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ABSTRACT Distribution networks are facing new challenges with the emergence of smart grids, such as
capacity limitations, voltage instability, and many others. These challenges can potentially lead to brownouts
and blackouts. This paper presents an innovative technique for optimal siting and sizing of distributed
generators (DGs) in radial distribution networks (RDNs). The proposed technique uses a novel algorithm that
combines improved grey wolf optimization with particle swarm optimization (I-GWOPSO) by incorporating
dimension learning-based hunting (DLH). The proposed I-GWOPSO employs a novel aspect of DLH to
reduce the gap between local and global searches tomaintain a balance. Themain optimization objectives aim
to optimally site and size the DGwith minimization of active power loss, voltage deviation, and improvement
of voltage stability in RDNs. Case studies are simulated with IEEE 33-bus and IEEE 69-bus test systems,
for the optimal allocation of DG units by considering various power factors. The results validate the efficacy
of the proposed algorithm with a significant reduction in real power loss (up to 98.1%), improvement in
voltage profile, and optimal reduced cost of DG operation with optimal sizing across all considered cases.
A comparative analysis of the proposed approach with existing literature validates the improved performance
of the proposed algorithm.

INDEX TERMS Distributed generation, dimension learning-based hunting, grey wolf optimization, particle
swarm optimization, radial distribution network, voltage deviation, voltage stability index.

I. INTRODUCTION AND MOTIVATION
Nowadays, rising demandsmake distribution networks (DNs)
more prone to voltage drops and line losses [1]. Electricity
service providers are continuously planning to expand their
existing networks to meet increasing load demands. The tra-
ditional planning solution is to construct a new substation or
expand the existing one [2]. However, this is not economically
viable as it results in high operative costs. Also, this method
has a negative environmental impact i.e., dominated use of
fossil fuels for power generation. A better alternative solution
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to meet the rising demand is the use of distributed generation
units (DG) in DNs. DGs are more economical than the tradi-
tional means of production as they have small-scale genera-
tion capabilities to correlate with changing loads. Similarly,
DGs are environmental friendly as they involve renewable
energy resources (RER) of production i.e., wind, solar, hydro,
and geothermal energy. The use of DGs along with renewable
sources makes power production technically viable, environ-
mental friendly, and economically feasible [3]. The overall
voltage of the network can be increased, and losses can be
reduced by connecting DGs with DNs via proper allocation.
Also, DGs help out to reduce the congestion on DNs and
relieves the capacity of transmission lines [4]. If DG units

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 25669

https://orcid.org/0000-0003-0030-4883
https://orcid.org/0000-0002-3412-2853
https://orcid.org/0000-0003-3149-6865
https://orcid.org/0000-0002-0236-7872
https://orcid.org/0000-0002-6736-3733


M. I. Akbar et al.: Novel Hybrid Optimization-Based Algorithm for Single and Multi-Objective Achievement

are allocated improperly, it may result in high power losses
(PL), voltage rise, and low network stability. In distribution
network planning, optimal DG allocation (ODGA) should be
cautiously determined to enhance the technical, environmen-
tal, and economical benefits.

The energymanagement with DGs is an important research
dimension in the last decade that aims at optimal sitting
and sizing of DGs. In recently published research works,
numerous optimizationmethods have been employed to solve
ODGA problems in radial configured DN (RDN). The aimed
objectives include the minimization of PL [1], [5]–[9], reduce
voltage deviation (VD) [4], [10]–[16], maximizing voltage
stability index (VSI) [5], [13], [16]–[18], improved tran-
sient stability [19], enhanced reliability [20]–[24]and drop in
greenhouse gas emission [25].

II. LITERATURE REVIEW
The capitalization of DG integration is considered a multi-
dimensional problem from an objective perspective. Several
analytical methods based on the exact formula have been
used to solve the optimum DG integration problems [26],
mixed-integer non-linear programming (MINLP) [27], loss
sensitivity [28], etc., are presented in the reported research.
A two stage-framework used in [29], shows that in the first
stage, bus locations were determined based on voltage stabil-
ity (VS) and loss sensitivity factor (LSF). In the second stage,
an analytical technique was utilized to determine the appro-
priate DG size. Analytical techniques are simple to use, and
their computational time is less in ODGA. However, these
abovementioned techniques are subjected to various issues
i.e., DG types, multiple numbers of DG units, and multi-
objective functions. The ODGA problems are addressed with
the classification of single and multi-objective optimization
methods. The accommodation of single objective function
in single-objective optimization problems (SOOPs) mostly
aims at minimizing the PL. In contrast, multi-objective opti-
mization problems (MOOPs) simultaneously address more
objectives.

In ODGA based problems, metaheuristic optimization
methods have broadly been implemented in DG sizing and
sitting in both SOOPs and MOOPs, respectively. For the
SOOPs, particle swarm optimization (PSO) is employed for
minimizing the real power loss (RPL) to optimize DG allo-
cation (sitting and sizing) [30]. An improved variant in [9]
uses multileader particle swarm optimization (MLPSO) to
resolve ODGA problems aiming at reducing the system PL.
Moreover, in [7] the novel heuristic technique is proposed to
optimally allocate the active and reactive power in RDNs.
The techniques include artificial bee colony (ABC) [1],
ant line optimization (ALO) [6], efficient analytical method
(EA) [31], stud krill herd algorithm (SKHA) [32]. These
techniques are used for DG allocation problems for PL min-
imization and enhance the overall performance of RDN.

