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ABSTRACT Today, in the field of malware detection, the expanding limitations of traditional detection
methods and the increasing accuracy of detection methods designed on the basis of artificial intelligence
algorithms are driving research findings in this area in favour of the latter. Therefore, we propose a novel
malware detection model in this paper. This model combines a grey-scale image representation of malware
with an autoencoder network in a deep learning model, analyses the feasibility of the grey-scale image
approach of malware based on the reconstruction error of the autoencoder, and uses the dimensionality
reduction features of the autoencoder to achieve the classification of malware from benign software. The
proposed detection model achieved an accuracy of 96% and a stable F-score of about 96% by using
the Android-side dataset we collected, which outperformed some traditional machine learning detection
algorithms.

INDEX TERMS Malware detection, autoencoders, malware images, mobile application security.

I. INTRODUCTION
In recent years, the rapid development of mobile internet
technology has rendered the growth of the software industry.
The number of malware is growing with each passing day.
According to the latest China Internet Annual Network Secu-
rity Report [1], as of 2019, there were as many as 13,510,900
cases of mobile Internet malware programs, with nearly
2,791,300 new cases added this year alone. The Android sys-
tem has been the key to many mobile-based malware attacks
due to the open nature of the Android application market.
With the increase in Android malware security threats, it is
necessary to develop an efficient and novel mobile malware
detection method to solve the problem.

Traditional malware detection techniques are limited by
the number of detection rules that need to be set manu-
ally. It is impossible to detect many new malware vari-
ants in today’s world of increasing malware [2]. In recent
years, malware detection techniques combined with AI algo-
rithms have shown better performance with the boom in
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artificial intelligence. These detection techniques are more
accurate, robust and generalisable than traditional malware
detection techniques, and can avoid the risk of false detection
for many newly generated malware. Therefore, it is of better
scientific interest to dig into malware detection systems based
on this algorithms.

There are 2 main phases about malware detection tech-
niques using artificial intelligence algorithms: the data pre-
processing phase, which focuses on the extraction of software
features, and the model classification phase, which uses the
feature data to train the model to complete the classification
task.

In the data pre-processing phase, the common extraction
methods include static extraction and dynamic extraction
about feature data. Static extraction of features means extract-
ing features without running the software program [3]–[6],
in ways that include extracting bytecode [7], file header infor-
mation [8], API call information [9], application interface
information [10], application permission information [8], etc.
The main principle of static analysis features is to obtain
the source code or bytecode of the program through soft-
ware decompilation and analyze the semantic features and
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semantic information contained in it. The detection method
using such features is included less overhead and stable,
such as MaMadroid [11] proposed by Mariconti et al. and a
malware detection method proposed by Wenjin Li et al. [12]
which used Android-side application permission informa-
tion, API call information and other static data for malware
detection.

Compared with static extraction, the dynamic approach
analyzes the behavioral activities of software
runtime [13]–[18]. Therefore, the extracted features are
more accurate, such as the DL-Droid proposed by
Mohammed et al. [19], who used software log files running
on real devices to extract feature data. They used more than
30,000 applications to extract feature data, and the accuracy
was as high as 99.6%. Tobiyama et al. [20] used recurrent
neural networks to extract feature from the temporal data of
the processes when the malware program was running, and
then used convolutional neural networks to classify themwith
a high accuracy of 96%. However, many malware programs
hide their malicious behaviour in a virtual environment [21],
and the dynamic virtual operating environment required to
make them behave maliciously is more demanding and com-
plex, so the classification model using such features is less
stable in accuracy and more overheads.

In the model training and classification phase, the main
approaches include malware detection methods based on
machine learning algorithms and deep learning models. The
methods based on machine learning algorithms mainly use
common machine learning algorithms as classification mod-
els, like Wang et al. [22], used five machine learning models
for software classification, namely Support Vector Machine
(SVM), K-Nearest Neighbour (KNN), Naive Bayes (NB),
Classification Regression Tree (CART) and Random For-
est (RF). Kumar et al. [23] proposed a feature learning
model using various machine learning algorithms to achieve
detection of malware with low overhead and high accuracy.
RepassDroid [24] extracted various APIs with sensitive trig-
ger points and basic software permissions as datasets to train
a machine learning model for detection. They used 24,288
samples for training and testing, and the experimental results
show that their method had satisfactory results with accuracy
rates of 97.7% and 93.3%, respectively. Yerima et al. [25]
used a Bayesian classifier as classification model, and
Li et al. [26] used a decision tree to construct a model to
achieve classification and detection of malware.

