisation objective function);
• a population of chromosomes, also called genomes (an
encoding for solutions in the solution search space);

• a selection method by which parents of the next genera-
tion are selected;

• a crossover method by which parents reproduce to create
the next generation; and

• a mutation method by which random changes are intro-
duced to the chromosomes, preventing premature con-
vergence to local minima.

The algorithm starts by generating a starting population
at random from the search space and applies selection,
crossover, and mutation every iteration. This cycle continues
until termination. Termination may occur when the fitness
value of the chromosomewith the best value thus far, stays the
same for a certain number of iterations, or after an acceptable
predefined total number of generations is reached. One of
several parent selection methods may be used. A popular
method is RouletteWheel selection, where each chromosome
in the current generation is given a probability of being
selected that is proportional to its fitness. This method is
vulnerable to causing premature convergence. Linear Rank
selection tries to prevent the situation observed in Roulette
Wheel selection, where a single solution dominates and
causes premature convergence. Linear Rank selection instead
ranks individuals according to their inverse fitness and then
bases the probability of selection on the rank rather than the
actual fitness value. The highest fitness solutions are given
the highest value rank (lowest rank). For example, out of
ten solutions, the highest fitness will have rank position 10
(not 1), so it is the most likely to be chosen, and the lowest
fitness will have rank 1, having the lowest probability of
being selected. Crossover may be single-point or multi-point.
In crossover, the selected parent chromosomes are subdivided
into sections and the sections swapped out to generate new
combinations of genes.

3) DIFFERENTIAL EVOLUTION
Differential Evolution (DE) is a member of the group
of evolutionary algorithms. It was initially developed to
deal with continuous variable problems using evolutionary
methods [20]. However, it has also been used in discrete
settings [21].

In DE, an initial population of size NP is chosen at ran-
dom, similarly to GA. Each individual in a population is

represented by xi,G ∀ i = 1, 2, . . . ,NP and G denotes the
generation. The mutation operation, which occurs at every
iteration, is different from other evolutionary algorithms.
The mutant vector is generated using the weighted difference
between two other randomly chosen members of the popula-
tion and adding that to a third randomly chosen member of
the population, not equal to either of the previous two. In the
crossover stage, the parameters of the mutant vector are again
mixed with the parameters of another predetermined vector,
the target vector. This is done in order to increase the diversity
of the perturbed parameter vectors. This addition is called
‘‘mixing’’ and results in a trial vector.

A selection operation replaces the target vector, or the
parent, with the trial vector if the latter yields a lower cost
value than the parent. Hence, the fitter offspring now becomes
a member of the newly generated population. These iterations
continue until one of the termination criteria is reached.

The DE parameters to be selected are the population size
NP; F ∈ [0, 2] ⊂ R, a constant factor that controls the ampli-
fication of the difference vector; and CR, the crossover rate.
Small values of F will result in smaller mutations (with less
variance), resulting in slower convergence of the algorithm.
Larger values of F may cause overshoot and convergence to
the wrong value.

The steps involved in DE are detailed below.

a: MUTATION
For each target vector xi,G in the population, randomly select
three other individuals from the population: r1, r2, r3 ∈
{1, 2, ..,NP}, ensuring that

i 6= r1 6= r2 6= r3.

Mutant vector vi+1,G is then computed using equation (1).

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (1)

b: CROSSOVER
The trial vector

ui,G+1 = (ui1,G+1, ui2,G+1, ui3,G+1, . . . , uiD,G+1)

is formed, where D is the number of dimensions, according
to equation (2).

uij,G+1 =

{
vij,G+1 if rand(j) ≤ CR or j = rand(i)
xij,G if rand(j) > CR and j 6= rand(i)

(2)

∀ j = 1, 2, . . . ,D
where

rand(j) is the jth outcome of a random binary number in [0, 1],
or rand(j) ∼ U (0, 1), depending on the implementation;
rand(i) is randomly chosen from [1, 2, . . . ,D];
CR is the crossover constant ∈ (0, 1) ⊂ R.

c: SELECTION
To decide whether or not it should become a member of
generation G + 1, the trial vector ui,G+1 is compared to the

VOLUME 10, 2022 26657



N. Zlobinsky et al.: Comparison of Metaheuristic Algorithms for Interface-Constrained CA in Hybrid DSA

target vector xi,G as follows: If the trial vector ui,G+1 yields
a smaller cost function value (which is better, assuming the
goal is minimising the cost) than xi,G, then xi,G+1 is set to
ui,G+1; otherwise, the old value xi,G is retained in the next
generation, i.e.

xi,G+1 =:
{
ui,G+1 if f (ui,G+1) < f (xi,G)
xi,G otherwise

(3)

d: VARIANTS
A naming convention of DE/x/y/z has been adopted. x
denotes the vector to be mutated, which can be rand (ran-
dom), or best (chromosome with the lowest cost). y denotes
the number of difference vectors considered for the mutation
of x, and z is the type of crossover in use. In the previous
example in Section II-C3.b, this was binomial, since it was
done by independent binomial trials. The method we have
described would be termed DE/rand/1/bin. Some other
variants are:
DE/best/1:

vi,G+1 = xbest + F · (xr1,G − xr2,G) (4)

DE/rand/2:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G)+ F · (xr4,G − xr5,G)

(5)

DE/best/2:

vi,G+1 = xbest,G + F · (xr1,G − xr2,G)+ F · (xr3,G − xr4,G)

(6)

DE/current − to− best/2:

vi,G+1 = xi,G + F · (xbest,G − xi,G)+ F · (xr1,G − xr2,G)

(7)

where

i 6= r1 6= r2 6= r3 6= r4 6= r5.

4) PARTICLE SWARM OPTIMISATION
a: OVERVIEW
Particle Swarm Optimisation (PSO) is another stochastic
population-based search algorithm. It was inspired by the
behaviour of animals in nature, such as flocks of birds or
schools of fish, which work in groups to locate desirable
positions [22]. A desirable position might have, for example,
good food sources. PSO is driven by the assumption that each
individual member of a swarm benefits from the experience
of other members of the swarm to the overall advantage of
the group.

There are two main operations per iteration: First, the
velocity of every particle is updated. Second, the position of
every particle is updated according to the calculated velocity.
The canonical velocity calculation is shown in equation (8),
and the position update is shown in equation (9).

vi(t + 1) = ωvi(t)+ c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t)) (8)

xi(t + 1) = xi(t)+ vi(t + 1) (9)

where
t is the iteration counter;
r ∼ U (0, 1) is a (pseudo)-random number selected in

the range 0 to 1 and r1 and r2 are generated anew for every
dimension;
vi(t) is the velocity of particle i at iteration t;
xi(t) is the position of particle i at iteration t;
yi is the position of the particle i found so far with the best

fitness (lowest cost);
ŷ is the position of any particle in the swarm found so far

with the best fitness (lowest cost);
ω is a coefficient causing inertia in the movement (weight-

ing towards the previous velocity);
c1, c2 are named cognitive and social coefficients, respec-

tively, altering the relative weight of the particle’s own mem-
ory and that of the swarm.

(We can think of the velocity as a displacement in constant
time, to ease the discomfort of inconsistent quantities when
adding a velocity to a position). Each of these calculations
is done per dimension, the number of which is not limited.
The inertia weight ω determines the balance between local
and global search. The smaller ω is, the more the algorithm
behaves like a local search, searching around its current
position. In this case, the second and third terms of equa-
tion (8) dominate. The largerω is (> 1.2), the more expanded
the search space becomes, and the algorithm searches more
globally [23], [24].

Several variants of PSO are based on slight changes to the
velocity equation. There is also the ‘‘bare bones’’ PSO in
which the position is changed by using a normal distribution
centred around the mean of the personal best and group best
position [25].

b: NAMING AND VARIANTS
Several variants on the velocity computation have been put
forward. Some of these are:
• Variant 2 (equation (10)), where the same random
variable r1 is used for both the social and cognitive
components.

vi(t + 1) = ωvi(t)+ c1r1(t)× (yi(t)− xi(t))

+c2r1(t)× (ŷ(t)− xi(t)) (10)

A new r1 is generated for every dimension.
• Variant 3 (equation (11)), where the same two random
variables are used for all dimensions.

vi(t + 1) = ωvi(t)+ c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t)) (11)

A new r1 and r2 are generated once, and the same values
are used for all dimensions.

• Variant 4, with only one random variable used for all
quantities. Variant 4 is the same as Variant 3, except
that r1 is only generated once and reused for every
dimension.

26658 VOLUME 10, 2022



N. Zlobinsky et al.: Comparison of Metaheuristic Algorithms for Interface-Constrained CA in Hybrid DSA

• Variant 5, where the constriction coefficient affects the
whole calculation and not just the previous velocity
(equation (12)). In this variant, ω is sometimes written
as χ , since it represents a slightly different quantity from
the inertia coefficient.

vi(t + 1) = ω × (vi(t)+ c1r1(t)× (yi(t)− xi(t))

+c2r2(t)× (ŷ(t)− xi(t))) (12)

Constriction weight ω (or χ ) applies to all components.
• Variant 6 is calledFully Informed Particle Swarm (FIPS)
and shown in equation (13). FIPS is different from the
other variations as each particle is not just affected by
itself and the best neighbour, or the best particle in the
swarm. FIPS includes effects from all the particles k
in the swarm or neighbourhood of size K . The random
number r(t) ∼ U (0, c1 + c2).

vi(t + 1) = ωvi(t)+
1
K

K∑
k=1

r(t)× (yk(t)− xi(t)) (13)

The PSO was originally conceptualised as a method in
continuous space. It has, however, been used liberally in a dis-
crete form, e.g., [26]–[29], with different ways of discretising
the values and operators, normally by simple rounding, or by
introducing a penalty function.

III. RELATED WORK: METAHEURISTIC ALGORITHMS FOR
CA IN DSA WMNs
While the channel selection and assignment problems may
appear to be well studied, there is no existing work before
ours that applies metaheuristic optimisation algorithms for
CA to an infrastructure WMN using DSA methods. To the
best of our knowledge, ours is also one of few works to
use the SINR perceived by the nodes for CA in a WMN
or CR network. In contrast, it is common in the literature
to use simple binary conflict-based interference objectives,
neglecting the maintenance of connectivity requirement, and
using unrealistic interference and channel models.