Artificial intelligence (AI) methods besides the aforemen-
tioned techniques are also used for ODGA. The authors
in [33] have proposed a genetic algorithm (GA) for ODGA

problems i.e., RER uncertainties, load demand calculation,
cost at energy losses, upgradation, and interpretation cost of
a network. To deal with multi-objective issues i.e., improved
voltage profile, PL, voltage stability, the cloud theory GA
(CAGA) was incorporated. In [34], the author has formulated
the PSO method to address the ODGA problem with various
load models. In this research multi-objective function was
used to optimize PL, VD, and short-circuit intensity of a DN.
Generally, GA takes a lot of time for convergence and falls in
local optima, and hence the quality of solution decreases with
higher-dimensional problems. PSO in comparison is more
efficient thanGA in global research, though it doesn’t guaran-
tee an efficient solution for complex problems. However, both
GA and PSO have certain parameters which can be fine-tuned
to obtain efficient solutions [35].

The study in [36], proposes the invasive weed optimiza-
tion (IWO) method to find the optimum size of multiple
DGs, whereas the optimum DG location is found with the
LFS method. The basic aim of this research is PL reduction,
VS improvement, and minimizing the operational cost in
33-bus and 69-bus RDNs. The author in [15] recommended
the Taguchi method (TM) which uses the TOPSIS method
to optimize MOOPs. The multi-objective opposition-based
chaotic differential evolution (MOCDE) technique is sug-
gested in [16] to address MOOP with the objectives of min-
imizing the PL and VD and maximizing economic benefits.
In [37], the authors introduced the flower pollination algo-
rithm (FPA) to solve the MOOP to increase loading ability
without changing VS of the DN and PL reduction. In com-
parison, AI techniques acquire a strong capability to find
optimum solutions. However, these techniques are hard to
code, need rich data, may deteriorate from local optima, and
need more computation time to address multi-dimensional
issues.

The hybrid techniques have been established to deal with
the limitations left in individual techniques, for solving
ODGAproblems. These hybrid techniques have an edge from
a single algorithm i.e., enhance proficiency and convergence
accuracy. In [38], hybrid GA/PSO was developed for deter-
mining the ODGA in RDNs, in which PSO was utilized to
optimize the DG sizes while GA determined the optimal
location DG units. The aim was to simultaneously optimize
RPL, VD, and improve the VSI in networks. Hybrid GA and
intelligent water drops (IWD) in [39] address a similar issue
as in [38]. Authors in [31], proposed the efficient analytical
(EA) technique and optimal power flow (EA-OPF) technique
for optimizing DG sitting and sizing with the objective of
reduction in RPL. Initially, the optimum size is determined
with EA based approach. Then, the size of DG units is
calculated by the OPF for the predefined sites. Although
hybrid techniques generally offer superior solution quality
than individual techniques, they may endure complexity in
execution and larger computation time due to complicated
configurations subjected to numerous control constraints.

Recently, the authors in [2] proposed Quasi-oppositional
swine influenza model-based optimization with quarantine
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(QOSIMBO-Q), quasi-oppositional chaotic symbiotic organ-
isms search (QOCSOS) [4], Chaotic Sine Cosine Algorithm
(CSCA) [10], improved and multi-objective elephant herding
optimization (IMOEHO) [11], the improved decomposition-
based evolutionary algorithm (I-DBEA) [12], improved
single- and multi-objective Harris Hawks Optimization
(IHHO and MOIHHO) [14], stochastic fractal search algo-
rithm (SFSA) [17], and Quasi-Oppositional Teaching Learn-
ing Based Optimization (QOTLBO) [18] to solve the ODGA
problem using single and multi-objectives. Authors in [2],
do not examine the DG operation with the optimal PF and
the allocation problem associated with the large system. It is
observed that most above mentioned literature didn’t address
properly the effect of various PF of DG units on RDNs.
DG units operate at any PF according to the IEEE standard
1547 [40]. Thus, this work considered various PF of DGs i.e.,
unity PF, 0.95 PF, and Optimal PF for DG allocation problem.

An improved grey wolf optimizer (I-GWO) is proposed
in [41] for the solution of ODGA based optimization prob-
lems. The I-GWO has the advantage of simplicity in design,
mitigates the difference between exploration and exploita-
tion, proper convergence of GWO, and reduces population
diversity issues. A new approach in [41] named dimension
learning-based hunting (DLH) is beneficial for the I-GWO
algorithm that is driven by the behavior of individual hunting
of wolves in nature. DLH utilizes a distinct technique to build
up a network for each wolf in its surroundings to share the
information among neighboring wolves. This feature of DLH
reduces the gap between local and global search to keep the
balance.

In this paper, the bridging of limitations in previous works
serve as the very novelty and a new improved GWO-PSO
hybrid (I-GWOPSO) algorithm is proposed for ODGA for
both SOOPs and MOOPs. The proposed hybrid algorithm
reduces the solution’s chances to fall into a local minimum.
Contributions of paper are as follows:
• Proposed a hybrid improved I-GWOPSO based on DLH
(to reduce search space).

• The I-GWOPSOmethod addresses ODGA problems for
SOOP, aiming at PL reduction.

• The I-GWOPSO method addresses ODGA problems
for MOOP, aiming at optimizing the three objectives
simultaneously i.e., PL reduction, VD, and VSI.

• The effectiveness proposed algorithm is evaluated across
two test systems i.e., 33-bus and 69-bus RDNs.

• The achieved numerical are compared with reported
optimization methods and outperforms based on techno-
economic indices. Hence validates the approach.

• The ODGA optimization has conducted across various
power factor (PF) values.

• Optimal results have achieved at optimal PF (lagging) in
both test DNs.

The paper is organized as follows: Section III represents
the mathematical design of the major objective func-
tions. Section IV mentions the summary of I-GWO and
I-GWOPSO. The results and discussions are presented in

section V. In Section VI the numerical values resulted from
the conclusion.