Malware detection methods based on deep learning mod-
els mainly use neural networks [27], [28], recurrent neural
networks and convolutional neural networks to implement
malware detection. The malware detection methods applying
recurrent neural network models are the most common. The
methods based on this network structure usually encode all
API instructions of the malware as one-hot vectors and put
them into the model as input data, e.g. [29], [30]. Long-
term short-term memory (LSTM) networks have shown on
the metric of high accuracy [31]. However, RNNs are vul-
nerable to attacks. An attacker mimics the RNN used in the

MDS based on inputs and outputs and adds redundant
API calls using the adversarial RNN in an adversarial attack.
Files injected using redundant API calls can easily bypass
RNN detection [32]. Despite the high accuracy of RNNs, the
reliability of the results generated by RNNsmay still be ques-
tionable inmalware detection. Convolutional neural networks
can extract location non-specific local features from fixed-
size, high-dimensional tensor-type data. As a result, it has
been used and shown excellent performance in computer
vision research, and there are also many research applications
in the field of malware detection. Mahoud et al. [33] used
2D-CNN and 3D-CNN as classification models and used
various detection data extracted from dynamic environments
as feature data, with an accuracy of up to 90%. Xiao et al. [34]
used CNN to understand the characteristics of Android mal-
ware from Dalvik bytecode. The method is efficient with an
accuracy rate of over 93%. Wang et al. [35] proposed vari-
ous network models for detecting malware, such as CNN-S,
DAE-CNN-S, where malware data representation is extracted
software privileged information to generate feature images,
which outperforms most malware detection algorithms based
on traditional machine learning models. Malware detection
models using deep learning neural networks show superior
detection performance, and are more scalable than malware
detection models using machine learning algorithms.

In this work, we extract features from the bytecode of var-
ious command methods of android software in a static way.
Then an auto-encoder based on convolutional neural network
framework is used to reconstruct the grey-scale image corre-
sponding to each malware. Finally, the auto-encoder is exper-
imentally analysed in reconstructing the high-dimensional
features of the malware performance. We designed a neural
network based on the auto-encoder structure to perform the
classification and detection task for malware. And exper-
iments were conducted using datatsets we collected from
VisureShare. The experimental results show that our method
is more accurate than traditional machine learning methods
and some deep learning malware detection models based on
malware images.

The main contributions of this paper are as follows:
• We propose a method for generating feature images
corresponding to each malware and benign software.
The main approach is to convert the bytecodes of the
various methods in the software into grey-scale images
for subsequent model training and classification.

• We used auto-encoder based on convolutional neural
network designed to recognise the high-dimensional fea-
tures contained in such grey-scale images, and experi-
mentally demonstrated the feasibility of the scheme.

• We propose a neural network model based on autoen-
coder networks for the classification task of malware
detection and experimentally demonstrate the high accu-
racy of our malware detection model.

The remainder of this paper is summarised as shown fol-
lows: Section 2 presents the relatedwork.We propose our the-
oretical scheme in section 3. Section 4 gives the experimental
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results of malware detection model. Section 5 sumarises our
liminations and section 6 summarises our work.

II. RELATED WORK
This section describes the work related to the generation of
malware images and the static malware detection method
based on deep learning models. Therefore, this section con-
tains 2 parts, the first part is the malware image generation
scheme and the second part is the static malware detection
scheme based on deep learning models.

A. MALWARE IMAGES
In the feature extraction phase for malware detection, neural
networks can also be used to extract the corresponding fea-
tures of the software in addition to extracting the correspond-
ing static feature information, such as API calls, permission
information, etc, and dynamic feature information, such as
network activity, log files, etc. This feature extraction solution
is more automated and simpler than other manual feature
extraction methods.

Automatic extraction of software features using neural nets
requires consideration of the data representation. So that it
can better extract the key features and ensure the accuracy of
the test results. A feasibel solution is the use of images [36],
where the program is transformed into an image and handed
over to the neural net to extract the features. The similarity of
software structures is reflected by the similarity of textures
between corresponding images, such as the malware picture
representation scheme proposed by Natarij et al. [37], they
transformed the binary code of the malware into the form
of a 2-dimensional matrix, and it can be represented in the
form of a grey-scale graph since the numerical range of its
transformed matrix is [0, 255], as shown in Fig. 1, where data
of different structures have different textures.