Chowdhury and Akyildiz introduce the concept of a cogni-
tiveWMNwith DSA [30]. However, their envisaged scenario
is very different from ours. In our work the WMN is the
backbone and the WMN links are using the DSA spectrum,
while the WMN nodes perform the sensing; whereas, in [30],
the clients do the sensing and clients form clusters, while the
links between the mesh nodes are formed out of band through
communication on a different dedicated channel. The actual
mechanism for forming these WMN links is not outlined in
their work. The authors also do not attempt to optimise the
CA, but concentrate on the sensing problem. The channel
switching algorithm is only for shifting some clusters from
the secondary band into the primary band.

DSA WMNs are also approached by Xin et al. [31]. They
present a distributed CA algorithm for a DSA WMN. This
solution does not attempt to optimise the assignment and does
not use any soft computing methods. They also consider only
single-radio nodes, while our scenario considers nodes with

more than one radio. There are practical questions around
their work. For example, we consider their assumption that a
node randomly switching to a channel is likely to find a node
to link with on that channel unrealistic. Xin et al. also make
the assumption that the accessible channel list is the same
for all nodes in the network, whereas we consider the more
realistic case where the available channel list is different for
each node. The case of a multi-radio multi-channel network
as SUs coexisting with PUs is addressed by Qin et al., using
Lyapunov optimisation of throughput and average delay [32].
One of their considered scenarios is a multi-hop network.
The network scenario in this work is quite simple as there
are only 5 source-destination pairs and a maximum of 15
SU nodes. In addition, interference within the network is not
adequately addressed.

A CA algorithm is given for an infrastructure WMN using
Wi-Fi spectrum by Ramachandran et al. [33]. Their CA is
built on a novel interference estimation scheme. In this inter-
ference estimation method a packet capture interval is used
to identify the number of MAC addresses external to the
network. These MAC addresses identify the number of inter-
fering devices. The packet capture is also used to gather the
channel utilization of the interfering devices. The two lists
of devices and channel utilization are ranked and merged by
averaging the quantities to form the interference estimation.
This interference estimation technique is fairly easy to imple-
ment in real nodes, but is not a realisticmodel for interference,
since it is based on the number of conflicts and does not
include cumulative interference effects. It can also only iden-
tify other users of the same technology (Wi-Fi) and would
not work in the case of mixed technologies in the same spec-
trum band, as our method does. The required packet capture
period in [33] causes a temporary disruption to transmissions
from each capturing radio of 36 s, which is not ideal. The
researchers also claim that this interference estimation is done
every 5 minutes. This would be a significant disruption to the
network and would likely cause a bad user experience. How-
ever, the pertinent aspect of this work in relation to ours is
that the authors address interference between the WMN itself
and other co-located wireless networks (as well as within the
network itself). This mirrors our case of interference being
experienced from external SUs in the vicinity of our net-
work, even though [33] only considers interference between
Wi-Fi devices. This contrasts with our scenario where the
external SUs may be using a different technology or standard
in the same DSA band as the network under consideration.
In addition, in [33], a default channel common to all nodes is
reserved to ensure topology preservation. Their evaluation by
simulation only considered 30 nodes, but a good addition was
an evaluation of a real prototype implementation of 6 nodes.

CA in WMNs using more realistic interference mod-
els is presented by Chaudhry et al. [34]. They introduce a
method for building the conflict graph based on the signal-
to-interference-ratio (SIR) model with shadowing for finding
channel assignments in multi-radio multi-channel WMNs.
The goal is to find the minimum number of non-overlapping
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channels required such that all incoming packets have an
SIR above the required threshold for correct reception. SIR
instead of SINR is used because the authors assume that
co-channel interference is much larger than the noise. In this
work, one radio interface of each mesh node is dedicated to
control traffic only, and all radios are tuned to a common
control channel. Greedy heuristic algorithms are proposed
for the minimum colouring CA problem, with a worst case
computational complexity ofO(L2), where L is the number of
links. The network size considered in [34] is only 36 nodes.
It is found that more realistic channel models require more
frequency channels to be assigned for minimal interference.

In the extension to [34], the negative cumulative effect
of individually acceptable interference levels from differ-
ent interfering nodes is taken into account [35]. To do so,
a conflict matrix is introduced in addition to the conflict
graph. Then in the greedy heuristic colouring algorithm, the
cumulative interference for each considered solution is first
checked to determine whether it is within the total interfer-
ence constraint specified. The solution is discarded if the
constraint is not met. In another work, Chaudhry, Hafez and
Chinneck consider a similar problem but use beamforming to
reduce the co-channel interference [36]. While these works
do address interference and SIR in a more realistic manner
than elsewhere in the literature, they have a different approach
from ours. The optimisation objective is to find the minimum
number of frequency channels that can be used while meeting
the constraints. However, none of the above three works con-
siders the DSA scenario explicitly. They assume that all nodes
have the same allowed channels. In addition, they do not
consider the scenario of other users outside of the network to
be optimised also causing interference. In our case, other SUs
of the channels may be in a different network over which we
have no control, or they can be using different standards in the
same frequency bands, and so are more difficult to identify.
We use the SINR directly in the optimisation objective, rather
than as a constraint. These works employ problem-specific
heuristics rather than the metaheuristic optimisation methods
we employ to address our problem. In summary, our work is
a different approach to a similar, but not identical, problem.

Some works have used metaheuristic optimisation for sim-
ilar and related problems to that of this work. Simulated
Annealing is evaluated by Chen and Chen for CA in WMNs,
while considering the interface constraint [37]. In onemethod
of theirs, the interface constraint is modeled with a penalty
function for candidate solutions. In their other method, infea-
sible solutions are instead converted to feasible solutions by
a merge operation. Such a merge operation once again intro-
duces the interference that the first step aimed to minimise,
which is a drawback of this work. Another drawback is that
the interference is considered binary, i.e., either present or
not. Connectivity is ensured by assigning a channel to every
link.

We now discuss some GA approaches. Sridhar et al.
present a CA methodology for multi-radio WMNs that
use only the Wi-Fi spectrum [38]. The optimisation goal

is minimising interference. They introduce a constraint to
ensure that each link is assigned a channel for topology
preservation, and weight the interference objective by the
link traffic, which is predicted from the previous aver-
ages. Lagrangian relaxation is used to find lower bounds.
They also present a GA-based metaheuristic for solving
the problem. In addition, a distributed algorithm is pre-
sented, but this requires that all radios maintain a chan-
nel assignment matrix as well as a radio usage matrix
for all nodes in the network, both of which are difficult
to realise. Pal and Nasipuri also present a GA, but for
joint routing and channel assignment [39]. They optimise
on route quality and take into account the interface con-
straint. A GA is employed by Ding et al. for minimising
total interference and maximum link interference in WMNs
with partially overlapping channels [40]. Interference from
overlapping channels is also modeled as a binary factor
based on a threshold. Balusu et al. combine GAs with learn-
ing automata to minimise interference in WMN CA, but
for multicast tree topologies [41]. Cheng and Yang also
investigated multicast tree networks [42]. They present GA,
SA and Tabu search solutions for joint Quality of Service
(QoS) routing and CA in multi-radio multi-channel WMNs.
Subramanian et al. [43] use Tabu search to minimise binary
interference, first ignoring the radio constraint and then
merging channel assignments to comply with the interface
constraint.

A few works use Particle Swarm Optimisation for related
problems. In the most relevant work, Zhuang et al. [44]
present a PSO-based CA algorithm for multi-radio multi-
channel WMNs to minimise interference, again considered
binary. The key difference with our work is that the same
channels are allowed for use by all radios. Neighbour solu-
tions are chosen by switching out a link on a channel to
another link, rather than switching out the channel. Solutions
are only considered if they are feasible assignments, satisfy-
ing the interface constraint. The fitness function is simply the
total number of collisions relative to the total number of edges
in the conflict graph. Ghosh et al. [45] use PSO to tackle a
CA problem in mobile networks. Reassignment of channels
is limited to one cell receiving a new call, and the fitness
function is a linear combination of on-off states. These factors
make this problem significantly simpler and less realistic than
the one in our work. Abdelsalam et al. [46] investigate the use
of PSO for CA in CR networks (not WMNs) by considering
the mean reward and max proportional fairness objectives
and considering different protection ranges for the PUs. They
find that PSO generally outperforms GAs for their prob-
lem. Chakraborty et al. [47] consider PSO for the CA prob-
lem in mobile cellular networks, while Sakamoto et al. [48]
present a PSO-based algorithm for node placement inWMNs.
PSO is included in the Mixed Integer Linear Programming
solution to a related problem, topology control in WMNs,
by Rai et al. [49]. In their work, topology control is done by
scheduling with power control at the link layer, using SINR
as a constraint, transforming this problem into a knapsack
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problem, and ensuring connectivity is maintained. Unique to
other works, a realistic SINR model is considered instead of
simple binary interference, although SINR is modeled and
taken into account in the problem as a constraint, which is
a completely different way from our work.

Differential Evolution approaches include
Da Silva Maximiano et al., who assign frequencies to
base stations in Global System for Mobile Communica-
tions (GSM) using DE for minimising interference [50],
[51]. Differential Evolution is also used for CA in DSA
CR networks by Latif et al. [52] and Anumandla et al. [53].
In Latif’s work, the objectives considered are fairness and
utility, while interference with PUs and other SUs is consid-
ered only as a constraint. This problem does not have the
added requirement of maintaining connectivity or topology
preservation that is present in our work, because WMNs are
not considered and each SU is independent. In Anumandla’s
work, the multi-objective optimisation encompasses three
network utility functions. These are max-sum-reward, which
maximises the spectrum utilisation; max-min-reward, which
maximises the minimum reward of each user while satis-
fying the constraints on the number of channels and the
required total capacity of each user; and max-proportional
fairness, which is related to QoS. The researchers find that
the time complexity and solution quality of DE are superior
to Non-dominated Sorting GA.