III. PROBLEM FORMULATION
This section includes the ODGA in RDN.

A. OBJECTIVE FUNCTIONS
The major objective of the research is to allocate the DG
in RDN in an efficient way to reduce the real PLs with
SOOP. DG allocation problem particularly focuses on three
objectives i.e., reduction of real power loss, minimization of
VD, andmaximization of VSI. The main objectives with their
mathematical calculations are presented below subsections:

1) REAL POWER LOSS REDUCTION
RPL in RDN is calculated through the following
equation [42]:

RPL =
Mbr∑
k=1

|Ik |2 Rk (1)

where branch number is denoted by K, Mbr is the total
number of branches, the absolute current |Ik |which is passing
through the branch, and Rk is the resistance of the branch.

It is important to reduce RPL because it is high due to the
radial structure of DN. The first objective function (OF) is
shown as:

OF1 = min (RPL) (2)

2) TOTAL VOLTAGE DEVIATION
Bus VD is minimized as an OF to improve voltage for that
consumer that is using voltage-sensitive equipment. The OF
is determined as in [18], [38].

TVD =
m_bus∑
i=1

(Vref − Vi) (3)

where reference voltage (Vref ) is always taken as 1.00 p.u.,
Hence, the second OF (OF2) is given as follows:

OF2 = min (TVD) (4)

3) MAXIMIZATION OF VSI
For the security level of DN, besides VD, VSI is also an
important factor to incorporate. When a bus in DN violates
permissible voltage limits due to various reasons, it may result
in voltage instability of the whole system, designated with
VSI. For stable operation, VSI must be retained at a stable
limit across all the buses of a DN. The expression of VSI for
RDN is given as follows [43]:

VSI i =
∣∣vJ̇ ∣∣4 − 4

(
Pi ij − Qirij

)2
− 4

∣∣vj∣∣2 (Pi̇rij − Qi ij
)

(5)

where, Pi, andQi are the real power and reactive power of the
load and ij, and rij are the inductive reactance and resistance
of the line. This equation serves as a criterion for determining
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the RDN’s voltage stability. For RDNs to operate stably,
VSIi must be greater than zero. The voltage collapse occurs
when the VSI on the bus is at its lowest value [44]. VSIi
must be maximized to improve VS. The third OF (OF3) is
given as:

OF3 = max (min (VSI i)) (6)

4) MULTI-OBJECTIVE FUNCTIONS
Every single objective has its distinct nature. For the inte-
grated mathematical representation of all the distinct objec-
tives, each Single OF (SOF) is divided according to its base
value and integrated with its weights. The weighted sum of
the real power loss reduction, total voltage deviation, and
voltage stability index is used to express the multi-objective
function. Weighted sum methods are simple to apply, effec-
tive, and practical for generating a strongly non-dominated
solution that can be utilized as a starting point for further
methods [45]. The weighting coefficients method assists in
the transformation of three SOFs into one combined OF and
the entire fitness function is represented as:

fit = min
(
w1 × f1 + w2 × f2 + w3×f 3

)
= min

(
w1 ×

RPL
RPLbase

+ w2 ×
TVD

TVDbase

+w3 ×
VSI−1

VSI−1base

)
(7)

where RPLbase, TVDbase, and VSI
−1
base are the total real power

loss, the total voltage deviation, and the voltage stability index
improvement of the network in the base case (the network
without DG). Therefore, (w1+w2+w3= 1) are three weights.
The equal weight is given to each function because each
function is treated as equally important in these MOOPs.
In this study, weights are set to be equal i.e., 1/3 (or 0.3334).

5) ECONOMICAL INDEX
Another objective of this paper is to reduce the operational
cost of DG operation subjected to its optimal size. The
mathematical formulation [46] of the cost of active power
DG (CPDG) is represented in Equation (8).

CPDG($/MWh) = a× P2DG + b× PDG + c (8)

where, a = 0, b = 20, and c = 0.25.

B. PROBLEM CONSTRAINTS
In the distribution network the problem of DG allocation
should be subjected to major constraints which are given
below:

1) EQUALITY CONSTRAINTS
It is important to keep the generation balancewhich is equal to
the sum of the Power demand (PD) and PLs to avoid reverse
power which may harm the system. Thus, these constraints

can be stated as:
M_DG∑
j=1

PGen,j = Pdemand + RPL; j = 1 . . . . . .M_DG

(9)
M_DG∑
j=1

QGen,j = Qdemand + QPL; j = 1 . . . . .M_DG

(10)

where, M_DG is the number of DG integrated, PGen is the
generation power that comes from the installed DG, QPL
denotes the reactive power loss and Pdemand is power demand
by the load.

2) INEQUALITY CONSTRAINTS
Two inequality constraint sets have to be fulfilled. The bound-
ary limitations are forced on the network which comprises the
voltage limits, and DG technical constraints which incorpo-
rate of DG size limit and its power factor (PF).

a: VOLTAGE LIMITS
The magnitude of voltage should be retained within maxi-
mum and minimumVoltage limits as shown below [15], [47]:

0.95p.u ≤ Vj ≤ 1.05 p.u (11)

b: THERMAL LIMIT [15], [47]

Ij,i ≤ Imaxj,i (12)

where Imaxj,i is the maximum current flowing through the
branch linked between the jth and the ith bus.

c: DG SIZE LIMIT
The maximum and minimum output power of DG units are
given below [15][48]:

Real Power limit : PminGen ≤ PGen ≤ PmaxGen (13)

Reactive Power limit : QminGen ≤ QGen ≤ QmaxGen (14)

d: DG POWER FACTOR LIMIT
DG units can function in a range of power factors as follows:

p.f minDG,j≤p.f DG,j≤p.f
max
DG,j; j=1, . . . . . . .M_DG (15)

The DG unit’s operating power factor must be within the
stated parameters [0.7, 1] [49]–[51].

