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ABSTRACT Recent methods for visual tracking exploit a multitude of information obtained from com-
binations of handcrafted and/or deep features. However, the response maps derived from these feature
combinations are often fused using simple strategies such as winner-takes-all or weighted sum approaches.
Although some efficient fusion methods have also been proposed, these methods still do not leverage the
individual strengths of the different features being fused. In the current work, we propose a novel information
fusion strategy comprising a common low-rank subspace for the fusion of different types of features and
tracker responses. Firstly, we interpret the response maps as smoothly varying functions which can be
efficiently represented using individual low-rank matrices, thus removing high frequency noise and sparse
artifacts. Secondly, we estimate a common low-rank subspace which is constrained to remain close to each
individual low-rank subspace resulting in an efficient fusion strategy. The proposed algorithm achieves good
performance by integrating the information contained in heterogeneous feature types. We demonstrate the
efficiency of our algorithm using several combinations of features as well as correlation filter and end-to-end
deep trackers. The proposed common subspace fusion algorithm is generic and can be used to efficiently fuse
the response maps of varying types of feature representations as well as trackers. Extensive experiments on
several tracking benchmarks including OTB100, TC128, VOT-ST 2018, VOT-LT 2018, UAV123, GOT-10K
and LaSoT have demonstrated significant performance improvements compared to many SOTA tracking
methods.

INDEX TERMS Visual object tracking, features fusion, correlation filters, deep features.

I. INTRODUCTION
Visual Object Tracking (VOT) is one of the most fundamental
tasks in computer vision having a wide range of applications
across several domains [1], [2] for example autonomous driv-
ing [3], anomaly detection [4], augmented reality [5], action
recognition [6], surveillance, and security [7]. Numerous
research directions have been investigated in recent years
for VOT [8]–[24]. Despite a lot of research focus, VOT in
challenging environments is still an open problem which
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needs to be further investigated [25]–[30]. Among the most
investigated tracking approaches, Correlation Filters (CFs)
have attained significant attention because of their impres-
sive performance in terms of speed and accuracy [9]–[12],
[31]–[40]. In most of these methods, a correlation filter is
trained over a region of interest in the current frame which
is then employed to track the target object in the subse-
quent frames by maximizing the filter response [18], [41],
[42]. More recently end-to-end deep learning-based track-
ers have also been proposed which have achieved excel-
lent performance [43]–[45]. In many cases, classical object
detectors such as Faster R-CNN have also been adapted for
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FIGURE 1. Many existing tracking methods including HCF [9], HDT [10],
MCCF [12], and UPDT [11] are not able to effectively handle VOT in the
presence of challenging scenarios. These sequences suffer from
illumination variation, fast motion, motion blur, and occlusion challenges
and selected from OTB100 [26] and UAV123 [28] datasets. In contrast to
the compared methods, the proposed CSF tracker has better handled
these sequences.

tracking-by-detection tasks [13], [14]. The performance
of CF-based trackers is further enhanced through scale
invariance [42], target re-detection [46], deep end-to-
end training [43], local and global filter ensembles [12],
and the combination of deep CNN and handcrafted
features [11], [47].

Most existing CNN-based methods only use features from
later layers to represent target objects, because these features
capture rich category-level semantic information. However,
spatial details captured by earlier layers are also important
for accurately localizing a target [9]. Although the features
from these earlier layers are relatively less discriminative
than those of later layers, often leading to failure in more
challenging tracking scenarios. Consequently, many trackers
complement deep representations with shallow activations or
handcrafted features for improved localization [41], [42],
[48]. This raises the question of how to optimally fuse the
fundamentally different properties of shallow and deep fea-
tures in order to achieve both accuracy and robustness [11].
For optimal tracking performance, it is imperative that hand-
crafted features be combined with deep features from differ-
ent CNN layers to best discriminate between target object and
background clutter. Fusion of different feature representa-
tions has been shown to improve VOT performance [9]–[12].
For instance, Ma et al., aggregate response maps extracted
from earlier and later CNN layers by manually assigning
a relative weight to each [9]. Qi et al. proposed fusion
of response maps from six CNN features using a hedging
method [10].Wang et al. proposed feature-level and decision-
level strategies to fuse multi-expert response maps [12].
Bhat et al. recently proposed a Unveiling the Power of Deep
Tracking (UPDT) tracker in which the relative weights of
features are learnt from training samples [11]. Although
feature-level strategies have demonstrated competitive per-
formance for VOT, the initial weights of deeper layers tend
to be higher than those of shallow layers, due to their abil-
ity to encode more semantic information. However, it is

FIGURE 2. (a) Shows the search regions of sequence Ironman. (b) The
response map of deep features using KCF as a baseline tracker [31].
(c) Fused response map of handcrafted features including HOG, IC,
and CN. (d) Fusion of the response maps shown in (b) and (c) using our
proposed CSF algorithm. (e)-(g) Show the response maps of SOTA
CFs-trackers, and (h) shows the fusion of response maps shown
in (e)-(g) using our proposed CSF algorithm.

observed that shallow layers can improve localization perfor-
mance [9], [11], suggesting that in some tracking scenarios
shallow layers should be given significant weightage. This
has been addressed by decision-level tracker, however the
early feature-level fusion strategy is an important factor to
consider [12]. Figure 1 presents a challenging situation in
which the aforementioned trackers have faced many difficul-
ties to track the target objects.