Considering the existing literature, we bring novelty to this
field, combining both the connectivity preservation require-
ment of the WMN as well as the interference avoidance
requirement of DSA-using CRs. Ours is the first work to
consider the near optimal CA inWMNs using soft computing
methods in situations where the network uses the licensed
spectrum opportunistically as SUs, with Wi-Fi as an addi-
tional option.Most other works considerWi-Fi channels only,
while a small number consider DSA CRs only. Ours is also,
to the best of our knowledge, the first work to concentrate on
an infrastructure DSA WMN. We approach the problem by
taking into account that different nodes may have different
allowed channels since the network is geographically spread
out. Other works do not factor this in. We also present a new
algorithm for ensuring that both the connectivity constraint
and the interface constraint are met simultaneously with the
constraint on which channels are allowed at each node’s
location. We bring to this specific problem a realistic SINR
model instead of an on/off interference model. The SINR
formulation enables extension to include adjacent channel
interference. This is the first work to compare metaheuristic
optimisation algorithms for such a network and scenario, with
all these considerations.

IV. PROBLEM FORMULATION
A. NETWORK MODEL
The scenario we consider is an infrastructure wireless mesh
network consisting of nodes equipped with both Wi-Fi radios
and radios capable of accessing alternative spectrum, such
as TVWS or CBRS, as unlicensed SUs. These WMN nodes

act as APs to clients on another radio interface (this could be
2.4 GHz or 5 GHz Wi-Fi). There are also PUs of the alterna-
tive spectrum band that must be protected from interference.
Hence, it is required that devices use a GLSD to get a list
of channels that are allowed at their locations. This is the
case for TVWS, CBRS-SAS, and Wi-Fi 6E 6 GHz. At least
one node is the gateway to the Internet. To illustrate the
concepts more clearly, we assume there is a single gateway
node. However, in reality, there might be a gateway node from
each cluster of nodes in the WMN. This allows extension
to multiple gateways, as required, as the number of nodes
increases. The gateway node also acts as the gateway to the
GLSD. This node will gather the list of allowed channels and
power levels for all nodes in the network. We also assume
that the gateway node will act as a controller, gathering the
average SINR readings from all the nodes and performing any
CA optimisation algorithm.

Ensuring that all nodes have an initial connection to the
GLSD in a way that complies with regulation could be done
using the method of Maliwatu [54]. In this method, nodes
begin in passive scanning mode, listening for beacon frames,
while one node (the gateway node, in our case) has Internet
access. The node with Internet and GLSD access picks a
channel and broadcasts beacon frames on this channel, along
with an ordered list of alternative channels. One-hop neigh-
bours receive this beacon frame, tune to that channel, and
query the GLSD through the first node. The one-hop neigh-
bour then selects a channel from the list of allowed channels.
It can now join the network and start broadcasting beacons for
the next-hop neighbour. This then allows second-hop neigh-
bours to repeat the process and join the network through the
one-hop neighbours. This process continues until reaching
the outermost set of nodes.

In addition, the network may be in the presence of SU
devices external to the network, which are also making use
of the alternate spectrum band and so may cause interference.
An example of this scenario is illustrated in Figure 1.

B. PROBLEM STATEMENT AND MOTIVATION
Given this scenario described in Section IV-A, the question
arises, ‘‘how to allocate channels to the WMN radio inter-
faces optimally, according to certain metrics, while ensuring
compliance?’’. The main issues are minimising interference
within the network and from external interference sources,
while ensuring that connectivity is guaranteed. Connectivity
must at least be maintained along the most important and
critical paths (which can be determined based on the volume
of traffic or other measures), and between as many nodes
as possible. Different channels may be allowed for use by
different nodes in the network because they are placed in
different geographic locations. In addition, different chan-
nels may experience different levels of external interference,
loss, fading, and utilisation. Hence, the problem of assigning
channels optimally is an important and difficult one in this
scenario.
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FIGURE 1. A triple-band infrastructure WMN using DSA. A single node is the gateway to the Internet and thus also to the GLSD. The WMN
nodes have TVWS and 5 GHz Wi-Fi interfaces and can use both bands. Each WMN node acts as an AP to clients on 2.4 GHz. The DSA-WMN is in
the presence of other SUs of the TVWS spectrum, which causes interference to our DSA-WMN. There are also PU TV transmitters that must be
protected from interference, as well as obstructions, such as trees, that affect which spectrum bands and channels are more favourable than
others.

As mentioned earlier, the CA problem is well-known to
be NP-complete. In the context of a WMN, it is even more
difficult and goes beyond a basic graph colouring problem.
Firstly, this is because the links are not equal, as mentioned,
and would require a model of a weighted graph. Secondly,
this is because, while we need to avoid interference, it is
also necessary to maintain connectivity and meet the inter-
face constraint. These goals are conflicting and result in two
different graph colouring problems that need to be solved at
once.

We have determined that the problem is also not convex.
We did so by plotting the objective function (shown by colour
regions) for a scaled-down three-node (A, B, C) three-link
(A-B, B-C, A-C) version of the problem, shown in Figure 2.
Each of the three axes represents the channels that could be
assigned to a link. The sawtooth shape in one plane for link
B-C, and the presence of higher values within the low-value
regions (shown by purple, magenta, and orange values inside
the black region) make this problem non-convex, even in low
dimensions. This justifies our use of metaheuristic optimisa-
tion algorithms and not convex optimisation algorithms.

C. ASSUMPTIONS
The goal of the CA algorithm is to assign channels optimally
to a set of links. A link is defined as a pair of radio interfaces

between which traffic could potentially flow directly if tuned
to the same channel. In a network, over the course of a day,
the set of links used for relaying traffic will vary. The selected
paths depend on the capacity of the links, which is affected by
the channel allocation. On the other hand, channel allocation
should consider the links used, especially those with the high-
est traffic load. Hence, there is an interrelationship between
routing and CA. While there is an interdependence between
the two problems of routing and CA, our channel assignment
will be quasi-static and not change according to routing in
near real-time. This is a practical and advantageous decision,
rather than a limitation. Suppose the CA attempts to keep
up with the rapidly changing routes, and routing is, in turn,
trying to keep up with changing channel allocations. This
would cause network instability, which leads to a bad user
experience. Channel switching causes a loss of network con-
nectivity during the time the Network Interface Card switches
its channel and tries to re-establish connectivity, which can be
on the order of seconds in reality. Optimisation algorithms,
such as those we present here, are time-consuming to run
and resource-intensive. This is especially true with commod-
ity mesh radios, which are resource-constrained, even if a
dedicated controller node is used with more computational
power than the other nodes. The constraint on computa-
tional resources means we would not want the optimisation
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FIGURE 2. Map of the objective function value of the CA problem in a three-node WMN. There are three possible links (A-B, B-C, A-C), which
form the three axes, and each of the three links can be assigned any of the channels. After running the WMN simulation for each possible CA,
the resulting cost is plotted. The sawtooth shape in the B-C plane as well as the presence of higher values within the low-value regions in the
A-B plane (shown by purple, magenta and orange patches inside the black region) show that this problem is non-convex.

algorithm to run often. A reasonable trade-off would be to
run the optimisation once a day, for example. The optimisa-
tion algorithm could be run when the network is not busy,
such as in the middle of the night. A 24-hour schedule such
as this is already employed by other commercial systems
for running resource management algorithms (e.g., Aruba
Airmatch [55]), so it is practical and can be accepted in the
industry.

Some other assumptions that apply are:

• Nodes are stationary, and the gateway node knows their
locations. The mechanism by which the gateway node
learns the locations is out of the scope of this work.

• PU channel use and occupancy change on a slow time
scale compared to SU channel occupancy. The list of
allowed channels for all nodes is known upfront before
running the optimisation algorithm.

• The nodes are mostly in the same geographical area.
However, some nodes on the edges may be in different
geographical areas, where the GLSD defines the bound-
aries. If they are not, the network can be partitioned
into clusters with largely overlapping allowed channel
lists. For this reason, we do not present results for larger
networks, as a large network could be partitioned into
clusters. There are also other practical limitations on
performance in the case of large networks. We consider
a network of 50 or more nodes as large.

• If the nodes at the cusp of two clusters do not share a
sufficient number of overlapping allowed channels in the
DSA band, they can be linked by a Wi-Fi channel.

• Channel widths are fixed to the same value for all inter-
faces of all nodes.

• We use average SINR measurements across the network
in the optimisation. This is because, if the total SINR
over the network is large, a high throughput can be
expected. SINR is a direct measure of the result of chang-
ing channel assignments on the signal reception and
interference experienced by nodes. These measurements
will be gathered by all nodes for different possible chan-
nel assignments. An average of the samples for a partic-
ular CA will be used in the optimisation for one solution
in the search space. Either the samples or the averages
will be sent to the controller/gateway node to perform
the optimisation. The method by which nodes obtain
SINR samples could be using acknowledgement (ACK)
frames, similarly to Cho et al. [56].

• All of the considered links are saturated with traffic,
so the average SINR across the network is also a fair
objective, and no other fairness criteria are necessary.

D. MATHEMATICAL MODEL
In the usual way, we model the network as a graph G =
(V ,E) where V is the set of nodes (vertices) and edges E
are the links between nodes. Edges are potential links and
not necessarily carrying traffic at this stage. Each edge e ∈
E could be tuned to a particular channel at any time, i.e.,
E 7→ C , where C is the full set of considered allowed
channels for the whole network (or part of the network under
consideration).C is the union of channels allowed in different
locations of the WMN according to the GLSD. Each node
v has a set C(v) of channels it is allowed to use. For two
nodes v1 and v2, C(v1) 6= C(v2) in general, although they
could be equal and should have channels in common (that is,
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C(v1) ∩ C(v2) 6= ∅), especially if v1 and v2 are neighbours.
A channel is specified by a channel number, a centre fre-
quency, and a channel bandwidth. Connectivity graphGmaps
to a conflict graph Gc = (Vc,Ec), where the vertices of the
conflict graph are the edges in G, i.e., Vc = E . An edge
e′ ∈ Ec exists between two vertices in Vc if the two links
could interfere if tuned to an overlapping channel. This could
occur when the interfering signal power is above the receiver
sensitivity. For example, consider two links 1 and 2 in Vc.
An edge e′ exists between them if a transmission in link 2
causes power to leak into, or be transmitted on, the channel on
which link 1 is operating. This can occur if the two links are
tuned to the same channel. This can also happen if the links
are tuned to different channels while the spectrummask of the
transmitter node is wide or the receive filtering is poor, so that
power leaks into the channel onwhich link 1 is operating from
link 2. We can model this situation as a weighted conflict
graph denoted 〈Gc(Vc,Ec),w〉, where the weightw represents
the interference power per link. In addition, there might be
sources of interference outside of the network itself, such
as other transmitting SUs in the spectrum band, that can
influence the reception of nodes in G if they are transmitting
with power in the same channel that one of the links in E
is tuned to. These devices are added to the conflict graph
to form Ĝc, but we note that these edges are fixed as their
channels cannot be switched and their transmit power cannot
be controlled.

