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ABSTRACT The advancement of semiconductor technology nodes requires precise control of their man-
ufacturing process, including plasma etching, which is highly important in terms of the yield, cost, and
device performance. Endpoint detection (EPD) is an imperative technique for controlling this process. Here,
we propose a novel EPD scheme based on multivariate kernel density estimation (MKDE). The proposed
approach is developed by extending the conventional unsupervised learning MKDE method to supervised
learning. The performance of the proposed scheme is validated on randomly selected optical emission
spectroscopy data collected from an industrial semiconductor manufacturing process. Because the proposed
approach uses target values (labeling) of data, it demonstrates enhanced EPD performance compared to the
conventional MKDE method, even without threshold presetting.

INDEX TERMS Multivariate kernel density estimation, plasma etching, endpoint detection, anomaly
detection, supervised learning, semiconductor manufacturing.

I. INTRODUCTION
Recently, with the improvement in computer functions and
computational speed, artificial intelligence (AI)-based meth-
ods have been studied for detecting semiconductor plasma
etching endpoints. This is because the existing etching end-
point detection (EPD) method depends on the experience of
the engineers, and therefore, causes manufacturing process
changes and errors. These changes and mistakes degrade
the semiconductor manufacturing yield. The fabrication yield
is a most critical indicator determining the success of the
semiconductor manufacturing industry, and it is obtained as
the ratio of the total number of wafers produced by the entire
fabrication and evaluation process to the initial number of
wafers. Therefore, various studies have been conducted to
enhance the fabrication yield and address related problems
in the semiconductor manufacturing process. AI has been
adopted to improve the fabrication yield and conduct pre-
dictive maintenance of semiconductor equipment [1], [2].
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Support vector machines [3] have been employed to classify
low- and high-yield classes, and a polynomial neural network
has been applied to model and control the plasma etching
process [4]. Deep learning techniques have also been studied
for virtual metrology to estimate quantities that are key to pro-
duction but are expensive or unmeasurable, and to evaluate
process quality [5].

In the semiconductor process, the plasma etching process
is important, with the process nodes continuing to becoming
small and shift toward new complex architectures [6], [7].
A vital part of the plasma etching process is the selective
removal of thin layers of materials without damaging the
layer beneath. Consequently, the plasma etching scheme for
extreme ultraviolet patterning is challenging, and optimal
EPD during the etching process is crucial for minimizing the
process variations and errors.

Although various approaches have been proposed for EPD
to control plasma etching, themost commonly used technique
is monitoring the in situ optical emission spectra collected
by optical emission spectroscopy (OES) during the process
[8]–[11]. OES is an excellent technique for monitoring the
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plasma emission intensity in plasma etching. However, the
main problem is that large amounts of multidimensional
spectroscopic data are collected owing to the measurement
of 2,048 wavelength-specific intensity values over time.
Therefore, research on dimensionality reduction of OES
data using principal component analysis [12] and autoen-
coder neural networks as techniques for feature extraction
has also been conducted [13]–[17]. In addition, a maxi-
mum separation clustering development study has been con-
ducted to cluster variables with unique patterns and provide
practical pattern expression using a few representative
variables [18].

Multivariate analysis techniques have been used in the
etching process to increase sensitivity [19], [20]. An inves-
tigation using K-means cluster analysis was attempted to
improve the detection sensitivity of plasma etching end-
points [21]. K-means clustering is a nonhierarchical and
centroid-based approach. It has been used to detect etching
endpoints in real time and increase the sensitivity of optical
emission signals. However, the K-means cluster analysis is
based on the Euclidean distance, which has a limitation in
that it does ignores the covariance of the cluster. Therefore,
Gaussian mixture model-based plasma EPD has also been
proposed for real-time monitoring [22]. A convolutional neu-
ral network (CNN) has been applied to detect endpoints using
OES data [23]. Because OES data have specific patterns
related to wavelengths, this study exploits the capability of a
CNN model to recognize specific two-dimensional patterns,
similar to image detection.