In the current work, we propose to learn a common
subspace-based response map which compliments the infor-
mation captured by handcrafted as well as deep features.
For each response map, we estimate its low-rank represen-
tation using non-negative matrix factorization [49]. Then we
compute a common low-rank representation across all these
response maps which is constrained to remain close to each
individual low-rank representation [50]. Thus a consensus
is achieved by those response maps which correctly esti-
mate the target position while the incorrect ones do not get
accumulated resulting in a more robust VOT. We observe
the effectiveness of proposed algorithm by comparing its
responsemapwith various State-Of-The-Art (SOTA) trackers
as shown in Figure 2. In the first case, Figure 2 (d) shows
the fused response map of the proposed CSF tracker using
KCF as a baseline tracker on deep features (Figure 2 (c)) and
on handcrafted features (Figure 2 (d)). In the second case,
Figure 2 (h) shows the fusion by the proposed CSF tracker
over three existing SOTA correlation filters-based trackers
including GFS-DCF [41], ASRCF [42], and RPCF [48].
In both cases, the fused response map shows a higher signal
peak and suppressed noisy peaks.

The proposed tracker, which we name Common Subspace
Fusion (CSF), is evaluated on seven tracking benchmark
datasets and compared with the many SOTA trackers. Our
experiments demonstrate a significant performance improve-
ment in terms of both speed and accuracy. Specifically,
our tracker demonstrates a 7.0% improvement in terms of
Expected Average Overlap (EAO) as compared to baseline
GFS-DCF tracker [41] and an 3.0% improvement as com-
pared to PrDiMP tracker [16] on VOT2018 dataset [25].
Further experiments on GOT-10k [51], OTB100 [26],
UAV123 [28] and LaSoT [30] datasets have demonstrated
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significant improvement over existing SOTA trackers. The
main contributions of the current work are as follows:
• A novel common subspace fusion algorithm is pro-
posed based on low-rank response map representation
of various types of features and trackers. Using the indi-
vidual low-rank representation response map, a com-
mon subspace-based representation is estimated which
is constrained to be close to each individual representa-
tion on the Grassmannian manifold.

• The proposed fusion scheme is employed on correlation
filter-based trackers using different features resulting in
significant performance improvement in all cases. It is
also employed to fuse the predicted response maps of
deep trackers which again results in significant per-
formance improvement. Rigorous evaluations are per-
formed on two long-term and six short-term tracking
datasets. The proposed CSF tracker consistently demon-
strated improved performance.

The rest of this paper is organized as follows. Section II
summarizes related work. Section III presents the proposed
methodology in detail. Section IV describes our experimental
evaluation and results and Section V presents our conclusions
and future directions.

II. LITERATURE REVIEW
In the past decade, a number of studies have demonstrated
improved performance for the task of VOT [9]–[20], [52].
Since the current work is focused on the fusion of various
types of features and trackers, we particularly review those
studies which present some type of fusion scheme.

Many researchers have aimed to tap the complementary
information contained in various types of handcrafted and
deep features by using different fusion strategies. These
schemes may be categorized into two groups: feature-level
and decision-level fusion. Feature-level fusion is an inter-
mediate level fusion in which each feature representation
is used to obtain a probability map of the target location.
These probability maps, also known as response maps, are
then fused using different strategies such as pre-defined or
learned weights. This fusion strategy assigns relative weights
to different types of features based on semantic informa-
tion, therefore semantically rich high-level features get higher
weights compared to their shallow counterparts. It has been
observed that inmany tracking scenarios, shallow features are
more effective than deep features, resulting in performance
degradation of feature fusion strategies that prioritize deep
features. For instance, Ma et al. trained correlation filters on
each feature layer of VGG-19 [9]. The fused responses were
estimated by aggregating all feature maps using a manually
hard-coded weighting scheme. Qi et al. proposed a fusion
method for hedging correlation filter responses based on
relative hard-coded weights into a single response map for
target detection [10]. These manually assigned hard-coded
weighting schemes may not be optimal in all tracking sce-
narios. To address this problem, Bhat et al. proposed to
learn the weights of the individual feature representation and

demonstrated improved VOT performance as compared to
the aforementioned fusion techniques [11]. UPDT learned
optimal fusion hyper-parameters on the OTB100 dataset [26],
which were subsequently applied to other tracking datasets,
albeit with no guarantee of the effectiveness of these learned
parameters across different tracking challenges. It is observed
that when weights are learned, higher priority is still given to
deep features over shallow or handcrafted features.

Decision-level fusion is exploited by the MCCF tracker
in which a result is selected from multiple proposals based
on the agreement of multiple feature combinations as well
as temporal consistency [12]. While it has been shown to
improve performance in some scenarios, the significance
of decision-level fusion strongly depends on the design of
the baseline feature combinations. Decision-level fusion is
again strongly dependent on a feature-level fusion in which
semantic information is given high significance. Decision-
level fusion is also prone to errors in scenarios where mul-
tiple feature combinations contain similar errors. In many
tracking scenarios, semantic information may cause errors
that could be overcome by prioritizing low-level infor-
mation. Some studies are also reported on other imag-
ing modalities such as thermal infrared for robust object
tracking [53]–[55].