Where PF is shown by the following relationship.

p.f DG,j = P2DG,j
/√

P2DG,j + Q
2
DG,j (16)

IV. HYBRID PROPOSED OPTIMIZATION ALGORITHM
In this research, the proposed hybrid algorithm I-GWOPSO
makes use of I-GWO and PSO metaheuristic methods.
A hybrid method has been proposed by using these two algo-
rithms to generate adequate results. The details are mentioned
below.
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A. GREY WOLF OPTIMIZER TECHNIQUE
In 2014, Lewis and Mirjalili [52] presents a metaheuristic
optimization technique named a grey wolf optimizer. Its idea
comes from the behavior and hunting methods of the grey
wolf in nature. The GWO technique consists of three leader
wolves named α, β, and δ as the best solutions for leading
the rest of the wolves named wolves to find the global solu-
tion [53]. Three fundamental steps complete wolf hunting.

1) ENCIRCLING
The hunting strategy of grey wolves in [54] the encircling
network can be formed as given in Equation (17) and (18):

D =
∣∣C × Vpr (t)− V (t)∣∣ (17)

V (t + 1) = Vpr (t)− A× D (18)

In the above equations, Vpr represents the location of prey,
V locates the position vector of the grey wolf, the current
iteration is given by t . In [52], coefficient vectors are C and
A given in Equations (19) and (20).

A = 2× A× r1 − a (t) (19)

C = 2× r2 (20)

When iterations are done, the vector element goes down
from 2 to 0 representing the random vectors, r1 and r2 by
Equation (21).

a (t) = 2− (2× t)/Maxiter (21)

2) HUNTING
It is about the mathematical analysis of wolves hunting atti-
tude, presumed as α, β, and δ can find the prey from its
location by good knowledge. Hence, keeping in view, the
three best solutions provided by the locations of α, β, and
δ, other wolves will follow them. Their hunting skills are
mentioned in Equations (22)-(24).

Dα = |C1 × Vα − V (t)|

Dβ =
∣∣C1 × Vβ − V (t)

∣∣
Dδ = |C1 × Vδ − V (t)| (22)

where C1, C2, and C3, are determined by Equations (19)
and (20).

Vj1 (t) = Vα (t)− Aj1 (t)Dα (t)

Vj2 (t) = Vβ (t)− Aj2 (t)Dβ (t)

Vj3 (t) = Vδ (t)− Aj3(t)Dδ(t) (23)

V (t + 1) =
Vj1 (t)+ Vj2 (t)+ Vj3 (t)

3
(24)

3) ATTACKING
The hunting method ends when the prey stops moving and
sticks in a place. Then the wolves start the attacking pro-
cess. This expression mathematically can be derived by the
reduction of the value of a within a specific interval. In this
model, the value of a is changed on a range between 2 to 0 as
presented in Equation (21).

The fluctuating value of a in the interval (2, 0) shows that
the Subsequent location of the searcher can be at any point
among the present position of a hunter and the position where
prey is located. In each iteration, the first three wolves α,
β, and δ are considered best in fitness. Each wolf changes
its location according to the above-mentioned steps of encir-
cling, hunting, and attacking. By the continuous iterations,
the exact spot of prey which is α’s can be traced out.

GWO is efficient and is valid for many applications. How-
ever, there is a certain drawback of GWO. It has no population
diversity capabilities. Further, it suffers from the imbalance
between exploration and exploitation and untimely conver-
gence. Moreover, the position regulator equation is suitable
for exploitation, but it doesn’t come up with an efficient
solution.

B. IMPROVED GREY WOLF OPTIMIZER (I-GWO)
To solve the shortcomings of GWO, this research has pro-
posed an improved grey wolf (I-GWO). I-GWO is comprised
of a new search approach in which selection and updating
of different values take place for the exact point location.
The improved-GWO is comprised of three phases which are,
initializing phase, movement phase, selection, and updating
phase as follows.

1) INITIALIZING PHASE
In the initializing phase, Nwolves are randomly placedwithin
a specified range of search area [lj, ui] by Equation (25).

Vji = li + randi[0, 1]× (ui − li), j ∈ [1,N], i ∈ [1,D]

(25)

The position of the j-th wolf in the t-th iteration is denoted
as a real value of the vector Vj (t) =

{
Vj1,Vj2, . . . . . . .,VjD

}
,

where D is the problem’s dimension number. The population
of wolves is stored in a matrix Pop, which has N rows and
D columns. The fitness function (fit (Vj(t)) determines the
optimal value of Vj(t).

2) MOVEMENT PHASE
The social behavior of grey wolves hunting strategy is the
base of I-GWO. Like the grey wolves hunting behavior,
I-GWO is comprised of dimension learning-based hunt-
ing (DLH) method. In dimensional learning, each wolf is
informed by its surrounding wolves to occupy the updated
position Vj (t).

a: DIMENSION LEARNING-BASED HUNTING (DLH) SEARCH
APPROACH
For each wolf in the original GWO, three leader wolves
are responsible for generating a new position. This mode
causes GWO displays slow convergence, losses of population
diversity too prompt, and wolves are trapped in the local
optimal. To mitigate these defects, in the proposed DLH
search approach, the hunting of each wolve is considered that
is learned by its neighbors.
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In the DLH searchingmethod, the dimension ofVj wolf is a
new position determined by Equation (29), shown later in the
expression. Each wolf learns about the new position from his
surrounding members as well as randomly provided informa-
tion by a wolf. Based on this strategy, another candidate for
the wolf Vj (t) position, called Vj−DLH (t + 1), is generated,
in addition to one generated from Equation (24), namely
Vj−GWO(t + 1).
To formulate a new wolf Vj (t) position, radius Rj (t) must

be calculated by finding the Euclidean distance separating the
candidate position Vj−GWO(t + 1) from the present position
Vj (t), as in Equation (24) and a new position is shown in
Equation (26).