Considering this conflict graph, we aim to minimise the
conflict but maximise the wanted signal power received by
each node and so maintain connectivity in G. We can satisfy
both these requirements simply by considering SINR and
ensuring that all links have an allocated channel. The total
SINR across the network encapsulates the goals of having
the highest desired received signal quality throughout the
network, while also minimising conflict (interference) and
noise. The optimisation objective is thus to find the channel
assignment A, which is a mapping of E 7→ C that maximises
the total SINR of all nodes, given by equation (14).

max
A=E 7→C

∑
v∈V

Pwanted,v(A)∑
i∈I Pi(A)+ N

= min
A

∑
v∈V

∑
i∈I Pi(A)+ N
Pwanted,v(A)

= min
A

∑
v∈V

∑
x∈V\u,v Px,v(A)+ N

Pu,v(A)

= min
A

1∑
v∈V SINRv(A)

≡ min
A

E
[

1
SINR(A)

]
(14)

This is subject to the radio interface constraint:

|A(v)| ≤ Rv ∀ v ∈ V (15)

and the available channel constraint:

A(v) ⊆ C(v) ∀ v ∈ V (16)

C ≡ {c1, c2, c3, . . . , cM } ∀ cm ∈ N (17)

and a channel number cm defines a pair of centre frequency
and channel width

cm 7→ (fcm ,Bcm )

where:
A(v) is the channel assignment of node v and | · | indicates

the size (number of channels assigned to the node);
Rv is the number of radios at node v;
C(v) is the set of channels allowed for use by node v;
fc is the centre frequency of channel c;
Bc is the channel width of channel c;
Pu,v is the power received at node v from the transmitting

node u;
Pi is interfering power received at node v from an interfer-

ing transmission i over the whole channel width of channel c
to which node v is tuned; and
N is the noise power, which in Network Simulator 3 (ns3)

is modeled as the product of the thermal noise (Nt ) and the
noise figure (FN ), as shown in equation (18).

N = Nt × FN = kTB× FN (18)

where k is Boltzmann’s constant (≈ 1.380649×10−23 JK−1),
T is the temperature in Kelvin and B is the channel bandwidth
in Hz.

Since the SINRv is not constant and varies according to
environmental conditions, we use the average of a number
of samples of SINRv and so the minimisation becomes

min
A

1∑
v∈V SINRv(A)

≡ min
A

E
[

1

SINR(A)

]
(19)

A transmitting node is considered interfering with v if it is
transmitting with received signal strength above the receiver
sensitivity, and if it is in the set of nodes V minus v and
minus the node u, the node transmitting the desired signal
to v. We only consider there to be one wanted receive signal
per time slot.

We can find Pi using equation (20):

Pi =
∫ fc+Bc/2

fc−Bc/2
p(fb)St (fb)Sr (fc) df

= Px,v(A) ∀ x ∈ V \ {u, v} (20)

where
p(fb) is the power spectral density of the interfering signal

at the central frequency of channel b in which the interfering
node is transmitting. (It is possible that b = c);
St (fb) is the spectrum mask of the transmitter (interfering

signal) centred at the central frequency of channel b;
Sr (fc) is the receive filter’s frequency response, which is

tuned to channel c; and all is integrated over the width Bc of
the considered channel c.
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This formulation allows for extension to the case of adja-
cent channel interference, or interference between transmis-
sions on any two channels, which is kept as future work.

Each transmitted signal is subject to propagation loss as
well as frequency-selective fading. The received signal power
at node v from node u’s transmitted power Pu,v (in W)
(before receiver filtering) is related by the propagation loss L
according to the chosen propagation loss model.We apply the
basic Friis transmission loss model, shown in equation (21),
although the work is easily extensible to other propagation
loss models, as well as real-life measured channel responses.
Please note that the method is not dependent on the specific
model used or on the channel response experienced. We use
an isotropic antenna model in the simulation, but this can also
be changed in the simulation for future work, and is also not
required for our method to work.

Pu,v = Pu
GvGuλ2

(4πd)2
=

Pu
Lu,v

(21)

where
Gu is the transmission gain of node u’s antenna (unitless);
Gv is the receive gain of node v’s antenna (unitless);
λ is the wavelength (in m), inversely proportional to the

frequency, so is affected by the channel assignment;
d is the distance between the nodes (in m);
or, in dB,

Pu,v(dB) = Pu(dB)− Lu,v(dB) (22)

where the path loss L(dB) is the absolute value of the loss in
dB.

Before considering interference, a link only exists if the
effective received signal power on that link is above the
receive sensitivity sv of the receiver node v. That is, the link
will be pruned unless

Pu,v ≥ sv
Pu
Lu,v
≥ sv

SNRv × N ≥ sv
SNRv ≥ sv/N (23)

SNR can only be measured if it is above the receiver
sensitivity/noise. This constraint reduces the number of links
that require channel assignment and reduces the edges in the
conflict graph that need to be considered. We also have to
ensure that in the CA, condition (23) is met for critical links,
so that connectivity is maintained within the network. Addi-
tionally, interference is only considered if the interference
power at the receiver is above the energy detection threshold
of the receiver.

In the simulation framework of ns3, frames are split
into constant SINR chunks, and overlapping frame chunks
are considered as additional contributions to the overall
noise [57]. Interfering signals are only considered as inter-
ference when the frame chunks actually overlap with those
of the wanted frame at each considered receiving node in

time. Preamble and payload parts of the frames are treated
separately because the payload might have a higher modula-
tion and coding rate than the BPSK-encoded preamble. Inter-
fering signals below the energy detection threshold do not
cause collisions or backoff, but are added to the interference
tracker and contribute to the noise+interference in the SINR
calculation.

V. METHODOLOGY
We now detail:

• the simulation setup used for our experiments in
Section V-A,

• the algorithm we introduce to ensure that all solu-
tions considered in the search space are feasible in
Section V-B, and

• the implementation choices made for each of the
employed optimisation metaheuristics in the remainder
of Section V.

The optimisationmethods generate candidate CA solutions
from the solution space of possible CAs. They then obtain an
average SINR measurement for that CA solution, in order to
optimise on average SINR. Over the course of a day, SINR
samples for some of these CAs will be taken. For those
solutions for which an insufficient number of SINR samples
has been gathered, more samples must be gathered during the
running of the optimisation algorithm. It might be necessary
to generate traffic between nodes for this purpose. Since the
algorithm will be scheduled to run only once a day at the
least busy time, this should not cause excessive disruption to
users of the network. Idle periods during the day can also be
leveraged. The algorithmwill start with a randomly generated
feasible candidate solution and iteratively improve on that.
In this work, a network simulation is used to obtain SINR
samples for our experimental results.

A. SIMULATION SETUP
Simulation is an indispensable tool for network research,
in particular for novel scenarios such as our own, where
mesh-mode capable node hardware with DSA capabilities
is not yet commercially available, or would be prohibitively
expensive to obtain for experimentation purposes. Simula-
tion also provides a controlled environment in which to test
and prove our ideas. To evaluate the performance of the
algorithms, we have simulated the network using ns3. The
existing ns3 simulation framework includes models for many
of the network components required for our scenario, has
thorough documentation and a lively support community, and
is widely used. For these reasons, ns3 was our simulation tool
of choice. We have built on top of the existing ns3 classes
and created amodule for themulti-radiomulti-channelWMN
simulation with interference, which models the spectrum
sensing part of the DSA and the flow of traffic in a WMN.

Our ns3-dev fork contains the code used for generating the
simulation results. The code can be found at [58]. We model
the network scenario described in Section IV with an ns3
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module called mesh-sim. This module consists of a con-
figurable number of nodes arranged in a grid or random
topology. The number of radio interfaces per node is con-
figurable, but we fix the number of radio interfaces that
can participate in the WMN to two for the purposes of this
study. The number of radios fixed at two is a practical choice
considering cost constraints in the rural and semi-urban areas
that are our focus, particularly in the African context. More
radios might allow an increase in throughput, but make the
devices more expensive and complex, and increase the power
consumption. These costs can counteract the cost benefits of
using secondary spectrum bands instead of licensed bands.
There is also a restriction on the number of available and util-
isable channels (due to the leakages between channels, larger
frequency separations might be required). Hence, it might not
be possible to make use of all the radios if there are more than
two.

Each interface runs the Wi-Fi MAC layer of a mesh point
device. A link-to-channel mapping is passed to the Run()
function along with a vector of links, each defined as a
pair of node IDs. Channels are allocated according to the
link-channel mapping specified, and traffic is generated on
the specified links to saturate the links. The channels are set
in such a way that they can be changed on the fly while the
network is running. Channel widths are fixed at 20 MHz.
We have also fixed the transmit power to the default 16 dBm,
as this work does not consider optimal power levels. Opti-
mised Link State Routing (OLSR) has been configured for
the network, although our method is not dependent on the
routing algorithm, and other routing algorithms could also
be applied in future. We have used the Friis propagation
loss model with the frequency set appropriately, but several
models are available and can be easily configured. While this
propagation model is not the most accurate, it is acceptable
for the purpose of analysing the performance of the CA
algorithms.