In the current work, we address this shortcoming by using
a feature-level fusion strategy based on the common sub-
space spanned by individual response maps. In contrast to the
aforementioned fusion strategies, we consider each feature
representation to be equally significant so that a broader
range of tracking scenarios can be effectively handled com-
pare to the prior unequal weighting schemes. We learn a
common subspace across all feature representations which is
constrained to be close to each low-rank representation on
the Grassmannian manifold. Our proposed fusion scheme is
generic, allowing us to demonstrate its efficacy by plugging
it into many recent SOTA trackers resulting in significant
performance improvement.

III. PROPOSED COMMON SUBSPACE FUSION
ALGORITHM
In our proposed Common Subspace Fusion (CSF) algorithm,
each response map is considered equally important, therefore
we do not compute any weights for shallow or deep fea-
ture maps. Thus we address the problem of tracking errors
caused by incorrect semantic information being given too
much importance. Compared to the aforementioned fusion
schemes, which improve performance by using weak clas-
sifiers, our proposed fusion strategy is more generic and
improves performance beyond current SOTA trackers. The
system diagram of our proposed CSF tracker is shown in
Figure 3. For each response map estimated by a set of SOTA
trackers, a low-rank representation is computed. Then using
multiple low-rank representations, our aim is to compute
a common subspace representation resulting in fusion over
multiple response maps.
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A. MATHEMATICAL FORMULATION
An ideal tracking response map Rk ∈ Rm×m should be a
smoothly varying continuous function, however when work-
ing with real-world data, it may contain high frequency arti-
facts, where m × m is the size of the response map and
k denotes feature representation. We therefore propose to
compute a low-rank representation Lk ∈ Rm×c of Rk
where c < m and maximum rank of Lk ≤ c. For this
purpose, we convert the response map Rk into an affinity
matrix Sk = RkR>k ∈ Rm×m which is symmetric and
positive semi-definite and may be factorized into a low-rank
sparse matrix. Sk contains the structure of the corresponding
response map Rk such that one cluster in Sk belongs to
the target region while the remaining clusters correspond to
non-target region in the search space.

Non-negativeMatrix Factorization (NMF) has beenwidely
employed for the estimation of low-rank approximation [56],
[57]. NMF factorizes an input data matrix Sk into two
non-negative matrices Lk and Gk , i.e., Sk ≈ LkG>k . The
rank of both non-negative matrices Lk andGk is significantly
lower than Sk . For the purpose of uniqueness and clustering
interpretation, Gk is enforced to be orthogonal G>k Gk = I.
We consider to enforce orthogonality constraints on both
non-negative matrices Lk and Gk , so that Lk can be consid-
ered as cluster indicator matrix for rows clustering and Gk
as the cluster indicator matrix for columns clustering. Such
a configuration assists us to identify the target region as an
intersection of rows and columns corresponding to the target
clusters. The objective function for such decomposition is
formulated as follows:

min
Lk≤0,Gk≤0

||Sk − LkG>k ||
2, s.t. L>k Lk = I,G>k Gk = I (1)

However, this double orthogonality is very restrictive and
it gives a rather poor matrix low-rank approximation. One
needs an extra factor Bk to absorb the different scales of
Sk , Lk , and Gk , i.e., Sk ≈ LkBkG>k . In case of symmetric
input matrix Sk , Sk = S>k , the non-negative matrices become
same i.e., Lk = Gk . Using Symmetric Non-negative Matrix
Tri-Factorization (SNMTF), we factorize each Sk as Sk ≈
LkBkL>k by solving the following objective function [49]:

dk (Sk ; {Lk ,Bk}) = min
{Lk ,Bk }≥0

||LkBkL>k − Sk ||2F , (2)

where || · ||F is the Frobenius norm [58] and Bk is a
non-negative auxiliary matrix. The matrix Lk contains the
feature specific response map structure such that one par-
ticular cluster corresponds to the target region while the
remaining clusters belong to non-target regions.

In order to obtain a common subspace-based tracking
response maps structure across all feature representations,
we compute a common low-rank representation M ∈ Rm×c

which should be close to each individual low-rank response
representation Lk . The common representation contains a
unified target region cluster over all feature response maps
such that the individual target region gets superimposed
and resulting in an amplified target response. Matrix M

can be computed using Eq. (2), in which M replaces Lk ,
and minimizing the objective function across all k feature
representations:

dk (Sk ; {M,Bk}) = min
{M,Bk }≥0

||MBkM> − Sk ||2F , (3)

If each minimization problem is solved independently,
matrixM can be further from some low-rank representations
Lk than the others. A set of c dimensional linear subspaces
of Rm can be considered a Grassmann manifold G(c,m),
such that each point in this manifold corresponds to a unique
subspace. Each subspace can be represented using its basis
vectors as an orthonormal matrix whose columns span the
corresponding c dimensional subspace in Rm. In order to
ensure thatM is close to the majority of Lk , it is enforced that
the subspace spanned by M is close to the subspace spanned
by each Lk on a Grassmann manifold [50], [59]. Each Lk
spans a corresponding c′ dimensional subspace where c′ ≤
c ≤ m and is mapped to a unique point on the Grassmann
manifold G(c′,m) defined as a set of c′ dimensional linear
subspaces in Rm.