In this paper, we propose a novel plasma etching EPD
approach based on multivariate kernel density estimation
(MKDE). MKDE extends KDE to a multidimensional ran-
dom vector, and KDE is a nonparametric statistical modeling
method that generates a statistical model using only the given
data, without using a parametric probability density function
(PDF). KDE does not require a statistical moment or a spe-
cific PDF to estimate the probability distribution. It yields
the kernel density function by combining the kernel functions
provided by all feature vectors. Because KDE relies only on
data, it is practical when the parametric PDF cannot represent
the given data distribution.

KDE is a technique specialized for classifying a small
percentage of data by unsupervised learning and is commonly
used for anomaly detection and data classification. Related
applications include survey of motor fault detection and
diagnosis by motor current characteristic analysis [24] and
efficient automatic modulation classification for a modulated
signal group [25].

Existing detection techniques rely extensively on unsuper-
vised learning. However, the obtained results do not typi-
cally meet the criteria, and could be significantly improved
by the supervision of some labeled features. Thus, impor-
tant detection that conventional unsupervised learning cannot
achieve is possible by the above approach [26]. Similarly,
many algorithms improve clustering quality using labeled
data pairs in unsupervised clustering. The addition of labeled

examples can improve the performance of anomaly detection.
The detection rate of an algorithm can be improved and its
false-positive rate can be reduced by further development of
the model [27], [28]. In addition, there are infinite unlabeled
data in real engineering problems, and in some cases, labels
may be unavailable for all data. Therefore, learning by adding
labeling to existing unsupervised learning is advantageous to
integrate labeled and unlabeled data into the learning pro-
cess. Specifically, exploiting data characteristics is an inter-
esting and essential alternative for engineering classification
problems [29].

Owing to the characteristics of the semiconductor etching
process, OES data are composed chiefly of signals generated
during the etching process, which present stationary attributes
over time. However, when the etching process approaches
its endpoint, as exhibited by the rapid changes in the signal
characteristics, it is stopped. Therefore, the number of signal
samples near the etching endpoint is relatively very small,
and observation of a signal near it can be considered as an
anomaly. Therefore, MKDE can be employed to detect the
etching endpoint. However, the application of KDE requires
a certain threshold to determine whether an input feature
belongs to the category of endpoint features. Advantageously,
datasets obtained from the semiconductor manufacturing pro-
cess typically contain endpoint information because real-
world data generally retain the corresponding information
from wafer processing. In this study, this provides a basis
for detecting an etching endpoint by applying MKDE twice,
without presetting the threshold. In the learning phase for
MKDE, previously collected OES data can be used to develop
two MKDE models, one each for nonendpoint and endpoint
sections. In the learning phase using such data, the non-EPD
section data for MKDE are employed for non-EPD, whereas
the PDF for EPD is estimated using relatively fewer data
labeled with EPD times. Therefore, the algorithm developed
in this study belongs to the class of supervised learning.
Specifically, the primary concept is to estimate the overall
PDF by applying MKDE to a given OES dataset for non-
EPD and relatively fewer OES samples near the EPD time
to construct the second PDF at that moment. By compar-
ing the magnitudes of these two PDFs, the probabilities of
the features from the OES data are computed to determine
whether the input feature is for EPD. The final determination
is made when the decision for each input feature is repeated
several times in a row, to obtain the final EPD feature. The
advantage of the proposed approach is that advanced setting
of the threshold is not required.

There are several contributions of this study. The PDFs
of the non-EPD and EPD sections can be obtained during
the semiconductor plasma etching process by extending the
conventional MKDE method to a supervised learning ver-
sion. The plasma etching endpoint can be detected without
a threshold using the proposed MKDE, which has a simpler
structure than a general deep-learningmodel.Moreover, it has
the advantage of obtaining the probability for the etching
endpoint by obtained the PDFs with a small amount of data.
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FIGURE 1. Schematic of plasma etcher equipped with optical emission
spectrometer and fluctuation of obtained multiwavelength OES spectra
with time.

Finally, the proposed approach outperforms the conventional
unsupervised MKDE.