Interference towards the PUs is avoided by using a GLSD
to determine the allowed channels, modeled by a constrained
set of channels passed to the optimisation code. We create
two external SU interference sources set to interfere with our
WMN node transmissions on certain channels. The wave-
form power is configurable, and the period and duty cycle
are set appropriately to interfere with our WMN transmis-
sions. These external interference sources also need to be
avoided for the network to function optimally. Otherwise,
the interference will lower the SINR and the throughput in
the network. To obtain the interference values, we use the
existing InterferenceHelper code, where SINR is cal-
culated for every transmission. These snapshot SINR values
are averaged over the duration of one mesh-sim simulation
run. In this way, we obtain the average SINR in the net-
work for a particular CA, network topology and interference
configuration.

The mesh-sim module’s main Run() function grows
as O(V + |L| + I ) for V nodes, |L| links and I external
interference sources. Since O(|L|) ≈ O(V 2) (in the worst

case) and I � V , the complexity reduces to O(|L|). For
the optimisation algorithms, each CA solution is evaluated
by running the mesh-sim simulation for 5 s and returning
the average SINR. A virtual 5 s was found to be adequate,
but 20 ms - 100 ms sensing interval should be sufficient in
real life [59]. This is based on the fine sensing window sug-
gested in [60]. For our population-based algorithms, we use
a population size of 20 individuals. The population size of 20
individuals makes one iteration of each optimisation algo-
rithm expensive at virtual 100 s. Therefore, we have deter-
mined that run lengths for the population-based algorithms
of longer than 200 iterations are impractical, and algorithms
that can find acceptable solutions in much fewer runs than
this maximum are preferable.

B. GENERATING FEASIBLE CANDIDATE SOLUTIONS
While we have used the graph analogy for this problem, it is
not a simple graph colouring problem. One of the added
complexities that distinguishes this problem from normal
graph colouring is the interface constraint shown in equa-
tion (15). Another is that connectivity must be maintained
over links, while collisions must be avoided. For all of the
metaheuristic optimisationmethods, we need to generate a set
of possible solutions, i.e., the solution search space. We can
either generate each solution and then check for feasibility
afterwards, or ensure feasibility within the generation pro-
cedure. Our method does the latter. We have developed a
simple novel algorithm to generate candidate solutions that
are feasible, instead of using a penalty function when evalu-
ating candidate solutions. The use of a penalty functionwould
introduce yet another problem-specific weighting parameter
that would need to be quantified by experimentation, which
is not desirable.

A feasible solution is one that satisfies the interface con-
straint and uses only the allowed channels at each node. In this
algorithm, we attempt to allocate channels to all links in the
network. This might not be possible. Therefore, we allocate
channels to as many links as possible out of the full set.
Wi-Fi channels on the Wi-Fi interface are used to ensure
connectivity on the remaining links. Our algorithm is outlined
in Algorithm 1.

For |L| links, the worst case complexity of Algorithm 1 is
O(|L|·2r) (because there are two nodes per link). If r � |L|,
this can be reduced to O(|L|). This is another reason to keep
the number of radio interfaces low so that the computa-
tional complexity remains low. The complexity is linear in
the number of links, which is exponential in the number of
nodes in the network or network cluster considered, in the
worst case. However, if the links considered for improved
channel assignment are carefully chosen to be only the links
with the highest demand, the effects of this growth could be
counteracted.

C. SIMULATED ANNEALING
A single full run of the mesh-sim simulation gathers a
large set of sample SINR values for traffic flow through a
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Algorithm 1 Feasible Channel Allocation Algorithm
Input: C = allowed channels, ni = node number i, L = set

of links, A = channels assigned = ∅, r = number of
interfaces per node

Output: complete A(l) ∀ l ∈ L
for l = (n0, n1) ∈ L do

if A(n0) < r and A(n1) < r then
c = random channel ∈ C(n0) ∩ C(n1)
A(n0) = c
A(n1) = c

else if A(n0) == r and A(n1) < r then
{c} = A(n0)

⋃
C(n1)

if c 6= ∅ then
c = {c} [0]

else
c=choose one of C(n0)
A(n1) = c

end if
else if A(n0) < r and A(n1) == r then
{c} = A(n1)

⋃
C(n0)

if {c} 6= ∅ then
c = {c} [0]

else
c=choose one of A(n1)
A(n0) = c

end if
else

both interfaces already assigned channels
{c} = A(n0)

⋃
A(n1)

if {c} 6= ∅ then
c = {c} [0]

else
continue

end if
end if
A(l) = c

end for
∀ l unassigned, assign a Wi-Fi channel

particular CA for a particular interference environment and
network setup and topology. In the SA algorithm, we need
the objective function (so-called ‘‘energy’’ value E) to incor-
porate these SINR samples in a way that the desired result is
the lowest cost, since SA is designed to minimise an objective
function. Hence, the selected cost E is based on 1/SINR,
shown in equation (24), where j is the SA iteration number, n
is the number of SINR samples per node, and V is the number
of nodes.

Ej =
1
V

V∑
v=1

[
1
n

n∑
i=1

1
SINRj(i)

(v)

]
=

1
V

V∑
v=1

1

SINRj
(v) (24)

In SA, the change in cost every iteration is used to decide
whether to accept or reject the particular solution. If the new

solution is better than the previous solution, the new solution
is always accepted. However, if the new CA has a higher cost,
this worse solution is accepted with a probability given by
equation (25).

h = exp(−
1E
kT

) = exp(−
Ej − Ej−1
k · Tj

) (25)

where k is Boltzmann’s constant (≈ 1.3806485 ×
10−23JK−1) and Tj is the temperature at iteration j.

This is realised by selecting a random value a between 0
and 1 and evaluating condition (26).

a < h (26)

If equation (26) holds true, the solution is accepted. If not, the
solution is rejected. If equation (25) always evaluates close
to 1, higher-cost solutions will almost always be accepted and
the SA algorithmwill take very long to converge. Conversely,
if equation (25) always evaluates very close to 0, almost no
‘‘worse’’ solutions will be accepted and the algorithm will
converge prematurely to a local minimum that may be much
worse than the true optimum. Therefore, a careful balance
of temperature ranges, 1E ranges as well as k must be
formulated to tune the algorithm appropriately. Boltzmann’s
constant k could be omitted from this relation (or set to 1)
in practice if it makes the probability of accepting a point
extremely low, leading to converging on a local minimum.
Including or leaving this constant out, or even changing its
value, is part of the parameter tuning required to ensure the
algorithm behaves well.

The other parameter tuning that is required is the selection
of the starting temperature and the temperature cooling func-
tion. A starting temperature that is too high will cause slower
convergence, as will a cooling function that decreases too
slowly. On the other hand, starting with too low a temperature
or a cooling function that reduces too quickly may result in
converging prematurely. Starting temperature and the tem-
perature cooling function must be adjusted according to the
number of iterations the algorithm is expected to run for,
or that is considered acceptable. We examined various cool-
ing functions in this work, e.g., exponential multiplicative
cooling and logarithmic cooling [18]. After experimentation
with these different cooling strategies, it was found that linear
multiplicative cooling (equation (27)) was the most effective.

Tj = Tstart − α · j (27)

where j is iteration count, and α is a constant set (to 0.02 or
0.01) by reversing equation (27) for the appropriate starting
temperature (found to be 20), a final temperature of 0, and the
desired number of iterations (1000 or 2000).We confirmed by
experimentation that these values work well. We start with
a lower temperature value of 20, selected by observation of
the 1E values for our problem, and scale the 1/SINR values
appropriately. With these adjustments, the algorithm is able
to converge sufficiently within 1000 iterations.

The neighbour generation procedure, whereby a new solu-
tion is generated, is to shuffle the links and channel numbers
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randomly, and perform Algorithm 1. The shuffle operations
together have computational complexity O(|L| + |C|) since
C++ std::random_shuffle has linear complexity in
the distance between the first and last iterators of the vec-
tor to be shuffled [61]. Therefore, the neighbour generation
procedure has complexity O(|L| + |C|)+ O(|L|) ≈ O(|L| +
|C|). Finding the cost of every solution has the complexity
of the mesh-sim Run() function, which is also O(|L|).
Therefore, the overall complexity of our SA implementation
grows as O(|L|) if we assume r � |L| and |C| � |L|. If we
take into account the number of iterations, the complexity
is O(|L|N ) for N iterations. Being linear in the number of
links, this complexity is much lower than finding an exact
solution would be. To find an exact solution by brute force
would require trying all of |L||C| possible solutions.

D. GENETIC ALGORITHM
For the GA, we need to define the selection method, pop-
ulation size, number of generations, and the mutation rate.
We encode a genome as a link→channel mapping, where
the links are all node pairs possible in the WMN and
where condition (23) is met. To generate a new genome,
we randomly shuffle the set of links, randomly shuffle the
set of allowed channels, and use Algorithm 1 to gener-
ate a feasible genome. We then generate a population by
generating a number of genomes. Each instance of C++
std::random_shuffle has linear complexity in the dis-
tance between the initial and final iterators minus one [61].
This results in complexity O(|L| + |C|) for generating a
genome andO(P(|L|+|C|)) for generating the initial popula-
tion of size P, or O(P|L|) if |C| � |L|. We determined from
experimentation thatP = 20 functionswell without excessive
computational burden. This population size is confirmed as a
good choice by Kononova et al. [62], who find that a popula-
tion size of 20 presents less structural bias than populations
of 5 or 100 individuals in general.

Both Roulette Wheel selection and Linear Rank selec-
tion methods were implemented. For the Roulette Wheel
selection, we generated a piecewise constant probability dis-
tribution, where the intervals are 1 + the population size
and the weights are the fitness values of the individuals
in the population. For Linear Rank selection, we sort the
chromosomes by their inverse fitness values so that the
genome with the highest fitness has the lowest rank (highest
number). We then create a piecewise constant probability
distribution of the ranks and select two parent chromosomes
randomly according to that distribution. We use the C++
std::sort algorithm for Linear Rank selection, which has
complexity O(P log(P)), where P is the size of the popula-
tion [63]. It was found that Linear Rank selection outperforms
Roulette Wheel selection, so only the results for Linear Rank
selection are presented in this paper. We select as many
parents as the current population, and each pair of parents
generates two children. The previous generation is eliminated
once they reproduce, so the size of the population remains
stable.