The geodesic distance between two subspaces M and Lk
on the Grassmann manifold can be computed by projection
distance as follows [50], [59]:

dk (M;Lk ) =
c′∑
j=1

sin2θkj = c′ −
c′∑
j=1

cos2θkj

= c′ − tr(MM>LkL>k ), (4)

where {θkj }
c′
j=1 are principal angles between c′-dimensional

subspaces spanned by Lk and M and tr(·) denotes the trace
of a matrix. In order to ensure M to be close to each Lk , the
overall objective function is given by:

min
M≥0

9 =
∑
k

(dk (Sk ; {M,Bk})+ γ dk (M;Lk )) (5)

where γ > 0 is a weighting parameter. The second term is
the sum of the projection distances between M and each Lk .
Minimizing this term will ensure that the matrix M will
be close to each individual matrix Lk on the Grassmann
manifold in terms of geodesic distance. In order to minimize
Eq. (5), we first formulate the multiplicative update rules
to compute Lk using the SNMTF method [49] and then we
jointly optimize our objective function (Eq. (5)) to derive
the multiplicative update rules for our common low-rank
matrixM.

1) INDIVIDUAL LOW-RANK REPRESENTATION
COMPUTATION
Following multiplicative update rules are derived for Eq. 2
using the SNMTF method [49] for estimating Lk as follows:

Lk (i, j) ←
[SkLkBk ](i,j)

[LkL>k SkLkBk ](i,j)
Lk (i, j),

Bk (i, j) ←
[L>k SkLk ](i,j)

[L>k LkBkL
>
k Lk ](i,j)

Bk (i, j), (6)
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FIGURE 3. System diagram of the proposed Common Subspace Fusion (CSF) algorithm. (a) Shows input frame at time t . (b) Shows search regions of the
input frame. (c) DCFs-based tracker is used to compute the response maps of varying feature representations. (d) Shows the response maps of different
types of features using a baseline KCF tracker [31]. (e) Low-rank representation is estimated for each response map. (f) Each color show low-rank
representation computed in step (e). (g) Fusion of low-rank representations using our proposed common subspace estimation algorithm and the tracking
result.

where Lk (i, j) is the (i, j)-th element of the low-rank rep-
resentation Lk . Eq. (6) converges to the optimal solution if
||Ltk−L

(t−1)
k ||F

||L(t−1)
k ||F

≤ ζ , where ζ is a tolerance factor.

2) COMMON LOW-RANK REPRESENTATION MATRIX
COMPUTATION
Following the constrained optimization theory [60] and
non-negative matrix factorization [61], we take the derivative
of (5) with respect toM as follows:

∇M9 = −
∑
k

4SkMBk +
∑
k

4MBkM>MBk

−2γ
∑
k

MkM>k M (7)

The ordinary gradient of the optimization problem Eq. (7)
does not represent its steepest direction because the matrixM
spans the Grassmann manifold [62]. However, the steepest
direction can be obtained by using the notion of natural
gradient [59], [62], [63]. The natural gradient of 9 on the
Grassmann manifold at M can be written in terms of the
ordinary gradient as follows [62], [63]:

∼

∇M9 = ∇M9 −MM>∇M9, (8)

where ∇M9 is the ordinary gradient given by Eq. (7). Com-
bining Eq. (7) and Eq. (8), we get
∼

∇M9 = −(
∑
k

SkMBk +
γ

2

∑
k

LkL>k M︸ ︷︷ ︸
[
∼

∇M9]−

)

+MM>(
∑
k

SkMBk +
γ

2

∑
k

LkL>k M)︸ ︷︷ ︸
[
∼

∇M9]+

(9)

In order to ensure the positivity constraints onM, the natural
gradient is decomposed into two non-negative terms [63],

[64] such that:
∼

∇M9 =
∼

∇M9
+
−
∼

∇M9
−. The two terms

are enforced to be positive as follows:

(
∼

∇M9
+)(i,j) =

{
(
∼

∇M9
+)(i,j) if (

∼

∇M9
+)(i,j) > 0

0, otherwise
(10)

and

(
∼

∇M9
−)(i,j) =

{
−(
∼

∇M9
−)(i,j) if (

∼

∇M9
−)(i,j) < 0

0, otherwise
(11)

Following the KKT condition [60] and preserving the
non-negativity ofM, we derive themultiplicative update rules
for matrixM using the natural gradient as follows:

M(i, j)←M(i, j)
[
∼

∇M9]+(i,j)

[
∼

∇M9]−(i,j)

, (12)

where the non-negative parts of the normal gradient are given
in Eq. (8). Substituting Eq. (9) in to Eq. (12), we obtain the
multiplicative update rules for the common subspace matrix
M as follows:

M(i, j)←M(i, j)

∑
k [SkMBk +

γ
2LkL

>
k M](i,j)

[MM>
∑

k (SkMBk +
γ
2LkL

>
k M)](i,j)

(13)

The target detection is then estimated by seeking the maxi-
mum value in the common low-rank representationmatrixM.
Algorithm 1 summarizes the steps of the proposed
CSF algorithm.
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Algorithm 1: Pseudocode of the Proposed CSF
Algorithm

Input: Response maps of the target object Rk ∈ Rm×m

using any DCFs-based tracker.
Initialization: γ = 0.8, ζ = 0.3, t = 0.
Compute Sk = RkR>k ∈ Rm×m.
While not converged & t <max_iterations=6
1. Compute Lk using (6).
2. Compute Bk using (6).
3. ComputeM using (13).
4. Convergence: ||M

t
−M(t−1)

||F
||M(t−1)||F

≤ ζ

5. t = t+1
Output: M
Find maximum value in common low-rank
represenation matrixM for target localization.