Rj (t) =
∥∥Vj (t)− Vj−GWO(t + 1)

∥∥ (26)

Further, the surrounding wolves of Vj (t), as shown by
Nj (t), are determined in Equation (27) concerning radius
Rj (t), with Dj indicating Euclidean distance between Vj (t)
and Vi(t).

Nj (t)=
{(
Vi (t) |Dj

(
Vj (t) ,Vi (t)

))
≤ Rj (t) ,Vi(t) ∈ Pop

}
(27)

Following the structure of Vj (t) neighborhood, the multi-
neighbor learning stage continues, as shown in Equation (28).

Vj−DLH ,m (t + 1)=Vj,m (t)+rand ×
(
Vn,m (t)− Vr,m (t)

)
(28)

where the m-th dimension of Vj−DLH ,m (t + 1) is determined
by utilizing the m-th dimension of an arbitrary neighbor
Vn,m (t) choose from Nj (t), and an arbitrary wolf Vr,m (t)
from Pop.

3) SELECTING AND UPDATING PHASE
This stage has around three stages. In the initial step,
an examination of the fitness value for the two candidates
Vj−GWO (t + 1) and Vj−DLH (t+1) is done to decide the better
candidate, as communicated in Equation (29).

Vj (t + 1)

=

{
Vj−GWO (t + 1) , if f

(
Vj−GWO

)
< f (Vj−DLH )

Vj−DLH (t + 1) , otherwise
(29)

In the second step, the position of new Vj (t + 1) needs to be
upgraded. So, check the fitness value of the selected candidate
if it’s less than Vj (t), the selected candidate is upgraded to
Vj (t). Otherwise, the value stays the same in Pop. Finally,
after doing this cycle for each individual, the counter of
cycles is expanded by one, and the search can be iterated till
the predefined number of cycles (Max_iter) is attained. The
pseudo implementation of Suggested I-GWO is displayed in
Figure 1.

C. PARTICLE SWARM OPTIMIZATION (PSO)
In 1995, James Kennedy and Russell Eberhart [55] pre-
sented a metaheuristic technique named particle swarm opti-
mizer (PSO). The basic thought of PSO is that a gathering of

FIGURE 1. I-GWO pseudocode.

particles is moving in the pursuit of space searching for the
food or best arrangement numerically and has two attributes:
its velocity and position. Distance and direction are defined
by the velocity to optimize the position at the next iteration,
whereas position signifies the present values in the solution.
Their positions are changed concerning the time which is
based on their present value, experience, and experience of
their neighbors. The upgrading procedure of particle position
is given in [55] as:

X (t+1) = W tX tj + C1r1
(
Vj1 (t)− V (t)

)
+C2r2

(
Vj2 (t)−V (t)

)
+ C3r3

(
Vj3 (t)−V (t)

)
(30)

V t+1
j = V t

j + X
(t+1)
j (31)

where t represents the iteration number, r1 and r2 are ran-
dom numbers in between [0,1], W t indicates the weighting
coefficient, C1 and C2 represent the weighting factors, X tj
the velocity of a particle at t iteration, X (t+1)

j represents the
upgraded particle j velocity, V t

j is the j position of a particle
at t iteration, Vj1 (t) is the personal best particle (Pbest) and
Vj2 (t) is the global best particle (Gbest).

In the proposed approach, the improved edition of the
I-GWO technique is employed to help the PSO algorithm
to lessen the chance of falling into a local minimum. The
key concept to adapt hybridizing is to improve the ability of
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TABLE 1. Control parameters of proposed I-GWOPSO.

exploitation in PSO with the provision of improved explo-
ration in I-GWO to enhance stability and quality for the solu-
tion more. The preliminary population is revised by I-GWO,
and the revised solutions are once more updated by PSO. The
Gbest is returned to the improved edition of I-GWO, and the
algorithm remains to the run-up until the optimum solution is
attained.

Nevertheless, the running time is lengthenedwhile the PSO
technique is also utilized in addition to the I-GWO algorithm.
However, when the accomplishment of the outcomes and the
amount of extra time required are carried into deliberation,
the lengthened time can be considered as acceptable depen-
dent on the optimization problem solved. The execution of
the recommended I-GWOPSO algorithm for ascertaining the
ODGA is reviewed in the subsequent steps of the I-GWOPSO
pseudo-code presented in Figure 2 and illustrated through the
flowchart presented in Figure 3.

V. RESULT AND DISCUSSION
In this section, the advanced algorithms (I-GWO and
I-GWOPSO) are employed for two benchmark IEEE 33-bus
and 69-bus distribution networks. The size of the population
or the wolves’ number is considered as 50. For PSO, the
weight of inertia, social and cognitive acceleration weights
are 0.5, 1.5, and 2.0, respectively [16]. The selection of
stopping criteria is determined by the maximum number
of iterations [4], [16], [17], i.e., fixed as 150. The setting
of control parameters of the proposed algorithm is presented
in Table 1. The optimum sitting and sizing of multiple
DGs units are concluded to lessen the total PL as a SOOP.
In addition, reducing the TVD and increasing VSI are judged
for the MOOP. To verify the viability and effectiveness of
the advanced methods, a complete contrast with other well-
recognized optimization methods is carried out. The opera-
tional cost of DGs by the other approaches utilized in previous
research is calculated for the given size of DGs. The proposed
algorithm is coded in Matlab2020 and runs on a system with
Intel(R) Core (TM) i7-7500U CPU (2.7 GHz) and 8 GB of
RAM.

In addition, the I-GWOPSO associated with the traditional
I-GWO over ten runs to calculate the minimum RPL, maxi-
mum RPL, and average RPL for the SOF. The following four
cases are studied in the two examined networks:

• Without DG (Normal Case)
• Integrating three DGs at unity PF (UPF)
• Integrating three DGs at 0.95 lagging PF (LPF)
• Integrating three DGs at Optimal LPF (OPF).