Once two parents have been selected, the next operator is
crossover. Single-point crossover is used. In this implemen-
tation, the crossover operator randomly selects an index in
the genome (a link) greater than the first and smaller than the
last index as the crossover point. We then split both parents
at this crossover point and generate two new children by
joining the first section of the first parent with the second
section of the second parent, and the first section of the
second parent with the second section of the first parent.
This crossover is illustrated in Figure 3, with the two selected
parent chromosomes at the top and the generated offspring
below the bold downward-pointing arrow. The single-point
crossover operation includes two calls to C++ std::find,
which has complexity up to O(|L| − 2) ≈ O(|L|) [64], and
four calls to std::map::insert, which has worst case
complexity of ≈ O(|L| log(|L|)) [65] for our variables.

Experiments are run for mutation rates of both 0.5 and
0.25. The mutation probability is implemented by choosing
a random number in (0, 1); then, if the random number
is less than the mutation rate (0.5 or 0.25, in our case),
mutation is performed. The mutation operation is done by
randomly selecting one link and randomly selecting a new
channel for that link, and replacing the currently assigned
channel with the new one. This operation has logarithmic
complexity in the size of the genome, i.e., logarithmic in |L|.
The 0.5 probability was found to provide a suitable trade-off
between exploration and exploitation for the relatively small
population size, and the specific problem. This follows the
findings of [66], who find a good region of performance
between mutation rates of 0.4 and 0.6, although this was for a
small population of 6 individuals. Deb and Agrawal [67] also
found that smaller population sizes (less than 100 individu-
als) require higher mutation rates. These researchers found
superior performance for a combination of the population
size of 20 individuals, the mutation rate of 0.5, and a high
crossover rate of 0.9 to lower mutation rates. We also ran
experiments with the lower mutation rate of 0.25 to determine
whether convergence can be achieved in fewer iterations.
Lowermutation rates can be consideredmore traditional [68].
Several researchers have found that a lower mutation rate is
more optimal, even for small and medium-sized populations
of 4-20 individuals [69]–[71].

Overall, the computational complexity of our implementa-
tion of GA is

O(P(|L| + |C|))+ O(G · (P|L| + P+ P log(P)

+P(|L| + |L| log(|L|)+ log(|L|))))

≈ O((P(|L| + |C|))+ O(GP(|L| + log(P)

+|L| + |L| log(|L|)+ log(|L|))

≈ O(GP(log(P)+ |L| log(|L|))) (28)

assuming |C| � |L| and r � |L|. Each generation of GA
contains a population of size P and all evaluations done on
an individual genome is the equivalent of one iteration of SA.
We denote this iteration equivalent as ‘‘function evaluations’’.
This is the part insideO(GP(·)) in Equation (28). Here we see
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FIGURE 3. Crossover of channel allocations in Genetic Algorithm. The two
parent chromosomes are the top two CAs, and they produce the two
offspring shown below the arrow, by mixing the first section of the first
parent with the second section of the second parent, and the second
section of the first parent with the first section of the second parent
chromosome.

that per function evaluation, GA has complexity O(log(P) +
|L| log(|L|)). This is in contrast to our SA implementation
where each function evaluation (iteration) has complexity
O(|L|). Hence, our implementation of GA is significantly
more complex than SA.

E. DIFFERENTIAL EVOLUTION
In DE, individuals in the population are called agents.
We generate agents xi,G by producing link-to-channel-index
mappings, which represent CAs, and we generate a popula-
tion xG by pushing agents to a population vector. Each link is
a dimension of the agent vector. For each generated mutant
vector vij,G+1 ∀ j = 1, . . . ,D, a channel value is calculated
with equation (1). This calculation may cause the computed
channel value to be outside of the allowed channels and no
longer an integer value. Therefore, the calculated channel
value must be moved back into the allowed channel list. This
is done by having the channel indexes wrapped around, and
the result is rounded off to the nearest integer. For example,
if there are 13 possible channels and the mutant in that
dimension is calculated to be at −8.3, the resulting channel
index will be d−8.3e + 13 = 5 (for indexes starting at 1).
If, instead, the mutant is calculated to be at channel
14.8 in that dimension, the resulting channel index will
be 15− 13 = 2.

The crossover operation we use for DE is illustrated in
Figure 4. Here we see that the position of xi,G is crossed with
that of vi,G+1 on links 1, 4, 7 and 10where the random number
generated (rand(j)) was≤ to the crossover rateCR to form the
trial vector ui,G+1. This step has complexity O(|L|).
Selection is implemented as per equation (3). The selection

in DE requires an extra evaluation of the fitness function for
the trial vector compared to GA or PSO. This results in a

FIGURE 4. Crossover of channel allocations in Differential Evolution.
rand (j ) ≤ CR refers to selecting a random number in the interval (0, 1)
and checking whether it is less than the crossover rate. If it is, then the
value of the mutant is selected for crossover with the target vector xi,G.

complexity ofO(P ·2|L|r), reducing toO(P|L|). Even though
DE reduces to the same complexity per function evaluation as
SA (O(|L|)), we must note that it will take longer because of
the extra calculation of the fitness function for every function
evaluation. On the other hand, it is less complex than our
implementation of GA.

Georgioudakis and Plevris [72] mention that, in DE, the
parameter values are very problem-specific and the results
are sensitive to the values of F and CR. We, in fact, found
good performance with a range of parameter values. Good
performance was observed with DE/rand/1/bin variation,
so we do not present results for other variations. Following
the recommendations of Storn and Price [20], we start with
a crossover ratio of 0.9 and set F to 0.9, as was one of the
combinations of parameters in the study of Storn and Price.
Parameter settings of F = 0.4 and CR = 0.5 were also used
with similarly promising results. We also tried combinations
of F = 0.8 and CR = 0.9, F = 0.9 and CR = 0.1, F = 0.5
and CR = 0.9, F = 0.6 and CR = 0.9, and F = 0.6 and
CR = 0.5. All these parameter settings showed good results,
as is shown in Section VI.

F. PARTICLE SWARM OPTIMISATION
We define some quantities for the PSO implementation, and
the way in which the method has been converted to a discrete
algorithm. In our PSO applied to the CA problem, the position
of a particle, xi, is a link-to-channel-index mapping. It is
equivalent to a channel assignment (A), i.e., xi ≡ A, but using
the channel index instead of the channel number. Each link is
a dimension of the position of the particle (so a CA with 120
links will have a dimension of 120). It is important to use
the channel index and not the channel number for velocity
update operations, so that a velocity or displacement can have
a consistent meaning. Moving with a displacement of +2
should be going up two available channels, regardless of the
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actual channel number or gaps between the defined allowed
channels. There are often inconsistent gaps between channel
numbers, e.g., if a channel number is 116, then the next avail-
able channel is 120, but from channel number 144, the next
available channel number could be 149. This would mean
that the velocity (displacement) cannot have a consistent
meaning. If we use the channel index, this inconsistency is
corrected. For the same reason, we cannot use the continuous
frequency space instead.

To generate a swarm, we generate a set of P particles
(random positions in the solution space), and calculate their
fitness. This initialization has complexity of O(P(|L|+ |C|)).
We have already shown the original canonical PSO velocity
calculation [22] in equation (8). We use this equation in its
discrete form for our implementation, by rounding the values
to the nearest integer, as shown in equation (29).

vi(t + 1) = round [ωvi(t)+ c1r1(t)× (yi(t)− xi(t))

+c2r1(t)× (ŷ(t)− xi(t))] (29)

When updating the position, we again make the channel
indexes wrap around, so if the velocity moves the particle to
a position outside of the bounds of the number of channels,
it starts counting back from the beginning. For example,
if there are 13 possible channels and the particle link is
currently on channel 4, and the velocity moves the particle
in that dimension −8 channels, the resulting channel index
will be 4 − 8 + 13 = 9 (for indexes starting at 1). If,
instead, the velocity is 11, the resulting channel index will
be 4 + 11 − 13 = 2. The position and velocity update stage
per particle has complexity O(|L|).

A note in Bratton and Kennedy’s work that no swarm size
between 20 and 100 proved significantly inferior or superior
to the others also informed our choice of a swarm size of 20
particles. In addition, Kononova et al. [62] show that a PSO
with a population size of 20 exhibits satisfactory performance
in terms of structural bias, while population sizes of both 5
and 100 display more structural bias. If a choice of 20 parti-
cles does not display inferior performance to a larger swarm
size and if there is no other benefit to a larger swarm, we elect
to save on computation time and choose a population size of
20. We confirmed our choice with experiments.

For the PSO velocity update parameters using the standard
PSO, it has been determined that |ω| < 1 [73] or 0 ≤
ω < 1 [74] is required to ensure convergence. We started
with the recommended values [75] for ω, c1 and c2, where
ω = 0.72984 and c1 = c2 = 2.05 (so they add up
to 4.1). With these values, convergence was not observed
after 1000 iterations for most attempted runs, although there
was one run that appeared to converge within 1000 runs.
We believe that this value of ω combined with c1 and c2
values over 2.0 results in the inertia being dominated by the
social and cognitive components, so that if the initial values
found are bad, there is more likelihood of moving around in
a bad neighbourhood. However, if the initial values are good,
then the particles move towards these good values, which

is why one run happened to perform fairly well. We then
increased ω to 1.05, following the recommendation of [23],
and observed a slight improvement. This larger ω encourages
more exploration of the search space, which is advantageous
at the beginning of a run of PSO. However, we did not observe
strong convergence because this value is not within the con-
vergence region. Strangely, for Variant 1, using a large value
of ω = 1.5 was quite successful in causing convergence for
a 9-node experiment, but not, in general, for larger networks.
In their discussion on optimal inertia weight, Shi and Eberhart
propose an adaptive ω, starting at 0.9 and ending at 0.4 [23].
In general, an adaptive inertia weight follows equation (30)
for finding the weight at each iteration. We found that this
version performed slightly better overall than any single value
of ω that was tried.