IV. EXPERIMENTAL EVALUATIONS
The performance of the proposed CSF algorithm is eval-
uated on seven tracking datasets including OTB100 [26],
UAV123 [28], VOT2018 Short Term challenge (VOT2018-
ST) [25], TC128 [27], GOT-10K [51], VOT2018 Long Term
challenge [25], and LaSoT [30]. These datasets comprise
a variety of tracking challenges including occlusion, back-
ground clutter, and scale variations to name a few [28]. The
description of each dataset is shown in Table 1. Our proposed
algorithm is implemented on a PCwith an Intel core i7 4GHz,
Titan Xp GPU, and 64 GB RAM.

The performance of the proposed CSF tracker is com-
pared with 29 existing SOTA trackers including ASRCF [42],
GFS-DCF [41], RPCF [48], ATOM [65], PrDiMP [16],
UPDT [11], HDT [10], HCF [9], SRDCF [66], HCFTs
[67], STRCF [68], CCOT [69], ECO [70], DeepMCCT [12],
DGL [71], TADT [72], DeepSRDCF [73], GradNet [74],
MCCT [12], BACF [75], TRACA [76], DeepRSST [77],
MUSTER [78], LCT [46], UDT [79], CREST [43],
DSLT [80], CFNET [45] and GCT [81].

The tracking performance is evaluated using two pop-
ular measures known as precision and success rates [26]
for OTB100, TC128, UAV123, and LaSoT datasets. The
precision rate is defined as the percentage of frames with
Euclidean distance between the predicted and ground truth
target location less than 20 pixels threshold [26]. The success
rate is defined as the percentage of frames with overlap ratio
b1∩b2
b1∪b2

> 0.5 [26], where b1 and b2 are the predicted and the
ground truth bounding boxes, respectively. By varying the
threshold from 0 to 1, the success plots are generated and
the area under the curve is estimated. Moreover, following
the protocols defined in VOT2017/VOT2018 [25], we used
three primary measures including Expected Average Overlap
(EAO), Robustness (R), and Accuracy (A) to compare the
performance of different trackers on VOT2018-ST dataset.
The EAO estimates the average overlap a tracker is expected
to obtain on a large set of short-length sequences with the
same visual properties as a given dataset. The robustness

measures the number of times a tracker fails (loss the tar-
get) during tracking while accuracy is the average overlap
between the ground truth and estimated bounding box during
the successful tracking periods.

The proposed CSF algorithm is tested in two different
configurations: fusion using varying types of features for
the same tracker (Config-1) and integrating multiple deep
trackers (Config-2). In Config-1, we fuse the feature
responses obtained by varying types of features while using
the same tracker as a baseline.

In Config-2 we fuse the responses of multiple trackers.
Figures 2 (e)-(g) show the response maps of three SOTA
CF based trackers. The fusion map is smoothed and has a
high signal to noise ratio. The objective is to complement the
information captured by different trackers and to analyse the
capability of our proposed CSF algorithm to fuse multiple
deep trackers into a unified framework.

The performance of the two configurations is evalu-
ated using the VOT2018-ST challenge dataset in terms
of Expected Average Overlap (EAO), Robustness (R),
and Accuracy (A) using the protocols provided by the
authors [25]. Each of these experiments is discussed in detail
in the following subsections.

A. FEATURE FUSION (CONFIG-1)
Feature fusion is performed using the proposed CSF algo-
rithm with three recent SOTA trackers as baselines: GFS-
DCF, ASRCF, and RPCF. We use the same feature set for
each tracker including HOG, Intensity Channel (IC), Color
Names (CN), and deep features extracted from the 4th block
of ResNet50. The performance comparison on the VOT2018
dataset is shown in Table 2, demonstrating that the proposed
CSF fusion algorithm improves the performance of each
baseline tracker by a significant margin. In this experiment,
the baseline trackers are used as the same as proposed by
the original authors while the features set is proposed in
GFS-DCF. The EAO measure has improved by up to 7.0%
for CSF-GFS-DCF while accuracy (A) is improved by 4.0%
and robustness by 3.0%. In terms of robustness measure,
RPCF is improved by 4.0% (CSF-RPCF). This experiment
demonstrates the effectiveness of the proposed algorithm for
fusing information across varying types of features.

B. TRACKER FUSION (CONFIG-2)
In this experiment, the proposed CSF algorithm is used to
fuse the output response maps of three existing SOTA deep
trackers including ATOM, PrDiMP, and DSLT. Performance
is evaluated on the VOT2018-ST dataset, with results shown
in Table 3. The features and parameters suggested by the
original authors are used in each case. We observe a signif-
icant EAO improvement of 3.0% beyond PrDiMP tracker.
In terms of accuracy, we observe an improvement of up
to 3.0% while in terms of robustness an improvement of up
to 2.0% is observed. This simple experiment demonstrates
the effectiveness of the proposed CSF algorithm in fusing
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TABLE 1. Details of the datasets used in experimental evaluations.

FIGURE 4. Variations of precision rate with varying values of
hyper-parameter γ on OTB-E split. γ = 0.8 has produced the best
performance.

TABLE 2. Config-1: performance evaluation of the proposed CSF
algorithm on the short term VOT2018-ST dataset in configuration 1. The
trackers CSF-ASRCF, CSF-GFS-DCF, and CSF-RPCF use the CSF algorithm
while ASRCF, GFS-DCF and RPCF are baselines. The best and second best
results are shown in red and blue respectively.