The remainder of this paper is organized as follows.
Section II describes the OES data used in this study.
Section III briefly explains the basic concept of MKDE,
introduces the proposed approach, and describes the prepro-
cessing, feature selection, and flag setting steps. Section IV
discusses the experimental procedure and results, and
Section V presents the conclusions.

II. OES DATA
In the plasma etching process, EPD is conducted by monitor-
ing OES spectra collected during this process. A schematic
of a plasma chamber equipped with an optical emission
spectrometer and its multiwavelength OES data are shown
in Fig. 1. The plasma etching equipment is an inductively
coupled plasma reactive ion etching system with a radiofre-
quency (RF) power supply. The optical emission spectrom-
eter, which is a fiber optical sensor system used to collect
the plasma emission intensity, is fixed at the sidewall of
the chamber using a quartz window viewport. Under low
pressure, a reactive plasma containing perfluorocarbons is
generated by RF power, bombards the wafer surface, and
reacts with the targeted materials. Accordingly, the reactants
and by-products of the etching cause fluctuations in the opti-
cal emission spectra at a particular time. The obtained OES
data depend on the target materials. Furthermore, the size of
the features to be etched degrades the signal-to-noise ratio
of the OES data [30]. The OES measurement is conducted
conveniently without intervention while providing reliable
real-time information on the etching process.

In general, OES data are vast and multidimensional, being
functions of the wavelength, time, and intensity. However,
high-resolution data are required to achieve the desired sen-
sitivity and accuracy for EPD as the feature size decreases,
because EPD is realized by monitoring the shift of the
emission peak. Fig. 2 shows a three-dimensional plot of
actual OES spectra used in this study. The spectra consist

FIGURE 2. Three-dimensional plot of OES spectrum samples.

FIGURE 3. Intensity waveforms at wavelengths of 387 nm, 520 nm,
700 nm, and 777 nm, which are related to CN, CO, F, and SiF over time.
Red vertical line denotes ground-truth EPD time.

of 2048 components ranging from 190.0 to 892.8 nm, and
the sampling rate is 0.1 s for approximately 60 s.

In this study, the molecular species of CN, CO, F, and SiF
are selected for breaking silicon dioxide covalent bonding
using perfluorocarbon gases, thus forming volatile byprod-
ucts. The emission peak lines corresponding to 387 nm,
520 nm, 700 nm, and 777 nm of the OES signal are employed
for EPD. It is well known that these wavelengths reflect well
the characteristics of an etching endpoint section and that
their intensity fluctuations show the changes in the cham-
ber plasma during the etching process [31], [32]. Fig. 3
presents exemplary waveforms of the four wavelengths used
as features.

The ground-truth EPD time is chosen using the sensor clus-
ter manager toolbox software, SCMTM (Prime Solution Co.,
LTD), and process engineers. The EPD times are marked on
the OES datasets by verifying the processed 1,911 wafers in
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FIGURE 4. Ground-truth EPD time histogram with mean of 37.55 s and
standard deviation of 2.44 s.

the semiconductor manufacturing process. The results show
that the ground-truth EPD times are acceptable, even if they
may have some errors. Fig. 4 shows a histogram of the
ground-truth EPD times, with a mean of 37.55 s from the
etching start time and a standard deviation of 2.44 s.

III. PROPOSED APPROACH
A. MULTIVARIATE KERNEL DENSITY ESTIMATION
MKDE is a nonparametric statistical modeling method that
estimates a PDF using only data, without defining any infor-
mation on a specific PDF and correlation. MKDE is a tech-
nique with a very high degree of freedom in the expression of
the distribution function because its shape is not fixed and
can be flexibly expressed according to the data. It defines
the same kernel function for all data components. When
all kernel functions are summed according to the optimal
bandwidth, it yields the joint PDF estimate [33]. Specifically,
the multivariate kernel density estimator is a function of the
estimated probability density of a random vector [34].