Yan et al. [38] generated greyscale images from mal-
ware files while decompiling to obtain the software opcode
sequences, trained the greyscale images using convolutional
neural networks, learned the opcode sequences using long
and short-term memory networks, and conducted exper-
iments on more than 40,000 samples with an accuracy
of 99.88%. They used bilinear interpolation to resize the
images to ensure that the size of the greyscale images
input to the training network should be the same size.
K. He et al. [39] proposed a malware detection method based
on image recognition. They converted malware into RGB
images and classified them using CNN and spatial pyramid
pooling (SPP) layer. Experimental evaluation showed that the
malware detection method designed based on RGB images
is highly accurate and resistant to redundant API injection
attacks. ASLAN et al. [40] focused on the design of the
network architecture of the detection model by converting
PEfiles of software samples into grey-scalemaps ofmalware,
training and detecting them using a hybrid network structure,
and testing them on the Malimg dataset with an accuracy
of 97.98%.Nisa et al. [41] used distinctive pre-trainedmodels
(AlexNet and Inception-V3) for feature extraction, a hybrid

FIGURE 1. The malware grayscale image in [37].

model consisting of deep learning algorithms and traditional
machine learning algorithms to achieve 99.3% accuracy for
a 25-class malware classification task using data augmenta-
tion based on affine image transformation. Singh et al. [42]
used 15 different combinations of Android malware image to
identify and classify Android malware, and machine learning
algorithms were used to analyse grey-scale malware images
instead of the Softmax layer of CNN such as K-Nearest
Neighbour (KNN), Support Vector Machine (SVM) and Ran-
dom Forest (RF). The classification results showed that the
method achieved a correct classification rate of 92.59%.

These works focus on how to convert software of different
sizes into images of the same size, and need to consider the
challenge of how to do the best possible job of reducing
redundancy in the process of generating the images. The
difference between our work and previous work is that we
try to extract the binary code of the method field in the
software and convert some of the information into byte code
to complete the generation of the grey-scale image. Analysing
the feasibility of such a scheme is amajor part of our research.

B. A STATIC MALWARE DETECTION SOLUTION BASED
ON DEEP LEARNING MODELS
Deep learning models can show better performance on clas-
sification and prediction tasks [43], [44], so they have been
widely used in many research areas [45], such as recom-
mendation systems [46], privacy protection [47], [48], image
recognition [49], and natural language processing. In the
field of malware detection, deep learning models also have
a wide range of applications [50].

The proposed malware detection scheme is related to the
static feature extraction of software samples and the use of
deep learning networks as classification detection models.
Therefore, we present some noteworthy work in the area
of malware detection models based on deep learning mod-
els. There are two reasons for choosing the static analysis
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approach to extract software file features. Firstly, static anal-
ysis is intuitive and comprehensive, as compared to dynamic
extraction efforts, static analysis does not need to consider
when malware needs any trigger conditions to exhibit mali-
cious behaviour, and its underlying source code intuitively
contains the functional features of malware. Secondly, static
analysis is faster and more efficient than dynamic detection,
which takes a long time to run the malware program in order
to record all kinds of data and is inefficient when dealing with
a large number of software samples, whereas static analysis
can extract features from a large number of software samples
in a short period of time, which makes practical sense. The
deep learning model was chosen because of its ability to
generalise and detect previously unseen malware samples
with high accuracy.

Wang et al. [6] obtained the corresponding manifest
files and source code files from Android application files,
extracted the corresponding software permission information
and API function call information, then used deep learn-
ing algorithms to identify and classify them. The experi-
ments proved that the proposed method has higher accuracy
and stability compared with the traditional support vector
machine method, and can identify similar features among
similar malware. Yuan et al. [28] proposed a combination
of static analysis methods and dynamic analysis methods
for software feature extraction work in response to the cur-
rent severe malware threat environment, statically analyzing
the manifest configuration file and class execution file of
Android software, and dynamically analyzing the log file of
malware programs on the Android side, combining the two to
extract software feature information. Then, they using deep
learning models for training and classification, experiment-
ing on more than 20,000 sample programs. The accuracy
degree engaged to 96.76%. Kim et al. [27] conducted exper-
iments on 41260 software samples, decompiled software
executable files, extracted the corresponding software con-
figuration files, execution files and function library files, used
neural networks as classification models. And they proposed
a multimodal deep neural network model by inputting differ-
ent types of features into different initial neural networks for
processing for features with different attributes. And finally
the results are aggregated. The accuracy of the experimental
data reached 98%. Li et al. [12] proposed amalware detection
method based on weight-adjusted deep learning networks,
which combined dangerous API calls and risky permission
information as feature data, and the experimental results
showed a high accuracy. These works focus on how to com-
bine software feature data with deep learning models, using
feature information that is not comprehensive enough and
different from the feature data used in our work. Secondly, the
deep learning models they use are relatively simple, and the
robustness of their classification network detection accuracy
for large-scale malware detection is controversial.