TABLE 3. Config-2: Performance evaluation of the proposed CSF
algorithm on the short term VOT2018-ST dataset in configurations 2. The
best and second best results are shown in red and blue respectively.

complementary information from different deep trackers,
resulting in a significant performance improvement.

C. COMPARISON OF CSF ALGORITHM WITH EXISTING
FUSION SCHEMES
The proposed CSF algorithm is also compared with four
existing SOTA fusion-based trackers: UPDT, HCF, HDT, and
MCCF. For a fair comparison among the compared meth-
ods, the classical KCF tracker [31] is used as a baseline
and the same set of features including HOG, IC, CN, and
deep features extracted from the 4th block of ResNet50 are
used. Thus, this experiment only compares the strengths and
weaknesses of different fusion schemes while keeping all
other variables fixed. The experiments are repeated with and

without scale estimation on three datasets: OTB100, TC128,
and UAV123. The scale of the target object is estimated using
the same coarse-to-fine search strategy on HOG features for
all compared trackers as proposed in ASRCF tracker [42].

Figure 5 (a)-(d) show the precision and success plots of
all trackers on the three compared datasets. The proposed
CSF algorithm has consistently demonstrated the best per-
formance in all experiments. On average UPDT gives the
second best results on OTB100 whileMCCF gives the second
best results on the TC128 and UAV123 datasets. In most
experiments, HCF shows the lowest performance among the
compared fusion-based trackers. The scale estimation step
assisted all compared trackers in obtaining better perfor-
mance, however our proposed CSF algorithm remains the
best performer.

D. ABLATION STUDY
The proposed CSF algorithm has only one hyper-parameter
to tune which is γ in Eq. (5). To find a good value of γ , exper-
iments are performed on OTB100 dataset using the protocols
defined in [11]1 The authors divided OTB100 sequences into
hard videos (OTB-H) as a validation set and easy videos
(OTB-E) as a test set considering the performance of different
trackers. The value of γ is varied from 0 to 1.6 in intervals
of 0.4. In addition, a high value of γ = 50 is also tested.
Figure 4 shows the performance comparison as a precision
plot of results from OTB-E with varying values of hyper-
parameter γ .

For γ = 0 in our objective function given by Eq. (5), only
the performance using the common low-rank representation
component is evaluated while for γ = 50 the second term,
which is the sum of projection distances between common
subspace and individual subspaces, becomes more important.
In both cases, we observe a graceful degradation of the pro-
posed fusion algorithm while for γ = 50 the performance
was better than for γ = 0 suggesting that the second term
plays a more important role than the first. The best perfor-
mance is observed when γ = 0.8, which is the value used in
all other experiments.

E. QUALITATIVE RESULTS
To evaluate the performance of the proposed CSF tracker,
we present rigorous visual results on key frames of 13 chal-
lenging sequences selected from OTB100 dataset and five

1Please see supplementary material of UPDT tracker (https://arxiv.
org/pdf/1804.06833.pdf) for the list of videos included in OTB-H
and OTB-E.
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FIGURE 5. Precision and success plots using OPE for the proposed CSF algorithm against other fusion schemes. Top row shows the results on
OTB100, middle row shows the results on TC128, and bottom row shows results on UAV123 datasets. The legends of the precision plots contain
threshold scores at 20 pixels [26] while the legends of success plots contain area-under-the-curve scores for each compared tracker. Our proposed
CSF algorithm has performed consistently better against these SOTA fusion schemes in all experiments.

sequences from UAV123 dataset. Figure 6 presents the visual
results of the proposed CSF tracker. The bounding boxes of
the tracked objects are overlaid on the input images and the
comparisons are shown with six existing trackers including
ATOM, PrDiMP, DSLT, GFS-DCF, ASRCF, and RPCF. The
sequences presented in this figure undergo a variety of track-
ing challenges including occlusion, background clutter, scale
variation, deformation, in-plane rotation, out-of-plane rota-
tion, out-of-view, illumination variation, fast motion, motion
blur, and low resolution. Overall, the proposed CSF tracker
has performed much better than the compared trackers in
all these sequences which can be attributed to the fusion of
multiple trackers and variety of features within the proposed
objective function.

F. EVALUATIONS ON SHORT-TERM TRACKING DATASETS
In addition to the VOT2018 short term tracking dataset eval-
uated in the previous Section, we have also performed exper-
iments on OTB100, UAV123 and GOT-10K datasets.

1) OTB100 DATASET
The proposed CSF algorithm is evaluated on OTB100 dataset
(average video length is 590 frames with 100 videos). The
performance is evaluated using the success and precision over
varying overlap thresholds. Some visual results of OTB100
dataset are presented in Figure 6. Figure 7 shows the precision
and success plots of the proposed CSF tracker with other
SOTA trackers including GFS-DCF, RPCF, ASRCF, MCCT,
ECO,CCOT,HCFTs, STRCF, and SRDCF. It should be noted
that the proposed CSF (ASRCF) tracker used the response
maps estimated by ASRCF tracker on different features.

In terms of precision plot, the proposed tracker has
obtained 95.1% precision score while the second best
GFS-DCF tracker obtained 93.2%. Compared to the baseline
ASRCF tracker, the performance of the proposed tracker has
improved by 2.8%. In terms of success plot, the proposed
tracker CSF tracker has obtained 72.2% success rate while
the second best is ECO tracker obtaining 70.0% success
rate. Compared to baseline ASRCF tracker, the performance
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FIGURE 6. Visual results of the proposed CSF algorithm and its comparison with existing SOTA trackers including ATOM [65], PrDiMP [16], DSLT [80],
GFS-DCF [41], ASRCF [42], and RPCF [48] on 12 challenging sequences selected from the OTB100 [26] and 6 sequences from UAV123 [28] datasets. Frame
indexes and sequence names are shown for each video. Our proposed CSF algorithm has consistently performed better than the compared trackers.

improvement is 3.0%. It demonstrates the effectiveness of our
proposed fusion algorithm.