Let Ex = (x1, x2, . . . , xd )T be a d-dimensional random vec-
tor with density f , and let Eyi = (yi1, yi2, . . . , yid )T denote the
independent random samples extracted from f . The typical
form of the multivariate kernel density estimator for a real
vector of Ex is

f̂H(Ex) =
1
n

n∑
i=1

KH(Ex − Eyi), (1)

where n is the number of random samples, KH is a scaled ker-
nel function with kernel function K and defined by KH(Ez) =
|H|−

1
2K (H−

1
2 Ez), and H is a d × d bandwidth matrix, which

is positive definite and symmetric [35].
There are several options for the bandwidth matrix

[36]–[38]. However, in this study, Silverman’s rule [38],
which is commonly applied for MKDE, is adopted. Note that
this rule approximates the optimal bandwidth in terms of the

mean integrated squared error for the Gaussian random vari-
ables. Let the bandwidth matrix, H, be diagonal as follows:

H = diagonal(h1, h2, . . . , hd ). (2)

The component, h`, for ` = 1, 2 . . . , d is expressed as

h` = σ`

{
4

(d + 2)n

}1/(d+4)
(3)

where σ` is the standard deviation of the `-th component
of the feature vectors, Eyi, for i = 1, 2, . . . , n. Note that in
practice, the sample estimator substitutes σ`. Equation ((3))
is used in practice, even if most of the data are not Gaussian.

The kernel function, K , is non-negative, real-valued,
and integrable and satisfies the following prerequisites:∫
+∞

−∞
K (u) du = 1 andK (−u) = K (u) for any u .Many types

of kernels K (·) can be found in the relevant literature, and
common symmetric kernels are Gaussian, uniform, Epanech-
nikov, triangular, biweight, and triweight types [39], [40]. The
shape of K (·) has little influence on the estimator shape [33],
[40], [41]. This is crucial because the smoothing parameter,
H, determines the degree of smoothing. WhenH is extremely
small, the estimator shows insignificant details. An extremely
large H causes oversmoothing of the information in the sam-
ples, which in effect may hide some of the essential charac-
teristics. Therefore, a compromise is required.

In general, the semiconductor manufacturing process has
the following unique characteristics. Although most of the
data in the etching process of awafer are in the non-EPD state,
the etching endpoint appears for a relatively short time after
the etching process is completed. In addition, one etching
endpoint should necessarily result in a successfully etched
wafer by the above process. For example, when EPDoccurs in
the 300th OES sample on a wafer, 299 features emerge from
the etching process and one etching endpoint. Compared with
the features during the etching process, the features near the
etching endpoint can be regarded as anomalies, with a rela-
tively low occurrence frequency. Therefore, in this study, the
etching endpoint of the semiconductormanufacturing process
is detected in a supervised manner by applying MKDE, the
existing unsupervised method, twice using the above aspects.

Existing KDE-based anomaly detection requires a thresh-
old value. Finding the optimal threshold needs a tuning
process based on known data. Furthermore, because the band-
width of the kernel has a significant influence on KDE per-
formance, the optimal bandwidth is selected by trial and error
using available data.

B. DEVELOPMENT OF PROPOSED APPROACH
MKDE is known as unsupervised learning, which requires
no labels for training data and creates a PDF using the entire
dataset. Therefore, it produces a low probability for a sample
with a small proportion of data, which is detected as an
anomaly. However, in practice, OES data from the semi-
conductor etching process are composed of non-endpoint
and endpoint sections. The non-endpoint section is from
the beginning of the process before the endpoint, whereas
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the endpoint section is located immediately after the non-
endpoint section. In general, the endpoint section contains
only a few samples, and thus, is much shorter than the non-
endpoint section. Therefore, the OES data obtained from the
practical manufacturing process contain ground truths, which
are actual EPD time values. Thus, these EPD times can be
exploited in experiments. In this approach, two kernel densi-
ties are estimated. The first kernel density is assessed using
the data for the non-endpoint section, whereas the second one
is obtained using the features of the endpoint section.