A. IEEE 33-BUS NETWORK
The IEEE 33-bus network is used to analyze the proposed
technique. The complete description of the 33-bus network.
containing the load and line data in [56]. The single line
diagram of 33-bus DN is presented in Figure 4. The base
values of the 33-bus network are taken as kV = 12.66 and
MVA = 100.

1) SINGLE-OBJECTIVE ASSESSMENT FOR 33-BUS DN
Real and reactive PLs are calculated based on power flow
results which are 210.05 kW and 142.42 kVAR respec-
tively. Optimum allocation is done by using I-GWOPSO of
three DG units with different power factors to reduce the
total PL.

a: DG SITTING AND SIZING FOR 33-BUS DN
For UPF ODGA is presented in Table 2. From the table, it is
clear that by use of I-GWOPSO, the optimum three DGs
locations are 14, 24, and 30. The capacities of these three
DGs are 0.786MW, 1.032MW, and 1.094MW respectively.
It is observed RPL of the network is reduced from 210.05KW
to 70.64KW. The reduction of RPL is very much improved
than other methods mentioned in the table. The cost of active
power DG (CPDG) obtained from the given size of DGs are
less than the SFSA [17], QOSIMBO_Q [2], QOTLBO [18],
CSCA [10], QOCSOS [4], IHHO [14], and I-GWO which
is 58.49 $/MWh. Moreover, I-GWOPSO is comparatively
economical than others analyzed methods.

Furthermore, Table 3 represents the conclusions of the
optimum sitting and sizing for multi-DG with 0.95 LPF.
The conclusions indicate that the proposed I-GWOPSO
achieves the optimum allocation which has the minimum
PL (27.683 kW). The PL achieved by the I-GWOPSO
is smaller than the PL from conventional I-GWO which
is 27.77 kW. This result was lower than that from
SFSA [17], SIMBO_Q[2], QOCSOS [4], IHHO [14] and
QOSIMBO_Q[2]. The CPDG obtained by I-GWOPSO is less
than the SFSA [17], SIMBO_Q [2], and QOCSOS [4] and
equal to I-GWO, IHHO [14], and QOSIMBO_Q [2] which
is 63.59 $/MWh. From table it can be observed that the
proposed technique provides best technical and economical
results.

To examine the effect of the PF of the DG on the PLR,
optimum DG sitting and sizes with OPF are carried out
utilizing the established method. Table 4 reviews the con-
clusions of the OPF obtained by the I-GWOPSO compared
to SOS [4], QOCSOS [4], IHHO [14], EA-OPF[31], and
I-GWO. It can be observed from the table, a considerable
loss reduction in the PL achieves 94.4 % is given by the
I-GWOPSO and PL achieved by I-GWO is 94.46%. The
CPDG of I-GWOPSO is slightly less than the I-GWO equals
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FIGURE 2. I-GWOPSO pseudocode.

57.75 $/MWh. However, in comparison of I-GWOPSO with
I_GWOand other optimization techniques it is concluded that
I-GWO is more economical.

b: VOLTAGE PROFILE FOR 33-BUS DN
The voltage profile (VP) of DN is affected by DG installation
at the various PF is represented in Figure 5. It is observed

that a considerable increase in voltage has been attained when
adding multiple DGs with OPF.

c: STATISTICAL ANALYSIS AND PERFORMANCE FOR
PROPOSED METHOD
Statistical analysis is performed on minimum, average, and
maximum RPL. It’s conducted by ten runs for the traditional
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FIGURE 3. Flow chart of I-GWOPSO based approach.

FIGURE 4. Single-line diagram of 33-bus test RDN.

I-GWO and proposed I-GWOPSO for the verification of
proposed techniques.

The summary of this analysis is given in Table 5. The
convergence characteristics of hybrid I-GWOPSO and con-
ventional I-GWO are shown in Figures 6(a), 6(b), and 6(c)

FIGURE 5. IEEE 33-bus DN voltage profile at various Cases for SOOP.

for different power factors (unity, 0.95 and optimal). It can be
seen that the efficiency of hybrid I-GWOPSO is better than
traditional I-GWO.

2) MULTI-OBJECTIVE ASSESSMENT FOR 33-BUS DN
In this scenario, aMOOP is solved to find the optimum sitting
and sizing of the DG unit to reduce the PL, VD, and increase
the VSI in the 33-bus network. The base case of the power
flow result indicates that the PL is 210.05 kW, the voltage
deviation equals 0.1328 p.u., and the VSI is 0.6697 p.u.

a: DG SITTING AND SIZING FOR 33-BUS DN
The proposedmulti-objective I-GWOPSO is utilized to deter-
mine the ODGA at UPF and associated with those techniques
which have been utilized for the similar dilemma as depicted
in Table 6. It can be seen from the table the minimum PL
is obtained from the multi-objective I-GWOPSO which is
76.6538 p.u., which is nearly equal to the I-GWO. Though,
the VD attained by the hybrid I-GWOPSO is 0.0034526 p.u.,
which is smaller than 0.006514 p.u., from QOCSOS [4], and
nearly equal to the 0.0033378 p.u., from I-GWO. Besides,
I-GWOPSO obtains higher VSI which equals 0.9354 p.u.,
and that is superior to these values acquired by 0.9168 p.u.,
QOCSOS [4]. The operational cost of I-GWOPSO is much
less than the others technique in this table.

Additionally, the sitting and sizing of DG with 0.95 LPF
is executed, and the achieved findings are shown in Table 7.
In this scenario, three of the OF such as PL, VD, and
VSI attained by the advanced multi-objective I-GWOPSO
which equal 30.0185 kW, 0.0002537 p.u., and 0.97045 p.u.
correspondingly are improved than those achieved by
I-GWO, QOSIMBO_Q [2], and MOIHHO [14].

