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ABSTRACT Comprehensive risk assessment plays a significant role in railway rolling stock safety planning
to prevent accidents, including rail derailment and collision. Several methods of evaluating individual
sources of railway system risk, ranging from human factors to inherent system failure and environmental
hazards, exist in the literature. However, the lack of a hybrid technique to integrate these multiple sources
of risk holistically, including their interdependent effects, as a single framework for robust, accurate, and
comprehensive risk assessment can limit risk perception and risk mitigation actions. This report proposes
a dynamic hybrid model (DHM) that incorporates the Bayesian convolutional factorization and elimination
method as a compound aggregation of frequency and severity distributions. TheDHMvalidates predicted risk
using Bayesian expectation–maximization machine learning with evidenced-based propagation from expert
knowledge and learned data. It also incorporates sensitivity analysis to improve the predicted risk further
by prioritizing the hazards with the maximum impact on the estimated risk due to organization resource
constraints. A railway case study in the UK revealed that risk prediction using the DHM provided a holistic
view of the risk. The results showed that the quantitative risk prediction using the DHM was significantly
more robust, accurate, and holistic than that of the conventional risk-assessmentmethod based on the inherent
failure rate. This research will facilitate the comprehensive development of risk-mitigation strategies, such
as improvements in staff training and wiring insulation, to decrease the likelihood of train derailment caused
by semi-permanent coupler failure.

INDEX TERMS Bayesian factorization and elimination, expectation-maximization, railway safety, risk
assessment, sensitivity analysis, train derailment.

I. INTRODUCTION
Despite the technological advancements and developments
in autonomous machines, uncertainties caused by internal
and external factors still influence the risk profiles of
critical industrial physical assets, such as rolling stock
(RS). Recently, RS systems and their associated components
have undergone incredible transformations to accommodate
the increasing need for speed and passenger comfort [1].
Although such transformations have significantly enhanced
customer satisfaction, they have also increased the overall
system complexity, uncertainty, and risk profiles of most
critical components [2]–[5]. One of these critical components
is the semi-permanent coupler, which is designed to guarantee
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permanent mechanical and pneumatic linkage between the
individual cars in a typical RS system. Semi-permanent
couplers are often fitted using metal components with
vulcanized rubber to facilitate relative movements between
the connected cars. Further, the coupler functions as a
mechanism for resisting vertical, horizontal, and rotational
movements. Fig. 1 depicts a typical three-car electric multiple
unit (EMU) with an exploded view of a semi-permanent
coupler and its associated major components for better
visualization.

The Federal Railroad Administration reportable train acci-
dent data for Class I railroads over a period of nine years show
that couplers contributed to a staggering 133 derailments
involving 771 cars in the United States alone, making it
a significant cause of RS accidents [8]. Data on railroad
accidents from the UK Railway Archives database also

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 24587

https://orcid.org/0000-0003-4228-5799
https://orcid.org/0000-0001-5138-3783
https://orcid.org/0000-0002-6878-4759


F. Appoh, A. Yunusa-Kaltungo: Dynamic Hybrid Model for Comprehensive Risk Assessment

FIGURE 1. Typical three-car EMU with exploded view of a
semi-permanent coupler and its associated major components [6], [7].

identifies couplers as a major cause of derailment [9].
Owing to these undesirable statistics, adopting a holistic
view for the risk management of complex systems is
imperative, rather than using the currently dominant individ-
ualized approaches [10]–[14]. Traditionally, risk estimation
has been used to assist engineers and operators in their
decision-making regarding acceptable and unacceptable
risks. An acceptable risk is one that can be tolerated by the
final user given the constraints related to the organization,
limitations of system functions, and governmental factors,
such as cost and regulations [15]–[17]. As uncertainty is part
of the ecosystem associated with dynamic complex systems
(e.g., RS), risk will always exist. Furthermore, significant
sources of uncertainty exist in any engineering design, includ-
ing noise, errors, bias in the sample data, and inaccuracies in
the risk estimation model [18], [19]. Overall risk estimation
for complex systems is mostly undertaken independently
for internal and external uncertainties, without considering
the effects of interdependencies that exist among them [15],
[16], [20]–[30]. Due to the independent application of these
techniques to risk estimation, the combined effects of internal
and external uncertainties are often overlooked [31]. For
example, despite the low intrinsic failure rates of signaling
and RS subsystems, Health and Safety Executive (HSE) rail
accident reports in the UK highlight the critical roles of
human factors in accidents that have occurred at Clapham
Junction [32], Southall [33], and Ladbroke Grove [34].
In addition, analysis of the causes of train derailment
in Victoria, Australia, between 2007 and 2013 revealed
that infrastructure-related defects accounted for 56% of
derailments, followed by operation-related issues at 20% and
RS at 12%, with the remaining 12% related to other external
causes [35]. Thus, derailment is caused by both internal
and external factors. Furthermore, the results indicate the
importance of considering risk factors comprehensively to
implement prioritized accident mitigation factors sufficiently
and robustly.