Fig. 5 illustrates a flowchart of the MKDE-based EPD
algorithm developed for the semiconductor etching process.
For the learning phase, the training data are utilized for
estimating the two kernel densities for the non-endpoint and
endpoint sections, which are denoted by ‘‘KDE (Non-EPD)’’
and ‘‘KDE (EPD)’’ in the figure, respectively.When the algo-
rithm operation starts, the moving average filter is applied in
the preprocessing stage to reduce the noise before extracting
the features of the OES data considering the measurement
noise contamination. Subsequently, only the wavelengths that
are very sensitive to the change in the etching process are
selected and used as features, as mentioned in the previous
section. Following this, the feature, Ex, of each time sample
is applied to Models 1 and 2 for obtaining the probabilities,
f1(Ex) and f2(Ex). Probabilities f2(Ex) and f1(Ex) represent the
probabilities of a feature being and not being an endpoint,
respectively. A flag is set for each time sample. When f1(Ex) ≥
f2(Ex), the flag of a time sample is set as zero; otherwise,
it is set as one. The final decision for the etching endpoint is
made when the number of flags exceeds the preset threshold,
which is determined from experiments in terms of the optimal
performance.

The MKDE-based approach employed in this study avoids
these two difficulties. The existing MKDE requires threshold
value setting, whereas the proposed scheme does not need
to set the threshold value by applying the second MKDE.
Because the conventional MKDE is a non-parametric density
estimation scheme, the MKDE-based approach employed in
this study can overcome the problem of model assumptions.
This approach exploits both labelled and unlabelled samples.
It also has lower complexity compared to CNNs [39].

C. PREPROCESSING
In this study, the proposed algorithm uses the wavelengths
of 387 nm, 520 nm, 700 nm, and 777 nm for EPD. As pre-
viously mentioned, these wavelengths reflect well the char-
acteristics of the etching endpoint. Example waveforms of
the wavelengths used as features are shown in Fig. 3. The
intensity values observed by OES may vary depending on
the sensor setting and environment. Therefore, preprocess-
ing is essential to complement the performance of the KDE
model. In this step, moving average filtering and normal-
ization to a specific reference sample on the time axis are
performed to mitigate the measurement noise and remove
the characteristics dependent on the value of the waveform,
respectively.

FIGURE 5. Flowchart of MKDE-based etching endpoint detection.

First, to mitigate the effect of measurement noise, a moving
average filter of ten samples (1 s) is applied to the data.
Note that KDE estimates the probability density based on
the given dataset, whereas the etching endpoint is detected
by the change in the intensity value, not by the simple inten-
sity value. If the intensity value varies, the etching endpoint
cannot be correctly detected by observing only the value.
Therefore, it is necessary to normalize x(k) and use the nor-
malized version, xn(k), as a feature component. The normal-
ized version, xn(k), at time ks is given by xn(k) = x(k)/x(ks),
k = 1, 2, . . . , n, where ks is the start time when the OES
equipment normally operates and n is the length of the OES
data. The moving average filter output waveforms shown in
Fig. 3 are presented in Fig. 6, and the normalized waveforms
are shown in Fig. 7.

D. FLAG SETTING
For each feature vector Ex, the two KDE models gener-
ate the non-EPD and EPD probabilities of f1(Ex) and f2(Ex),
respectively. When f1(Ex) > f2(Ex), the flag is set as zero,
implying the feature is EPD; otherwise, it is one, implying the
feature is non-EPD. Finally, when the number of repetitions
exceeds the preset number, the EPD feature is determined.
This preset number is also optimized in terms of performance.
Note that a feature with a flag of one is not the etching
endpoint matching the ground truth; however, it is nearer to
an endpoint section than to a non-endpoint section. Conse-
quently, the final EPD feature is determined based on the
number of flag repetitions.
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FIGURE 6. Waveform of moving average filter with ten samples averaging
for four wavelengths.

FIGURE 7. Normalized waveforms of moving average filter output with
ks = 50.