However, compared to multi-objective I-GWO, the Multi-
objective I-GWOPSO provides superior outcomes for the
two objective functions. Furthermore, the results indicate
a substantial decrease in the RPL compared to the UPF
due to the inserted reactive power. Also, the operational
cost of I-GWOPSO is less than the QOSIMBO_Q [2],
MOIHHO [14], and I-GWO which is equal to 70.67 $/MWh.
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TABLE 2. ODGA for 33-bus network based on single-objective utilizing various optimization methods at UPF.

TABLE 3. ODGA for IEEE 33-bus network based on single-objective utilizing various optimization methods at 0.95 LPF.

TABLE 4. ODGA for IEEE 33-bus network based on single-objective utilizing various optimization methods at OPF.

It can be observed from Table 8, the findings confirm the
efficacy of the advanced multi-objective I-GWOPSO com-
pared to the MOIHHO [14], MOHHO [14], and the I-GWO

concerning the PL, VD, and CPDG which are 12.9135 kW,
0.0003271 p.u., and 62.57 $/MWh. Pareto optimal solution is
obtained at various operational PF by using multi-objective

25678 VOLUME 10, 2022



M. I. Akbar et al.: Novel Hybrid Optimization-Based Algorithm for Single and Multi-Objective Achievement

FIGURE 6. Convergence characteristics for IEEE 33-bus network of the
I-GWO and I-GWOPSO at different operating power factors (a) UPF
(b) 0.95 LPF and (c) OPF.

I-GWOPSO which illustrates in figure 7. Moreover, the
figures indicate the finest compromise solution achieved
by the weighted-sum method including all nondominated
solutions.

FIGURE 7. Non-dominated pareto optimal solutions obtained by
multi-objective I-GWOPSO for IEEE 33-bus network including operation of
DG at (a) UPF (b) 0.95 LPF (c) OPF.

b: VOLTAGE PROFILE FOR 33-BUS DN
When the VD and VS are included as the objective func-
tions for the multi-objective DG sizing and allocation,
it is observed that the voltage profile of 33-bus has been
improved. Figure 8 shows the effect of the DG at different
PF for the MOP. It is observed that the voltage profile is
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TABLE 5. Statistical analysis of IEEE 33-bus network for the I-GWO and
I-GWOPSO for single-objective.

significantly better than gained by the SOP operating at the
same PF (see Figure 5).

B. IEEE 69-BUS NETWORK
In this subsection, IEEE 69-bus network is utilized to analyze
the results of recommended technique and other optimization

methods are reviewed. The single line diagram of 69-bus DN
is shown in Figure 9. The whole data of this network are
presented in [57].

1) SINGLE-OBJECTIVE ASSESSMENT FOR 69-BUS DN
The results of the power flow of the 69-bus network stated
that the real PL is 224.59 kW, the reactive PL is 101.99 KVAR
and the smallest voltage on 65 bus is 0.9102 p.u. Therefore,
to reduce the PL and improve the performance of the DN,
optimally allocate three DG units operating at various PF.

a: DG SITTING AND SIZING
In Table 9, a comparison is shown. This comparison is
between the effectiveness of the proposed I-GWOPSO atUPF

TABLE 6. ODGA for 33-bus network based on multi-objective utilizing various optimization methods at UPF.

TABLE 7. ODGA for 33-bus network based on multi-objective utilizing various optimization methods at 0.95 LPF.

TABLE 8. ODGA for 33-bus network based on multi-objective utilizing various optimization methods at OPF.
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TABLE 9. ODGA for 69-bus network based on single-objective utilizing various optimization methods at UPF.

FIGURE 8. IEEE 33-bus network voltage profile at various Cases for MOOP.

FIGURE 9. Single line diagram of 69-bus test RDN.

and other optimization techniques. The maximum PLR is
achieved by the I-GWOPSO and I-GWOwhich is 68.4609%.
The maximum PLR is achieved when three DG units are
operating at 21, 61, and 11 with the real powers equal
to 0.301MW, 1.738MW, and 0.508MW; respectively. The
operational cost of DG for the proposed algorithm is less
than the SFSA [17], QOSIMBO_Q [2], CSCA-64 [10],

IHHO [14], QOCSOS [4], and nearly equals to I-GWO, i.e.,
51.19 $/MWh.

The proposed technique I-GWOPSO and other techniques
result at 0.95 LPF as shown in Table 10. In the achieved
results the PL is 20.73kW, PLR equals 90.77% which is
nearly equal to IHHO [14]. The operational cost of DG
is far better than QOCCSOS [4], IHHO [14] and the
traditional I-GWO equals 55.91 $/MWh. The effectiveness of
I-GWOPSO doesn’t change with the Change in PF in order
to achieve an optimal value of PF. At the optimal value of PF,
it provides the least PL and CPDG which is approximately
equal to 4.26 kW and 51.15 $/MWh and slightly less than the
I-GWO as depicted in Table 11. Moreover, the optimal value
of PF is crucial in reducing the PL by 98.1% from the base
case.

b: VOLTAGE PROFILE FOR 69-BUS DN
Figure 10 shows that with the reduction of active PL of 69 bus
its voltage profile has been significantly improved. It is noted
the voltage profile has been improved at the optimal value of
PF. Reactive and active power has been injected in a balance
at 0.95 PF for the identical goals.

c: STATISTICAL ANALYSIS AND PERFORMANCE FOR
PROPOSED METHODS
Ten iterations are performed by the I-GWO and I-GWOPSO
and the minimum, average, and maximum RPL are attained
in Table 12 to represent the robustness of the proposed
I-GWOPSO technique. The attained findings affirm the capa-
bility of the I-GWOPSO in achieving the optimum result
more than the I-GWO and this can be perceptible from the
convergence characteristics exhibited in Figure 11.