Shukla et al. [51] designed a malware detection model
based on recurrent neural networks, using grey-scale images
and hardware-based performance counters to extract feature,

which improved the average accurate detection rate and preci-
sion by 11% compared to CNN-based sequence classification
andHiddenMarkovModel-basedmethods. The accuracywas
as high as 94%. Chai et al. [52] obtained local semantic
features from API call sequence information, learned them
using cascaded convolutional neural networks and graph con-
volutional networks, proposed a joint framework for mal-
ware detection LGMal, and used the Alibaba Cloud Security
malware detection dataset to conduct experiments with high
accuracy. ZOU et al. [53] transformed the function call graph
of a program into a complex social network and used the
centrality analysis of social networks to perform the detec-
tion. The approach is to represent the semantic features of
the graph by calculating the average closeness between sen-
sitive API calls and the central node. Their detection method
demonstrated 99.1% accuracy on 3988 benign and 4265mali-
cious samples, andwas also six times faster thanMaMaDroid.
In our work, we try a different and novel idea to achieve
detection. We use autoencoder network to design detection
model, the design process of this network is complex but
converges quickly and take less time to train.

III. APPROACH
A. OVERVIEW
We propose a approach to malware detection, which is
designed based on the automatic encoder network. The Fig. 2
illustrates the overall structure and main tasks of our malware
detection method. First, benign files and malware are trans-
formed into corresponding greyscale images by decompiling
the APK files, the binary codes are ectracted from methods
in software, then converting them into decimal data by bytes,
which are filled with pixel value. Afterwards, the greyscale
images are passed through 2 deep learning networks in order
to complete 2 tasks. The first deep learning network named
automatic encoder network - 1(AE-1), which we use to anal-
yse the feasibility of using grey-scale images to represent
the corresponding features of softwares, and the second deep
learning network is automatic encoder network - 2(AE-2),
which we use to perform the task of classifying malicious
softwares from benign softwares. The detailed design pro-
cess of AE-1 and AE-2 will be described in the subsequent
sections.

B. PRE-PROCESSING OF FEATURE DATA
The main task of the Pre-processing of feature data phase is
to provide an input data for the neural network model. We use
a grey-scale image of the software bytecode to represent
the characteristics of the software, the so-called grey-scale
image of the software bytecode is to decompile the software
to obtain its binary bytecode, then convert it into a decimal
type by byte and fill it into a fixed size two-dimensional
matrix, since a byte is 8 bits, that corresponds exactly to
the range of data from 0 to 255 and can be composed as
a grey-scale image. The advantages of using this method
are twofold. Firstly, this method of extracting software
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FIGURE 2. The overview of our proposed approach.

features is less overhead and intuitive. Secondly, the
grey-scale image converted from the software file bytecode is
a suitable input to the convolutional network for training and
classification, as our subsequent network model is composed
of a convolutional neural network, which requires a fixed size
multi-dimensional matrix type of data.

However, the conversion of software binary codes into
grey-scale images has some drawbacks. Although the soft-
ware binary code contains a variety of feature, it also contains
a large amount of works focus on how to convert software
of different sizes into images of the same size, and need to
consider the sticking points of how to do the best possible
job of reducing redundancy in the process of generating
the images. The difference between our work and previous
work is that we try to extract the binary code of the method
field in the software and convert some of the information
into byte code to complete the generation of the grey-scale
image. Analysing the feasibility of such a scheme is a major
part of our research. The redundant information causes high
pre-processing overhead and reduces the accuracy and robust-
ness of the model classification at the later stage.

For this reason, we decompile the software and instead of
converting the software binary data directly into a greyscale
image. We extract all the methods in the software and convert
the byte code of methods into a greyscale image, filling in
any blank areas with zero. The advantage of this is twofold.
Firstly, these methods contain various actions of the software,
such as sending network data, reading private information
on the phone, writing data to the phone’s ROM and hard
drive, and can be used to visually represent malicious actions
in a greyscale image without setting up a dynamic runtime
environment. The second point is that we have reduced the
redundancy of using images to represent malware compared
to previous grey-scale image processing, making the subse-
quent classification of the model more accurate and stable.