ω(t) = ωfinal +
tmax − t
tmax

× (ωinitial − ωfinal)

= ω(tmax)+
tmax − t
tmax

× (ω(t0)− ω(tmax)) (30)

Wei et al. introduce an elite PSOwith mutation [76]. In this
method, elite and bad particles are distinguished after some
iterations. Bad particles are replaced by the same number of
elite particles. To prevent the loss of diversity caused by this
replication of particles, mutation is then applied to the new
elite particles before using them to replace the bad particles.
We have developed our own form of this method, called
‘‘PSO with bad replacement’’. In our method, particles are
monitored in comparison with the rest of the swarm and are
labelled bad if, after tbad iterations, they are bad%worse than
the global average. We have set tbad iterations to 5 and bad%
to 5000%, or 50 times the swarm average, by observation
of the magnitude of the bad cost values. These particles are
replaced with an equal number of new randomly generated
particles. Our method introduces diversity and prevents bad
particles from ruining the swarm in one simple step, unlike
Wei et al.’s method that requires two steps. The ‘‘bad replace-
ment’’ step adds a factor of |C| to the complexity whenever a
particle is replaced, but this is not significant since, in general,
|C| � |L|, and replacement occurs rarely.

The complexity of our implementation of PSO isO(P(|L|+
|C|)) ≈ O(P|L|). This is similar to DE, but without the extra
factor of 2 that is present in DE because the fitness of trial
vectors also has to be determined. PSO is lower in complexity
than GA. By comparing the number of function evaluations
instead of only considering the number of iterations, PSO and
SA have similar computational complexities.

VI. RESULTS
Simulations were run on a Dell Latitude with 7.7 GiB of
memory, an Intel Core i5 processor at 4 × 2.4 GHz cores; as
well as a T2 large Amazon Web Services EC2 instance with
8 GiB ofmemory and 2 virtual CPUs, both with Ubuntu 16.04
Operating System, and using ns3-dev version [58] forked
from the main ns3 GitHub.
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In each iteration of the optimisation algorithms, the WMN
simulation is run for a period of 5 s (virtual). From the
WMN simulation we gather samples to calculate the value
of equation (24). The 5 s interval was found to yield suffi-
cient SINR samples for the average to be meaningful. In the
mesh-sim simulation, nodes are set up in an equally spaced
grid, or in random positions within a disc according to a uni-
form distribution for the polar coordinates. Each node has two
interfaces (representing the DSA band interfaces). Constant
bitrate UDP traffic is generated at the transmit node for every
link in the network so as to saturate the links. Packets will
be received on the other side if there is a common channel
between the two nodes and the received signal is above the
receiver sensitivity. The interference is included in the SINR
measurement using ns3’s InterferenceHelper class,
and interference is counted only if the overlapping packet
chunk is above the sensitivity of the receiver. The simulation
parameters are given in Table 1.
The use of 13 channels was set as a worst-case scenario for

computational load in terms of the size of the search space.
If the number of overlapping allowed channels is less than
this, the number of options is smaller and fewer iterations are
required for convergence.

A. SIMULATED ANNEALING
The means of the natural logarithm (ln) of the costs (scaled
value of equation (24)) obtained from 10 different runs of SA
at each iteration over time are illustrated in Figure 5, along
with the standard error, shown by the error bars, across the
different runs. We have used the natural logarithm of the cost
values obtained for better visibility, since the data has a large
range.

We can see in each case that the solutions found had a large
variance towards the beginning of the runs, but different runs
slowly converge to similar solutions with smaller variance
(and standard error) as the number of iterations increases.
Acceptable levels of convergence are observed within 1000
iterations, although we will see in Table 6 that much better

TABLE 1. Parameters used in simulations.

results are obtained after 2000 iterations. We also observe in
Figure 5 that the plots do have a general trend downward,
but this trend is less visible because the error bars are still
relatively large. The convergence is the clearest for the 9-node
network, ending with a small standard error. Then, for 16
nodes, the convergence is somewhat less clear, ending with
a larger standard error, and for 49 nodes, there is still a large
standard error between the results of the different runs by the
end of 1000 iterations. We can deduce that SA does not scale
well since the convergence deteriorates as the network size
increases.

B. GENETIC ALGORITHM
For each run of the GA, we find themean cost (scaled value of
equation (24)) of the population at each iteration and then plot
the natural logarithm of the mean over the 10 different GA
runs of this mean population cost per iteration. These results
are shown for different network sizes in Figures 6 and 7. The
population size was 20 for all runs, and the mutation rates
were 0.5 (Figure 6) and 0.25 (Figure 7), respectively. For a
population size of 20, 20 function evaluations are required
per iteration. We observed convergence within 50 iterations
in most instances, although a longer run of 500 genera-
tions ensures better results. Interestingly, we observe that the
convergence shape of the results improves as the network
size increases, even though the final best results deteriorate
slightly with increasing network size. The 49-node network
has a very clear convergence shape, looking similar to an
exponentially decreasing function. For the 16-node network,
it is still visible but less clear. For the 9-node network, this
shape is less clear, and there is still a significant variation in
the population averages towards the end of the 100 iterations.
This is despite there being little variance between the best
values at the end of 100 iterations, as we see in Table 2. It is
likely that in a larger network there are more opportunities
for rerouting traffic away from links that experience high
interference. On the other hand, in a smaller network, there
are fewer options for rerouting, and so interference has not
been avoided as well by all individuals (CA solutions) in the
population. However, the best individual in a population -
and indeed several other individuals - are able to find CA
solutions that avoid interference successfully despite fewer
routing opportunities, as seen in Table 2.
In Table 2, we show the mean over the 10 runs of GA of

the final solution found, i.e., the cost of the best individual
in each population at the end of 100 iterations along with
the standard deviation (SD). We see that for 9 nodes and
a mutation rate of 0.5, the same solution was found by all
sample runs, so we assume this is the actual minimum for
the problem. The solutions for a 16-node network have a
slightly higher standard deviation, so we cannot be sure to
have found the actual minimum within 100 iterations, even
though the solution is still very good. The results for 49
nodes after 100 iterations have a slightly larger standard
deviation still, although this value is still considerably better
than some of the initial solutions found and much better than
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FIGURE 5. Mean and standard error (error bars) of the natural log (ln) of
the cost obtained from 10 runs of SA at each iteration or function
evaluation over the running time (iterations).

the worst solutions observed. Surprisingly, there was slightly
more variation in the results using a mutation rate of 0.25.
It is possible that the lower mutation rate results in there not
being enough diversity in the populations and thus premature
convergence. It is less likely to be owing just to statistical
variation because the higher standard deviation is observed
for all network sizes.

C. DIFFERENTIAL EVOLUTION
For DE, the population size was also fixed at 20 for all exper-
iments. Initial experimentation showed good results with

FIGURE 6. Mean and standard error of the natural logarithm (ln) of the
mean costs of populations of 10 runs of GA over the running
time (iterations) using a mutation rate of 0.5. The mean cost per iteration
is the average of the costs of 20 function evaluations (the 20 individuals
in the population).

F = 0.4,CR = 0.5,F = 0.9,CR = 0.1,F = 0.5,CR = 0.9,
and F = 0.9,CR = 0.9, as seen in Figure 8 and comparing
with Figure 9. Since there was no significant difference in
the results for these parameter values, we continue to present
only the log results for F = 0.9,CR = 0.9. Table 3 shows
the final results of DE (scaled cost of the best individual
at max iterations of 100). Figure 9 shows the mean of the
natural logarithm of the mean cost of the populations over 10
runs of DE at each iteration. The error bars indicate the
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FIGURE 7. Mean and standard error of the natural log (ln) of the mean
population cost of 10 runs of GA over the running time (iterations) using
a mutation rate of 0.25. The mean cost per iteration is the average of the
costs of 20 function evaluations (the 20 individuals in the population).

standard error of these log means. We captured the results for
runs of 500-1000 iterations. However, there is no significant
change from 100 iterations, and so Figures 8 and 9 show
only up to 100 iterations. In fact, there is no significant
change after fewer than 50 iterations, as we can see from
those figures. DE converges very quickly and produces good
results. In practice, DE could be run for no more than 50
iterations to obtain good channel assignments. It could even
be run for only 20 iterations and still produce satisfactory
results.

TABLE 2. Comparison of the final results of GA (scaled cost or value of
equation (24)) of the best individual at max iterations of 100).

TABLE 3. Comparison of the final results of DE (scaled cost or value of
equation (24)) of the best individual at max iterations of 100) with
parameters F = 0.9, C = 0.9.

D. PARTICLE SWARM OPTIMISATION
For PSO, we attempted various parameter combinations with
the swarm size fixed at 20 individuals. Many of the attempted
parameter combinations were unsuccessful in showing a clear
convergence pattern within 1000 iterations. For a successful
run, we expect to see an initial exploratory phase, where
bad solutions might be observed, followed by an observ-
able reduction over time of the average cost of particles in
a swarm along with a reduced variance in the cost values
across particles as the algorithm convergences towards a
lower value over time. A combination of parameters that
results in runs with this pattern was difficult to find. For
example, in Figure 10, we used the recommended values
of ω = 0.72984 and c1 = c2 = 2.05 [75] using velocity
update method of variant 1. There is no convergence of the
mean cost of the swarm within 500 iterations. We also plot
the values for a much longer run of 100000 iterations on
a small 3-node network in Figure 11, which shows a clear
convergence towards smaller values over the many iterations
of this long run. Hence, we can be certain that the lack of
convergence observed within 500 iterations is not caused by
implementation errors, but that PSO requires a longer run to
show sufficient convergence for this problem. While it may
appear that Figure 11 has no values from 90 000 iterations on,
this is just because the values are too small compared to the
large scale to be observed.

We found more promising results using an adaptive ω as
per equation (30). In the next figures, we show the mean
per iteration of the natural logarithm of the mean cost of
each swarm over 10 runs of PSO. The error bars indicate the
standard error.

In the 9-node network (please refer to Figure 12), we can
see some convergence within 500 iterations using variant 1
(equation (8)) and using variant 5 (equation (12)); there is
even convergence within 100 iterations for variant 5. For
variant 6 (FIPS), it is unclear, but there is some convergence
within 500 iterations.
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FIGURE 8. Mean and standard error of the natural log (ln) of the mean
costs of populations of 10 runs of DE over the running time (iterations)
for a 9-node WMN. 1 iteration = 20 function evaluations.