2) MULTI-OBJECTIVE ASSESSMENT FOR 69-BUS DN
Similarly, the MOP is employed for the allotment of the DG
into the IEEE 69-bus network to optimize the PL, VD, and
VSI where the base case values of these OF are 224.59 kW,
0.0977 p.u., and 0.6897 p.u.
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TABLE 10. ODGA for 69-bus network based on single-objective utilizing various optimization methods at 0.95 LPF.

TABLE 11. ODGA for 69-bus network based on single-objective utilizing various optimization methods at OPF.

FIGURE 10. IEEE 69-bus DN voltage profile at various cases for SOOP.

a: DG SITTING AND SIZING FOR 69-BUS DN
The ODGA at UPF using various optimization approaches
is organized in Table 13. In this scenario, multi-objective
I-GWOPSO attains minimum PL which is 71.5889 kW (PLR

TABLE 12. Statistical analysis of IEEE 69-bus network for the I-GWO and
I-GWOPSO for sigle -objective.

68.12%), and minimum VD 0.00061898 p.u., which is less
than MOSCA [10], SFSA [17], GA/PSO [38] and I-GWO
and highest VSI achieved by the MOCSCA [10] which
is 0.9798. The operational cost obtained by I-GWOPSO is
59.97 $/MWhwhich is less than the other techniques provide
in table.

In Table 14, the outcome of the DG operating at 0.95 LPF is
presented and confirmed that the multi-objective I-GWOPSO
provides the finest results in two of the OF (PL, and VD)
compared to the other technique which confirms the ability
of themulti-objective I-GWOPSO.Moreover,MOIHHO [14]
gives maximum VSI which is 0.980 p.u. The real power
loss obtained by I-GWOPSO is 20.7046 kW and VD is
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TABLE 13. ODGA for 69-bus network based on multi-objective utilizing various optimization methods at UPF.

TABLE 14. ODGA for 69-bus network based on multi-objective utilizing various optimization methods at 0.95 LPF.

TABLE 15. ODGA for 69-bus network based on multi-objective utilizing various optimization methods at OPF.

0.0001626 p.u., which is less than the MOIHHO [14],
QOSIMBO_Q [2], and I-GWO. Hence, the proposed
technique provides the minimum operational cost which
is 56.53 $/MWh.

Lastly, Table 15 provides ODGA at the OPF where the
conclusion of the multi-objective I-GWOPSO is compared
with multi-objective I-GWO. It can be observed that
a significant improvement in the PL, VD, and CPDG
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FIGURE 11. Convergence characteristics of the I-GWO and I-GWOPSO for
IEEE 69-bus network at different operating power factors (a) UPF
(b) 0.95 LPF and (c) OPF.

attained by I-GWOPSO and that approximates 4.8687 kW,
0.000117 p.u., and 53.39 $/MWh which indicates that the
DN develops more balanced can tolerate the unusual circum-
stances.WhileMOIHHO [14] provides maximumVSI which
is 0.991 p.u. Figure 12 shows that the Pareto optimal solution
at various operating PF anyway the finest compromise result
achieved by the weighted-sum method.

FIGURE 12. Non-dominated pareto optimal solutions obtained by
multi-objective I-GWOPSO for IEEE 69-bus network including operation of
DG at (a) UPF (b) 0.95 LPF (c) OPF.

b: VOLTAGE PROFILE FOR 69-BUS DN
Figure 13. demonstrates the voltage profile of the IEEE
69-bus network in case of resolving the multi-objective
DG sitting and sizing problem at different operating p.f.
Considerable progress is obvious in the figure in the
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FIGURE 13. IEEE 69-bus DN voltage profile at various cases for MOOP.

three scenarios of the p.f as an outcome of including the
VD and VSI.

VI. CONCLUSION
In this paper, the problems associated with optimumDG allo-
cation are framed with the single and multiple objective func-
tions. The single objective function includes theminimization
of real power loss. To formulate themulti-objective problems,
power loss, voltage deviation, and voltage stability index
are integrated into a single objective utilizing weights. The
proposed I-GWOPSO in this study provides an effective solu-
tion for optimized DG allocation in RDN. The effectiveness
of the proposed I-GWOPSO hybrid algorithm is evaluated
across 33-bus and 69-bus test radial distribution networks.
The operation of distributed generators is also performed
by regulating various values of power factors. The obtained
results at different PF (unity, fixed, and optimal pf) showed
a clear reduction in real power loss, the least deviation in
voltage stability, and an improved voltage stability index. As a
SOF, the DG operating at OPF on 33 and 69-bus RDN has
observed a significant reduction in PL by 94.40% and 98.1%
respectively. For MOOP in 33-bus test DN, the DG operating
at OPF has resulted from more reduction in PL by 93.85%.
Also, VD is reduced to 99.75% of the initial value and VSI
is significantly improved i.e., close to unity. Furthermore,
in MOOP in 69-bus test DN, PL is reduced by 97.93%,
VD reduced to 99.88% of its initial value and VSI is sig-
nificantly improved, respectively. The comparative study of
results obtained from I-GWOPSOwith reported works shows
that the proposed approach outperforms in several aspects.
Also, the cost of active power generation from respective
DGs is the least as compared to reported findings. Hence
validating its use as a planning tool for future studies. Further
I-GWOPSO is more efficient than I-GWO in the accuracy
and speed of convergence. Conclusively, I-GWOPSO can be
a more efficient, economical, and optimal solution for the DG
allocation in RDNs.

In future work, the proposed work will be extended to new
concepts like microgrid planning and microgrid scheduling
with renewable resources and variable loads across multiple
planning horizons.
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