Fig. 8 shows an example of the result of the entire etching
process of an arbitrary wafer. Probabilities f1 (red) and f2
(blue) presented in Fig. 8 are obtained using the non-EPD and
EPD models for features that occur in 0.1-s units during the
entire etching process, respectively. For each feature, the flag
is set by evaluating the relative relationship between f1 and f2.
Fig. 8 (b) presents an enlarged image of Fig. 8 from the 200th
to the 400th sample. The black vertical line is the ground-
truth EPD, and the pink dotted line is the EPD estimated by
the proposed method. As we will present subsequently, the
estimated EPD position is where one flag is continuously
repeated 16 times. In this case, the difference between the
ground truth and the estimate is five samples.

IV. EXPERIMENT
This section presents the performance of the proposed
approach using OES data, as previously explained. First,

FIGURE 8. Examples of non-EPD and EPD probabilities f1 and f2,
according to sample number when using Gaussian kernel. Note that
bottom figure is enlarged image from 200th to 400th sample.

the computational environment and dataset to be used are
described. The evaluation metrics used in the experiment for
performance investigation are briefly introduced. First, the
performance of the proposed approach is compared with that
of the conventional MKDE scheme for a Gaussian kernel.
Subsequently, the kernel among Gaussian, Epanechnikov,
triangle, and box kernels that provides the best performance is
investigated. Furthermore, the effect of bandwidth variation
is demonstrated in terms of the evaluation metrics. Finally,
the statistical distribution of the prediction error is presented.
Note that the experiment results in this section are obtained
by averaging over ten trials.

The proposed and conventional models are developed
using MATLAB 2020a, and the computing environment
is a 32-core 3.69-GHz CPU, 64-GB RAM, and an
RTX 2080 Super GPU.

A. DETAILS OF DATASET
OES dataset obtained from 1911 wafers is used in this
experiment. A total of 1300 wafers are randomly selected
to create the non-EPD and EPD MKDE models. The total
number of features used to construct the non-EPD MKDE
model is 280,323. Concurrently, for the EPD MKDE model,
1300 feature vectors are selected at the EPD time, and two
additional feature vectors before the EPD time and two after
the EPD time are taken for each wafer. Thus, five features are
chosen from a wafer, and the total number of features for the
EPD KDE model is 6500. Note that the EPD time obtained
during the etching process is an experimentally determined
ground truth, which may have errors. Tests are performed
using the data obtained from the remaining 611 wafers. The
results presented in the following subsections are obtained by
experimenting with this process ten times.

B. PERFORMANCE MEASURE
In the experiments, performance evaluation of the proposed
approach is in terms of the accuracy, receiver operating
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characteristic (ROC) curve, and F1-score. Accuracy is an
indicator of the similarity between predicted data and actual
data. However, an imbalanced distribution of label values,
such as in this study, can distort the performance evaluation.
An ROC curve is commonly known to be effective for imbal-
anced datasets. However, to construct an ROC curve, the
threshold value needs to be varied and the classifier outputs
should be real-valued, and not labels such as 0 and 1. There-
fore, the ROC curve is inapplicable to the proposed approach,
which produces a label depending on the comparison result
of the outputs of the two models. In this experiment, the ROC
curve is applied only to the conventional MKDE scheme to
determine the threshold for the optimal performance. The
F1-score is also known to be effective for imbalanced datasets
and is bounded between 0 and 1. An F1-score close to 1 rep-
resents good performance, whereas a zero F1-score fails in
classification [42].

For binary classification, accuracy can be defined as
follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
(4)

where TP, TN , FP, and FN stand for ‘‘true positive,’’
‘‘true negative,’’ ‘‘false positive,’’ and ‘‘false negatives,’’
respectively. The ROC curve shows the variation in the true
positive rate (TPR) with the false positive rate (FPR, 1−TNR,
where TNR denotes true negative rate). The TPR is occasion-
ally called Recall and represents the number of predicted pos-
itives among all real positive cases. The TNR represents the
level at which the actual negative value should be accurately
predicted. The TPR and the FPR are expressed as follows:

TPR =
TP

TP+ FN
= Recall (5)

and

FPR = 1−
TN

FP+ TN
=

FP
FP+ TN

(6)

The FPR should also be considered in the detection perfor-
mance. An ROC curve can rate the goodness-of-fit of a detec-
tion approach, reflecting the FPR [43], [44]. An ROC curve
presents the model performance in a two-dimensional form.
Hence, an intuitive decision is difficult based on performance
comparison. Therefore, a simple approach for showing per-
formance is necessary. The area under the ROC curve (AUC)
is a number between zero and one representing the unit square
area under the ROC curve, and its computation is simple [45].