The behaviour for larger 16-node and 49-node networks is
different, as seen in Figures 13 and 14. We show up to 500
iterations for clarity of the figures, but this behaviour contin-
ues up to 1000 iterations. We can see that there is no clear
convergence pattern within the iterations shown. However,
the values around which the fluctuations occur are small,
and the fluctuations are small if one considers the scale of
the y-axis. This would indicate premature convergence has
occurred in the cases illustrated in Figure 13 and Figure 14.
This is a common issue experienced with PSO [77], [78].
We observe somewhat more exploration of the search space

FIGURE 9. Mean and standard error of the natural logarithm (ln) of the
mean population costs for 10 runs of DE. 1 iteration = 20 function
evaluations.

for variant 6 than for variants 1 and 5, especially in the
case of 16 nodes. We can also observe that in the cases of
Figures 14, the first few values were lower than the final value
settled on. This also indicates premature convergence.

The runs using variants 2, 3, and 4 all failed to converge or
were no better than variants 1, 5, or 6, so we did not consider
these variations further nor present these results.We observed
poor results when using the recommended values of ω =
0.72984 and c1 = c2 = 2.05 and better results using adap-
tive ω. However, while we did not observe a clear pattern of
convergence for the mean cost values of all particles over 10
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FIGURE 10. Unsuccessful run of PSO with 9 nodes variant 1, with
ω = 0.72984 and c1 = c2 = 2.05. We note that with the recommended
parameter values there is no clear convergence within 500 iterations
(where 1 iteration = 20 function evaluations). These parameter values
perform poorly.

FIGURE 11. Costs over long run for 3-node WMN, where 1 iteration = 20
function evaluations.

different runs in Figures 12, 13, and 14, the final results of
PSO were good. The final result is the cost value of the best
particle at the end of the run. These values are presented
in Tables 4 and 5. It is noteworthy that good results were
observed even for the larger network, although the standard
deviation of the final values increases as the network size
increases. Also important to note is that there is very little dif-
ference in the solutions obtained after 100 iterations and 500
iterations, as we can see by comparison of Tables 4 and 5,
except for the smallest network. Probably PSO takes longer to
converge for the larger networks, but such tight convergence
as observed for 9 nodes in Table 4 is not required. This means
that there is nomaterially significant advantage to running the
algorithm for longer than 100 iterations.

E. COMPARISON BETWEEN ALL ALGORITHMS
Tables 6 and 7 list the mean and standard deviations of
the final results obtained from the 10 runs of each of the
variations of the algorithms considered, after 100 and 50
iterations, respectively for GA, DE, and PSO; and 2000 and
1000 iterations, respectively for SA. The final result for the
population-based algorithms is the cost of the best individual
in the population by the specified iteration number for that
run. For SA, we simply list the average of the last values

TABLE 4. Comparison of the final results (scaled value of equation (24))
of the best particle at a maximum of 500 iterations = 10000 function
evaluations) for variant 1, 5 and 6 of PSO using adaptive ω.

TABLE 5. Comparison of final results (value of the best particle at max
iterations of 100 iterations = 2000 function evaluations) of variant 1, 5
and 6 of PSO using adaptive ω.

obtained for 10 runs by 2000 and 1000 iterations, respec-
tively. The 2000-iteration long run of SA is equivalent to a
100-iteration run of the population-based algorithms with 20
individuals, and 1000 iterations of SA is equivalent to 50
iterations of the population-based algorithms.

By considering Tables 6 and 7, we can see that DE is the
clear winner, achieving very good end results with a very
small standard deviation within 100 iterations as well as 50
iterations. There is no significant improvement between 50
and 100 iterations. As seen in Section VI-C, good results are
achieved within as few as 20 iterations. GA also performed
well.With amutation rate of 0.5, it was able to find exactly the
same results for all runs after 100 iterations for the 9-node net-
work. We assume this is the actual optimal solution. After 50
iterations to 100 iterations, there was a negligible difference
in the solutions from this assumed optimal. While DE is the
superior algorithm overall for this problem from these results,
it was not able to achieve this final result with no deviation,
although it did settle on the same solution within a very small
deviation. However, the performance of GA deteriorates as
the network size increases as compared with DE, and the
performance after 50 iterations is inferior to that of DE for the
medium-size and larger networks, as we can see by looking
at Table 7. While PSO also produces fairly good end results,
the high likelihood of a good result within a small number
of iterations seen in DE cannot also be expected from PSO
because the variance is larger, and the convergence is less
clear. Out of the PSO variants, variant 6 (FIPS) performs the
best. While the mean final costs of the different PSO variants
are similar, FIPS has the smallest variance, meaning that there
is a slightly higher chance of obtaining this good average
of 0.4. We also observe that PSO and DE are more robust
to increasing network sizes than GA, as the results are still
as good for the 9-node network as for the 49-node network.
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FIGURE 12. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 9-node network. Each iteration
represents 20 function evaluations for a population size of 20.

This is not the case for GA and SA. These algorithms show a
marked deterioration in performance as the number of nodes
in the network increases. In general, the performance of
SA is inferior to the other algorithms. The final results are
significantly higher than for the other algorithms, although
we note that this is still a considerable improvement from
the initial random solutions. The results produced by SA are
still much better than the worst possible CA solution. SA is
the least robust to increasing network size. We see that DE,
in particular, can provide far superior solutions to SA, or any

FIGURE 13. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 16-node network. Each iteration
represents 20 function evaluations for a population size of 20.

of the other population-based algorithms, within the same
effective number of mesh-sim simulation runs (function
evaluations). PSO and GA also perform fairly well.

We ran an additional set of experiments on a network
with 49 nodes randomly placed inside a disc, using a uniform
distribution for the polar coordinates. This was to show
the behaviour of the different algorithms for a more real-
istic topology. For these experiments, we ran each algo-
rithm 10 times for 2000 function evaluations (2000 iterations
of SA and 100 iterations for each of the population-based
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FIGURE 14. Mean with standard error of the natural logarithm (ln) of the
mean cost of populations over 10 runs of PSO at each iteration over the
running time (iterations) for a 49-node network. Each iteration
represents 20 function evaluations for a population size of 20.

algorithms) and recorded the best final values of each run.
Only one variation of each algorithm was used. A mutation
rate of 0.5 was used for the GA, Variant 1 was used for
PSO, and F = 0.9,CR = 0.9 for DE. The results are
shown in Table 8. Here we see that SA performed signifi-
cantly better for the random topology than it did for the grid
topology. We still observe the best performance from DE,
followed by PSO, then GA, and finally SA. Since we have
rounded to one decimal place it is not visible, but DE has a
final mean of 0.497 and PSO of 0.547, so DE does slightly

TABLE 6. Comparison of final results obtained from SA (2000 iterations =
2000 function evaluations), and GA, DE, and PSO (100 iterations = 2000
function evaluations).

TABLE 7. Comparison of final results obtained from SA (1000 iterations =
1000 function evaluations), and GA, DE, and PSO (50 iterations = 1000
function evaluations).

TABLE 8. Comparison of final results obtained from SA (2000 iterations =
2000 function evaluations), and GA, PSO, and DE (100 iterations = 2000
function evaluations) for a topology of 49 nodes randomly placed on a
disc.

outperform PSO. SA has the largest standard deviation by
the end, GA converges slightly better than SA, PSO is better
still, and finally DE has the lowest standard deviation among
the final results of different runs. We also observe that the
final values are not significantly different from those obtained
using the grid topology. Thus we deduce that the grid topol-
ogy is an adequate model for comparing the performance of
CA optimisation algorithms.

Furthermore, we compared the algorithms using the
Friedman test to determine whether the differences in the
results obtained from the different algorithms are statistically
significant. We ran each algorithm 10 times and recorded
the best final cost value for each run. For the statistical
test, we considered 2000 function evaluations in each case
(100 iterations for the population-based algorithms). For the
9-node networks, the test statistic is 13.2 with a p-value
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TABLE 9. Friedman test statistics.

of 0.004. For the 16-node networks, the Q statistic is 15.61
with a p-value of 0.0014. For the 49-node grid network,
the test statistic is 9.8 with p-value = 0.02. Finally, for the
49-node random topology network,Q = 16.2 and p = 0.001.
Since, for all of the considered network sizes, the p-value
is less than 0.05, we can reject the null hypothesis that the
results obtained from SA, GA, PSO and DE are the same,
and conclude that there is a statistically significant difference
in the results obtained using the different algorithms.

VII. CONCLUSION AND RECOMMENDATIONS
This paper presents a new angle to the channel assignment
problem in Wireless Mesh Networks (WMNs) – that of
introducing Dynamic Spectrum Access (DSA). We provide
metaheuristic solutions to the channel assignment problem in
aWMNusingDSA that find near-optimal channel allocations
in the presence of external interference sources and avoid
interference to Primary Users of the spectrum. We provide a
novel algorithm used alongside the metaheuristic algorithms
for optimisation. This algorithm of ours guarantees the feasi-
bility of the CA solutions by ensuring that a) the interface
constraint is met and b) connectivity is preserved in the
network as much as possible. We evaluate the performance
using a new simulation framework that we developed in ns3.
This simulation frameworkmodels aWMNwith DSA, which
we publicly shared for others to use. The performance of
four algorithms, namely Simulated Annealing (SA), Genetic
Algorithm (GA), Differential Evolution (DE), and Particle
Swarm Optimisation (PSO), are compared for finding opti-
mising channel assignment.

We observe very good performance by the DE and GA
algorithms. We note in particular that DE scales to larger
networks effectively, without needing to increase the run
time, and that DE has low computational complexity. At the
same time, GA is less robust to expanding the network size
and has high computational complexity by comparison with
the other algorithms. While PSO does not display equally
clear convergence within the number of iterations considered,
the final results are still good. From repeating the experiments
we find that the standard deviation of the final results is about
an order of magnitude larger for PSO than for DE, but it is
still insignificant, e.g., 0.07 vs 0.0006. Additionally, PSO has
good computational complexity. SA does not scale well, but
is still able to provide improved solutions and show conver-
gence within the considered number of simulation instances.
SA has the advantage of low computational complexity.

Considering our results, in practice, we would wholeheart-
edly recommend the DE algorithm as being best suited to this
problem. It can achieve very good results within as few as 20
iterations. None of the other three tested algorithms is able to
give this guarantee within so few iterations.
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