We have also evaluated the attribute-based performance
on the OTB100 dataset. The 11 different attributes includ-
ing Illumination Variation (IV), Occlusion (Occ), Out-of-
Plane Rotation (OPR), In-Plane Rotation (IPR), Deformation
(DEF), Out of View (OV), Background Clutter (BC), Motion
Blur (MB), Low Resolution (LR) and Fast Motion (FM)
are evaluated in terms of Precision Rate (PR) and Success
Rate (SR) and compared with many SOTA trackers. Table 4
shows the attribute-based performance comparison of the
proposed CSF tracker with SOTA trackers.

In terms of Precision Rate (PR), the proposed CSF
tracker (baseline ASRCF) achieves the best results under
5 out of 11 challenging tracking attributes including OCC
(91.6%), BC (95.1%), DEF (93.1%), OPR (93.2%) and OV
(93.9%). For sequences with IV, SV, MB, FM, and IPR
tracking challenges, the proposed tracker achieves the sec-
ond best performance compared to other competing trackers.
In terms of Success Rate (SR), the proposed CSF tracker
(baseline ASRCF) achieves the best results under 7 out of

FIGURE 7. Precision and success plots using OPE of the proposed CSF
tracker against other SOTA trackers on OTB100 dataset [26]. The legend
of precision plot contains threshold scores at 20 pixels, while the legend
of success rate contains area-under-the-curve score for each tracker.

11 challenging tracking attributes including IV (72.4%),
SV (68.1%), OCC (69.3%), BC (72.2%), DEF (67.6%),
OPR (69.3%) and IPR (68.2%). For sequences with MB,
FM, OV and LR tracking challenges, the proposed tracker
achieves the second best performance compared to other
competing trackers. The improved performance of the
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TABLE 4. Attribute-based performance comparison of the proposed and existing SOTA trackers in terms of Precision Rate (PR)|Success Rate (SR) on
OTB100 dataset. The PR is reported at a threshold of 20 pixels while AUC is shown for SR.

proposed tracker demonstrates the effectiveness of the com-
mon subspace fusion mechanism.

2) UAV123 DATASET
This dataset contains 123 video sequences with an aver-
age length of 915 frames [28]. The results are compared
with 15 SOTA trackers: ECO, GCT, CREST, SRDCF,
STRCF, MEEM, BACF, MUSTER, DSST, MCCT, STAPLE,
ASRCF, GFS-DCF, RPCF and DSLT. Some visual results
from the UAV123 dataset are shown in Figure 6. Figure 8
shows the performance comparison of the proposed CSF
tracker with other SOTA trackers in terms Precision Rate (PR)
and Success Rate (SR).

Overall, the proposed CSF tracker achieves the best pre-
cision rate of 79.2% which is 2.0% better than the baseline
tracker, GFS-DCF (77.2%), and 2.4% better than the deep
tracker, DSLT. The proposed CSF algorithm also achieves
the best success rate (AUC) of 56.6% which is 2.3% bet-
ter than GFS-DCF and 3.1% better than DSLT. The best
performance achieved by the proposed tracker is because
of the subspace fusion mechanism across varying types
of feature representations incorporated within the baseline
tracker GFS-DCF.

3) GOT-10K DATASET
Its test tracking split consists of 180 videos with an
average length of 127 frames [51]. In this dataset, our pro-
posed tracker, CSF (GFS-DCF), using GFS-DCF as a base-
line is compared with 11 SOTA trackers including HCF,
STAPLE, DSST, ECO, STRCF, CCOT, CFNET, BACF,
MEEM, SRDCF, ASRCF, andGFS-DCF as shown in Table 5.
The performance is evaluated in terms of mean Average

FIGURE 8. Precision and success plots using OPE of the proposed CSF
tracker against other SOTA trackers on UAV123 dataset [28]. The legend
of precision plot contains threshold scores at 20 pixels, while the legend
of success rate contains area-under-the-curve score for each tracker.

Overlap (AO), mSR0.5, and mSR0.75 using official online
protocols.

In terms of mAO, the proposed CSF tracker achieves
46.4% performance which is 4.2% better than the baseline
tracker, GFS-DCF (42.20%), and 5.80% better performance
than the CCOT tracker (40.6%). In terms ofmSR0.50measure,
CSF tracker obtains best score of 48.20% which is again
2.20% better than the second best performing tracker GFS-
DCF (46.0%) and 6.70% than the CCOT tracker (41.50%).
Similarly, the proposed tracker achieves mSR0.75 sore of
16.20% which is 0.80% less than the best performing tracker,
ECO (17.0%), and 0.10% less than the second best per-
forming tracker, CCOT (16.1 %). The improved performance
in terms of both measures, mAO and mSR0.50, is because
of the fusion component introduced within the baseline
tracker GFS-DCF.
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FIGURE 9. Precision and success plots using OPE of the proposed CSF
tracker against other SOTA trackers on LASoT dataset [30]. The legend of
precision plot contains threshold scores at 20 pixels, while the legend of
success rate contains area-under-the-curve score for each tracker.