The F1-score is the harmonic mean of both the Precision
and TPR (Recall), which is given by

F1 =
2

1
Precision +

1
TPR

= 2×
Precision× TPR
Precision+ TPR

, (7)

where Precision = TP
TP+FP . Precision indicates the number of

positives for all positive predictions. Note that the F1-score
accounts for both the false positives and false negatives by the
Precision and the TPR(Recall). To obtain a higher F1-score,
both the Precision and TPR need to be increased in terms of
the harmonic mean.

FIGURE 9. ROC curve of conventional MKDE approach with Gaussian
kernel.

FIGURE 10. Accuracy curves of conventional and proposed MKDE
approaches with Gaussian kernel versus number of flag repetitions.
Optimal threshold value is applied to conventional approach curve.

C. PERFORMANCE COMPARISON OF CONVENTIONAL
AND PROPOSED APPROACHES
The performance of the proposed approach is evaluated and
compared with that of the conventional MKDE approach
under the same conditions employing the most commonly
used Gaussian kernel. Bandwidth H is computed using Sil-
verman’s rule (3). For the conventional MKDE approach, the
optimal threshold is estimated using the ROC curve shown
in Fig. 9, whose AUC is 0.9962. Note that the proposed
approach does not require any threshold value because it
compares the two outputs from the EPD and non-EPDmodels
for binary classification, as mentioned in the previous section.
The optimal operating point on the ROC curve is obtained
as FPR = 0.0285 and TPR = 0.9595 when the threshold
is 0.9997. Using this threshold, the accuracy curves of the
conventional and proposed schemes versus the number of flag

25586 VOLUME 10, 2022



J. Choi et al.: Supervised MKDE for Enhanced Plasma Etching EDP

FIGURE 11. TPR, precision, and F1-score curves of conventional approach
versus number of flag repetitions.

FIGURE 12. TPR, precision, and F1-score curves of proposed approach
with Gaussian kernel versus the number of flag repetitions.

iterations are displayed in Fig. 10. The conventional method
achieves a maximum accuracy of 0.9663 at five iterations,
whereas the proposed method realized a maximum accuracy
of 0.9914 at 16 iterations. The TPR, FPR, and F1-score
curves are shown in Figs. 11 and 12 for the conventional and
proposed methods, respectively. The conventional scheme
achieves a maximum F1-score of 0.9628, whereas the pro-
posed scheme realizes a maximum of 0.9908. In terms of the
accuracy and the F1-score, the proposed approach is superior
to the conventional approach, which is based on supervised
learning.

D. KERNEL TYPE
The performance of the proposed approach is also investi-
gated according to the kernel type: Gaussian, Epanechnikov,
triangle, and box kernels. Fig. 13 shows the four accuracy
curves of the proposed approach versus the number of flag
repetitions obtained using the Gaussian, Epanechnikov, tri-
angular, and box kernels. The Gaussian kernel is the best

FIGURE 13. Accuracy curves of proposed approach with Gaussian,
Epanechnikov, triangle, and box kernels versus number of flag
repetitions.

FIGURE 14. F1-score curves of proposed approach with Gaussian,
Epanechnikov, triangle, and box kernels versus number of flag
repetitions.

kernel, followed by the triangle kernel, and the Epanechnikov
and box kernels are the worst ones. The F1scores of the pro-
posed approach obtained using the four kernels are shown in
Fig. 14, in which results similar to those in terms of accuracy
are observed. The performance details are summarized in
Table 1. As mentioned earlier, the proposed scheme with the
Gaussian kernel demonstrates the best performance in terms
of both the accuracy and F1-score.