C. THE STRUCTURE OF OUR AUTOENCODER
The autoencoder network structure is a special kind of unsu-
pervised neural network in a deep learning model [54].
It consists of an encoding network and a decoding network,

as shown in Fig. 3. The encoding network achieves the effect
of dimensionality reduction and compression, and the decod-
ing network achieves the purpose of reconstructing the input.
Its loss function is defined as the error value between the
original input and the model output corresponding to the
original input, and minimising its loss function by means
of training and gradient updating is the operation process of
the autoencoder network. Borghesi et al. used autoencoders
to enable anomaly detection in large computer systems [55].
Their results show that the autoencoder can monitor anoma-
lies that were never noticed before based on previous
log records with an accuracy of between 88% and 96%.
Angelo et al. propose a malware detection system for
Android based on an autoencoding network [56]. They
put sequences of API calls from the application as input
into an autoencoder network to complete feature extraction,
then used a neural network to train and classify features.
Their system achieves higher accuracy than complex tradi-
tional machine learning methods such as J48, Naive Bayes
and MLP.

We designed 2 model structures and named themAE-1 and
AE-2 respectively, the design sequence is AE-1 first and then
AE-2. The main purpose of designing the AE-1 network is to
use it to analyse the feasibility of feature extraction methods
for grey-scale images, and the purpose of designing the
AE-2 network is to use it for malware detection. The rea-
son for designing the 2 networks is that the AE-1 network
exhibited more drawbacks and less stability for the experi-
mental aspects of the classification task, so we improved on
the AE-1 network and proposed the AE-2 network. It is worth
noting that the AE-1 network is trained in an unsupervised
manner and no software samples are labelled, while the AE-2
network is trained in a supervised manner and requires
labelling of malicious and benign software samples.
The specific structure of two networks will be described in
the subsequent Part I and Part II.

1) THE FIRST AUTOMATIC ENCODER STRUCTURE (AE-1)
The structure of model AE-1 is shown in Fig. 4,
and consists of convolutional layers, pooling layers and
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FIGURE 3. The schematic representation of an autoencoder.

FIGURE 4. The first automatic encoder structure (AE-1).

up-sampling layers. The activation function uses the relu
function and the MAE loss function with the Equ.(1):

lr =
1
2n

∑
i

(yi − yri )
2 (1)

Model AE-1 analyzes whether it can reconstruct the mal-
ware feature image based on the magnitude of similar-
ity between the original malware feature image and the
reconstructed image that has been reconstructed through the
autoencoder network.

We determine whether AE-1 is able to perform this task
by analyzing the numerical magnitude of its similarity, and
this measure of similarity is expressed by defining the
SimiliarError as the following Equ.(2).

SimiliarError =

∑N
i=0 (|y

i
r − y

i
g|)

N
(2)

where yir is a pixel of the original image, yig is the pixel
corresponding to the original position in the image generated
by the autoencoder, and N is all the pixel points of an image.

The theoretical basis for determining whether AE-1 can
perform this task based on the numerical magnitude of the
SimiliarError is that only unlabeled malware datasets are
employed during the training phase of the autoencoder net-
work. In the predictive classification phase, if a feature image
corresponds to a category that is malware, then the recon-
structed image it generates via the autoencoder network is the
same as the original. The similarity between images will be
high and the SimiliarError value will be decreased, because

this is what the autoencoder network is trained on. On the con-
trary, if a feature image corresponds to a category belonging
to benign software, the similarity between the reconstructed
image generated by model and the original image will be
low and the SimiliarError value will be enlarged, since the
structure of a feature image transformed by benign software
is very different from the structure of a feature image trans-
formed by malware. For example, if we ask an expert in real
life to focus on malware without studying the characteristics
of benign software, he can easily distinguish the difference
between benign and malware if he is knowledgeable in the
high-dimensional characteristics ofmalware and then looks at
benign software. If the error value of SimiliarError generated
by the two types of software after such an autoencoder have
a huge difference, then we can use this to make sure that the
autoencoder network can indeed reconstruct the correspond-
ing feature images of the two types of software better.