G. EVALUATION ON LONG-TERM TRACKING DATASET
We have also evaluated the performance of the proposed
tracker on two long term visual object tracking datasets
including LaSoT [30] and VOT2018-LT [25]. In the below
subsections, we describe the performance comparison of the
proposed tracker on these datasets.

1) LaSoT DATASET [30]
The test split of this dataset consists of 280 videos with
an average length of 2448 frames [30]. The results of the
proposed CSF tracker are compared with 15 SOTA track-
ers including ECO, DSLT, BACF, HCFTs, CFNET, LCT,
SRDCF, TRACA, STAPLE, STRCF, ASRCF, and GFS-DCF.
The performance is reported in terms of PR and SR by using
the protocols provided by the original authors [30].

In terms of PR, CSF tracker has obtained 38.20% accuracy
which is 2.6% better than the existing baseline tracker, GFS-
DCF (35.60%), and 4.50% better than the ASRCF tracker as
shown in Figure 9. In terms of SR, CSF tracker has achieved
3.50% performance improvements compared to GFS-DCF
and up to 5.70% better accuracy than ASRCF. This experi-
ment demonstrates the effectiveness of our proposed fusion
algorithm on long term tracking challenges.

2) VOT2018-LT DATASET [25]
The long term challenge of VOT2018 dataset consists of
35 video sequences with an average resolution of 468×785 as
shown in Table 1. The proposed CSF tracker has also been
evaluated on this dataset in terms of F-score, Recall (Re),
and Precision (Pr) measures as defined in the VOT2018-LT
evaluation kit [25]. In this dataset, ranking is achieved using
maximum F-score attained by each tracker.

Table 6 shows the performance comparison of the proposed
CSF tracker with five SOTA trackers including CCOT, Deep-
SRDCF, DeepSTRCF, UDT, and GFS-DCF. Overall, it can
be observed that our proposed CSF tracker has attained best
F-score of 67.80% and outperforms GFS-DCF, UDT, and
CCOT trackers by 2.60% and 5.80% margin, respectively.
The corresponding Re and Pr scores also demonstrated the
improvements of the proposed tracker compared to second
best tracking method.

TABLE 5. Performance comparison of the proposed CSF tracker with
current SOTA trackers on GOT-10K dataset [51]. The performance is
reported in terms of mAO (mean Average Overlap), mSR0.50 and mSR0.75
(Success Rate that measures the percentage of successfully tracked
frames, where the overlap precision exceeds a threshold of 0.50
and 0.75). The best and second best results are shown in red and blue
respectively. Our proposed tracker has consistently performed better than
the SOTA trackers.

TABLE 6. Performance comparison of the proposed CSF tracker with
current SOTA trackers on VOT2018-LT dataset [25]. The performance is
reported in terms of F-socre, Precision (Pr) and Recall (Re). The best and
second best results are shown in red and blue respectively. Our proposed
tracker has consistently performed better than the SOTA Trackers.

H. EXECUTION TIME COMPARISON
The execution time of the proposed CSF tracker is mea-
sured on a PC with an Intel core i7 4.0 GHz, Titan Xp
GPU, and 64-GB RAM. Our complete tracking pipeline
including feature extractions, using KCF filter and CSF
algorithm (IV-C) runs at 15.71 frames per second (fps), while
the existing fusion-based trackers UPDT, MCCF, HDT, and
HCF process frames at the rate of 8.11fps, 4.98fps, 7.41fps
and 13.52fps respectively. For the case of config-1 and
config-2, the additional time taken by the CSF algorithm
depends on the number of features or trackers to be fused.
For the case of config-1, fusion is performed on four
different types of features (as discussed in IV-A). The time
taken by ASRCF is 28.32fps while the time taken by the
proposed CSF-ASRCF is 34.19fps. Thus, the additional time
taken in this configuration is 5.87fps. Thus, the proposed CSF
fusion algorithm is computationally efficient and does not
incur significant computational overhead beyond the under-
line baseline trackers.

V. CONCLUSION
In this work, an information fusion algorithm is proposed to
encode the complementary information contained by various
types of features and trackers to improve VOT performance.
For this purpose, low-rank representations of response maps
are computed which remove unwanted boundary effects and
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suppress noise. A common low-rank subspace representation
is estimated such that it is close to each individual subspace on
the Grassmann manifold in terms of projection distance. The
common subspace representation acts as the fusion scheme
which integrates information encoded by individual low-rank
response maps. The CSF algorithm is generic and works
well with various types of features, correlation filter-based
trackers, and deep trackers. Evaluations are performed for
feature fusion and tracker fusion on seven challenging track-
ing benchmark datasets and compared with several SOTA
trackers. Our algorithm has consistently demonstrated sig-
nificant performance improvements over various baseline
methods. The CSF algorithm has also outperformed existing
fusion schemes using the same features and baseline tracker.
We observe that the fusion of deep correlation filters-based
trackers has resulted in the highest performance gain. The
SOTA fusion-based tracking methods assign weights to dif-
ferent feature or response map. An advantage of the proposed
fusion algorithm is that it does not require weight assign-
ment to different feature representations or response maps.
The proposed fusion algorithm finds it challenging to handle
significant target scale and orientation variations. In future,
the proposed fusion algorithm will be implemented as a deep
layer in an end-to-end network for VOT.
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