E. BANDWIDTH H
Subsequently, the performance according to the bandwidth
is investigated. The bandwidth, H, considered here is com-
puted using Silverman’s rule, and the detection perfor-
mance is examined when the bandwidth is changed by
0.1 and 10 times. Fig. 15 shows the change in the accuracy
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TABLE 1. Summary of accuracy and F1-score of proposed approach. Note
that last row corresponds to those of conventional scheme.

FIGURE 15. Accuracy curves of proposed approach with Gaussian kernel
versus number of flag repetitions for three bandwidths: 0.1H, H, and 10H.

FIGURE 16. F1-score curves of proposed approach with Gaussian kernel
versus number of flag repetitions for three bandwidths: 0.1H, H, and 10H.

versus the flag repetition for three bandwidths: 0.1H, H,
and 10H. When 10H is used, there is no overall change in
accuracy, whereas when 0.1H is used, the accuracy decreases
sharply as the number of repetitions increases. This phe-
nomenon seems to increase the error by classifying the
feature vectors with similar components as those with dif-
ferent components by increasing the selectivity using a small
bandwidth. The F1-score curves for the three bandwidths are

FIGURE 17. Histogram of absolute errors between predicted and ground
truth EPD times in terms of number of samples.

shown in Fig. 16. Furthermore, the best results of accuracy
and F1-score for the three bandwidths are summarized in
Table 2. The number in parentheses is the number of repeti-
tions with the best performance. As observed from the table,
the bandwidth value calculated by Silverman’s rule shows the
best performance in terms of both the accuracy and F1-score.

TABLE 2. Comparison of accuracy and F1-score of proposed scheme for
three bandwidths of 0.1H, H, and 10H.

F. PREDICTION ERRORS
In this subsection, the error distribution between the predicted
and ground truth EPD times using the proposed approach
with the Gaussian kernel is presented. Fig. 17 shows a his-
togram of the absolute error values, where the x-axis rep-
resents the sample number and the y-axis the number of
samples. In this graph, the mean is 3.7809 and the standard
deviation is 4.6495. As the sampling interval is 0.1 s, the
average error time is 0.3781 s.

V. CONCLUSION
In this paper, we propose a modified MKDE technique for
detecting the endpoint of the plasma etching process, which
typically relies on experienced engineers. To obtain a better
performance, we extended the existing unsupervised learning
MKDE to a supervised learning approach that divides the
training data into non-endpoint and etch endpoint sections
to construct PDFs in both cases. The performance of the
proposed approach was evaluated by the measures of average
accuracy and the F1-score on randomly selected OES data.
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The results showed that the proposed method is superior to
the conventionalMKDE scheme in terms of both the accuracy
and F1-score. This demonstrates that semiconductor etching
EPD using the proposed method can more clearly distinguish
non-endpoint and etching endpoint sections than the conven-
tional MKDE.

Furthermore, the commonly used Gaussian kernel per-
forms better than other three conventional kernels that were
considered. The bandwidth effect was also investigated using
three different bandwidths. This experiment demonstrated
that the performance of the proposed method is highly depen-
dent on the bandwidth and that the bandwidth is more critical
than the kernel shape.

The characteristics of the proposed approach are sum-
marized as follows: 1) The conventional MKDE method
requires a threshold, whereas the proposed method does not.
2) Because the proposed method uses target values (labeling)
of data, it belongs to supervised learning schemes and per-
forms better than the conventional MKDE, which relies on
unsupervised learning. 3) Many machine-learning schemes
generally require a long model training time, whereas MKDE
has a relatively short training time. This is also true for the
proposed method.

In the future, we will further analyze the differences in
the data for different chambers and combinations used for
plasma etching and supplement the accuracy and F1-score
performance by optimization. In addition, we will continue
studies to improve the performance by establishing additional
feature extraction methods and preprocessing schemes by
data analysis by various approaches.
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