2) THE SECOND AUTOMATIC ENCODER STRUCTURE (AE-2)
The structure of model AE-2 is shown in Fig. 5, in which
the autoencoder network structure is similar to model AE-1.
The only difference is that we have an external multi-layer
perceptron network to facilitate classification and experimen-
tal evaluation. We first extract the high-dimensional features
corresponding to malware and benign software from model
AE-1 by pre-training, then extract the output from the hidden
layer of model AE-1 and use it for the training of the multi-
layer perceptron network. The multilayer perceptron network
outputs two-dimensional vectors to complete the malware
and benign software classification task.

FIGURE 5. The second automatic encoder structure (AE-2).

IV. EXPERIMENT EVALUATION
In this section, we evaluate the proposed approach through
experiments under different indicators. This section includes
four parts, namely experimental setup, data feature extrac-
tion, effectiveness analysis of reconstructing malware images
and performance analysis of the detection model.

A. EXPERIMENTAL SETUP
This subsection focuses on information related to the experi-
mental setup and, for this purpose, is divided into 3 sections,
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TABLE 1. Experimental environment setup.

namely the experimental environment setup, the dataset, and
the training details.

1) EXPERIMENTAL ENVIRONMENT SETUP
The details are shown in table 1 for information on the
experimental environment. Our experiments were conducted
using an Intel CoreTM i5-8300 machine with 16GB RAM,
and GeForce GTX 1060 MQ. The machine had a 64-bit win-
dows10 operating system. We used Keras, Tensorflow 2.1,
and Python 3.7 for programing purposes.

2) DATASET
To evaluate the performance of the proposed model, we col-
lected benign software from the Google App Store [57]
and malware from VirusShare [58], where benign software
consisted of 10 categories such as office, video, gaming,
finance, photography and reading, and malware included
datasets for APK categories released in 2016, 2017 and 2018.
VirusTotal [59] scans a random sample of software to deter-
mine that they are correctly labled.

We divided them into 3 types of datasets according to
their purpose, namely: (1) Dataset-1, this dataset is used
for training and evaluation of AE-1 models, which includes
8121 malware and 2000 benign softwares. (2) Dataset-2,
this dataset is used for training, validation and testing of the
AE-2 model and contains 8121 malware and 7015 benign
software. (3) Dataset-3, this dataset is used to analyse the
detection performance of the AE-2 model on unseen soft-
ware and includes 5,384 malware and 5,000 benign software.
It is worth noting that when we divided Dataset-2 and
Dataset-3, we deliberately put older software samples into
Dataset-2 for training, e.g. malware from 2016, and newer
releases into Dataset-3, e.g. 2017, 2018. The purpose of this is
to simulate the scenario when the model detects new softwore
samples released in the future and to faciliate the analysis of
its performance.

3) TRAIN AND TEST DEAILS
The AE-1 network is used for the task of analyzing the perfor-
mance of the autoencoder to reconstruct feature images, and
detailed parameters of model AE-1 are shown in Table 2. The
Adam optimization algorithm is used in the training phase
and we set the learning learning rate to be 1e-4, the epoch
is 100.

We divide the dataset-1 into 3 parts, the training
datasetDTrain, which contains a partial dataset of the collected

TABLE 2. Parameters of AE-1 model.

malware software, the malware test set DTest_mal , which con-
tains a partial dataset of the collectedmalware, and the benign
software test set DTest_benign, which contains a dataset of the
collected benign software files.

The AE-1 network use training dataset DTrain for the train-
ing task, then use themalware test setDTest_mal and the benign
software test set DTest_benign for the test task. If the new input
of test set is similar to the input of the dataset used in the
training phase, then the reconstruction error for this test set
is very small. Conversely, if the new inputs of test set are
different from the inputs to the dataset used in the training
phase, then this test set will exhibit a very large reconstruction
error. The large difference in the error data produced by these
2 test sets after AE-1 is exactly what we are experimenting
with. Since our hypothesis is based on the theory that malware
is all similar and benign software is not similar to malware,
in practice, the different functional characteristics exhibited
between malware families in the malware dataset and the
large redundancy characteristics contained in the software
dataset can lead to experimental results exhibiting large insta-
bilities. For this reason, we are more interested in the relative
differences between the 2 test sets than in the absolute errors
they exhibit.

The AE-2 network is used for the task of analyzing the
performance of the detection model. For the overall dataset
partitioning, we used 80% of the Dataset-2 as the training set
and 20% as the test set. In the training phase, the training
set was trained and validated using k-fold cross-validation,
with k = 6, meaning that 5/6 of the training set was used for
training and 1/6 for validation, repeated 6 times, and finally
the average was taken. In the testing phase, the test set is used
for testing. Minutes are used as units for training time. The
Adam optimization algorithm, learning rate of 0.0001 and
epoch of 100 are chosed in AE-2’s training.

The variety of evaluation metrics such as FPR, TPR, ACC,
Precision and F-score are used in the model evaluation test
phase, which are calculated as shown below.

FPR = FP/(FP+ TP) (3)

TPR = Recall = TP/(TP+ FN ) (4)
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Acc = (TP+ TN )/(TP+ TN + FP+ FN ) (5)

Precision = TP/(TP+ FP) (6)

F1− score = 2 · Precision · Recall/(Precision+ Recall)

(7)

B. DATA FEATURE EXTRACTION
We used the Androguard tool to complete the data
pre-processing task of the model, extracting the source code
of all the class files in the APK file through the Androguard
analysis framework, extracting the bytecodes of all the meth-
ods and converting them into the decimal data needed for
the corresponding grey-scale images. In the sample dataset
of software collected, we chose files with as small a data size
as possible to ensure that we could standardise the size of all
images.

Based on this approach, all software is converted into the
feature images we need during the data pre-processing phase.

C. EFFECTIVENESS ANALYSIS OF RECONSTRUCTING
MALWARE IMAGES
In this subsection, we evaluate the effectiveness of recon-
structing malware images by analysing the overall error dis-
tribution in malware and benign reconstruct malware images.
Fig. 6 shows the overall error distribution for the 2 test sets.
The reconstructed error value generated by each software
after the encoder network are normalised and expressed as
value on the Y-axis. We normalise by adding up the error
value for each pixel point corresponding to the feature image
of the malware and dividing by the total. In the line statistics
graph, the blue line represents the error trend for the overall
DTest_mal and the yellow line represents the error trend for
the overall DTest_benign. The error is not exactly zero due
to the inherent variability contained in the dataset and the
redundancy of the software files. However, as can be seen in
Fig. 6, the overall error trend is stable for the malware dataset
represented by the blue line, whereas the overall error trend
for the benign software test set represented by the yellow line
is unstable and fluctuates widely, and the relative difference
between the mean value of the errors presented by the two
datasets is large. Thus, our theory is plausible.

We conducted a quantitative analysis of the two test sets
and normalised the value and presented them in Table 3,
where the normalisation was done by calculating the mean
absolute error (MAE) and root mean square error (RMSE) of
the test set after making the error of the training set equal to 1.
The experimental data, as described in Table 3, showed that
the normalised MAE and normalised RMSE produced by the
malware test set were close to 1, indicating that the DTest_mal
was similar to the DTrain, while the benign test set produced
a normalised MAE and normalised RMSE greater than 1 and
also greater than the value of the training set, indicating that
the benign software test set was not similar to the training set.
The normalisedMAE and normalised RMSE for the software
test set were greater than 1 and also greater than the value
for the malware test set, indicating that the DTest_benign was

TABLE 3. Quantitative analysis of two datasets.

not similar to the DTrain, and this quantitative analysis also
demonstrated that the network structure would show similar
results on the invisible data set.

Based on this experiment, we can then show that the
task of reconstruction can be performed well by the auto-
matic encoder through the pre-processed malware data
from our data, and that the automatic encoder can identify
high-dimensional features of both benign and malicious soft-
ware. Then, we implement the subsequent task of classifying
malware and benign software.

FIGURE 6. Reconstruction error for two datasets.

D. PERFORMANCE ANALYSIS OF THE DETECTION MODEL
We use the AE-2 model to analyse the classification per-
formance of autoencoders in this subsection. To the end,
we experimented with some similar previous research work
for comparative analysis, include detection models using tra-
ditional machine learning algorithms [22], detection models
designed based on recurrent neural network [29], detection
models designed based on autoencoder networks and con-
volutional neural networks [35] and detection models using
Malware Images [39]. Among them, the detection model
CNN-SPP designed with malware images and convolutional
neural networks proposed by He and Kim [39] showed high
accuracy on the dataset provided by Seoul National Univer-
sity [60]. The DAE-CNNmodel proposed byWang et al. [35]
uses an autoencoder network as the data preprocessing model
and the output data of the model is used for training and
detection of convolutional neural networks, which is similar
to our theoretical model, and they show better results on
10,000 benign APPs and 13,000 malicious APPs. We use
these 2 types of models as baseline models for comparison
experiment with AE-2 on different datasets.

1) PERFORMANCE COMPARISON OF DIFFERENT MODELS
The ROC curves in Fig. 7 show the effect of the model on the
training set, from which it can be seen that the model exhibits
a more stable performance on the training set. The ROC
curves in Fig. 8 show the model’s performance on the test set
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FIGURE 7. The ROC curve of AE-2 on training set.

FIGURE 8. The ROC curve of different models on the test set.

which in Dataset-2. We can see that our model outperforms
the other two.

To further examine the detection performance of our
model on unseen malware, the Datasets-3 is used as test set
for AE-2. The ROC curves are shown in Fig. 9, from which
it can be seen that our model shows good accuracy and some
feasibility in detecting unseen malware, but also shows some
flaws as the software changes with year iteration.

In the experimental results presented in Table 4, the high
F1-score value for the AE-2model demonstrate the feasibility
and stability of our solution. The traditional machine learning
algorithms and autoencoder have higher F-scores due to the
use of multiple fine-grained feature extraction methods, and
the efficient feature extraction method is the key to determine
the performance of the model. The lower F1-score shown in
recurrent neural network model is due to the fact that its fea-
ture extraction method is complex and the model built using
RNN shows unstable performance on the dataset. The lower
F1-score in convolutional neural network model demonstated
that this way of constructing feature images based on file
binary codes contains more redundant information and less
distinct features.

2) DETAILED COMPARISON OF MULTIPLE INDICATORS
After that, we use a variety of common machine learn-
ing models and deep learning models to conduct exper-
iments comparing various evaluation metrics. The com-
mon machine learning algorithms include support vector
machines, decision trees and naive bayes, and the deep learn-
ing model named CNN-0, which model consists of one layer
of convolution, one layer of pooling and one layer of fully

FIGURE 9. The ROC curve of different models on the unseen software.

FIGURE 10. Comparation results in five different models.

connected neural network, we use it as our benchmark model.
Fig. 10 illustrates the value of accuracy, precision, recall
and F-score on the five models. We find that the decision
tree outperforms the support vector machine model and the
naive Bayes model in terms of accuracy and performance
for traditional machine learning detection algorithms through
cross-sectional comparisons, while the deep learning model
outperforms the traditional machine learning algorithm in
terms of overall performance. Our model achieves better
results in terms of search accuracy and completeness.

Fig. 11 illustrates the performance comparison between the
two different deep learning models. It can be seen from the
figure that AE-2 spends less training time compared to the
CNN-0 model, and the ACC, recall, Precision, and F-score
metrics are all very similar. For FPR, AE-2 shows lower
value.

Table 5 shows all the experimental data. The training time
for our model is 1407.32 mins, which is about 23.45 hours.
For the CNN-0 model, the number of parameters in the
image data is huge and it takes a significant amount of time,
28.14 hours, after performing the convolution and pooling
operations since the structure contains only one layer of
convolution and one layer of pooling.

V. LIMINATION
There are 2 main limitations of our model. The first point
is that the data pre-processing method needs to be improved.
Although we did our best to reduce the redundant information
carried by the software feature representation, there is still the
problem of inefficiency, and the dataset we used is smaller
due to the limitations of our experimental environment.
The feasibility and effectiveness of this approach on other
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TABLE 4. Performance comparison of different models.

FIGURE 11. Performance comparison of 2 deep learning models.

TABLE 5. Detailed comparison of multiple indicators.

types of malware dataset will require more detailed analy-
sis and research in the future. The second point is that the
instability of detection performance caused by deep learn-
ing models is difficult to estimate. Although deep learning
algorithms, such as convolutional neural networks, have a
promising future in areas such as image recognition and text
generation, the use of malware feature data for classification
tasks in deep learning models can lead to unstable detection
performance, because the models are very dependent on the
original training dataset, and the higher the accuracy, the
greater the dependency, and the detection accuracy for soft-
ware samples that are not in the training set will be reduced.

VI. CONCLUSION
In this paper, we propose a novel approach to malware detec-
tion, which is based on the principle of using grey-scale
images to represent the features of malware and using an
auto-encoder network to design a classification model to
achieve malware detection. Experimental results show the
feasibility of our proposed approach of converting the byte-
code of all methods in software into a greyscale image to
represent the features in a software sample. Compared to
malware detection methods designed based on traditional
machine learning algorithms, our method is more accurate.
Our method requires less training time and detection time
compared to other malware detection systems designed based
on deep learning models. In future work, we will continue to
explore more effective methods for representingmalware fea-
ture images and focus our research on the data pre-processing
stage to explore newer malware detection methods.
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