Given the ubiquitous nature of risk, realistic risk modelling
of any engineering system includes estimating system risks in
dynamic operating conditions and considering external risk

factors, such as human errors and biases in environmental
conditions [36]. Over the last decade, human reliability anal-
ysis (HRA) [37]–[42], human factors analysis (HFA) [19],
[43], [44], and human and organizational factors (HOF)
analysis [18], [45] have gained attention and are often
performed in isolation from the assessment of technical
risks arising from the system design [36]. HRA detects
the deviations in computational human-error probabilities
using steady-state risk-assessment techniques such as fault
trees. However, the absolute risk determination in HRA
tends to contradict the actual source of human failure and
the available HRA data lack accuracy [36], [46]. Thus
far, several technical and human error risk assessments
have been conducted independently of each other or in
isolation [24], [25], [47]–[50]. Moreover, technical risk
analysis dominates most industrial risk assessments and tends
to rely mainly on qualitative risk matrix tables that are
based on individual operational techniques. Consequently,
the analysis sometimes emphasizes the subjective opinions
of the analysts, organizational risk tolerance, and operational
consequences of failures [17], [51]. Although Kariuki and
Löwe [31] proposed a means of integrating human factors
into process hazard analysis, the approach focused solely
on qualitative techniques without significant emphasis on
integrated quantitative assessment of inherentmachine errors,
human errors, and other external factors during the overall
risk estimation.

To enhance the representativeness of overall risk estima-
tion approaches, especially when handling complex systems,
researchers have proposed various risk aggregation methods
for comprehensive safety management of safety-critical sys-
tems [52], [53]. However, owing to random interactions that
exist among independent variables, the current risk aggre-
gation models have compatibility issues and inaccuracies
considering multiple data types for frequency factors [54].
Therefore, the existing methods of risk aggregation are inade-
quate for dependence correlation analysis as they struggle to
integrate perspectives, learned experiences, and knowledge
of subject matter regarding the relationships between causal
influences and observed data [55]–[57]. The n− and N −
fold convolution techniques are the two most popular risk
quantification and accumulation techniques [58], [59]. These
convolution methods are characterized as the summation
of severity S and frequency distribution N , where N for
all the contributing factors is stochastically evaluated using
the number of fixed n − fold convolutions. The existing
risk-aggregation techniques can derive variables from past
data that can evaluate S and N ; they encounter difficulty in
integrating various causal factors to update the predicted risk
through evidence propagation with learned information and
expert knowledge [59]. Thus, they have difficulty integrating
various causal factors to update the predicted risk through
evidence propagation with learned information and expert
knowledge.

The concept of information or technique hybridization is
well-established as a means of combining various techniques

24588 VOLUME 10, 2022



F. Appoh, A. Yunusa-Kaltungo: Dynamic Hybrid Model for Comprehensive Risk Assessment

to ensure that the weaknesses in some can be compensated by
the strengths of others, creating a synergy that enhances the
overall robustness of the outcomes. Following this idea, this
report proposes a novel dynamic hybrid model (DHM) and
demonstrates its proficiency as a comprehensive risk estima-
tion approach for complex systems under multiple dynamic
conditions. The proposed method incorporates n − fold and
N − fold convolutions in a causal Bayesian dependency
model. It uses the advanced features of Bayesian factorization
and elimination (BFE) theory to ensure that expert knowledge
and information learned from the training data can be
validated automatically using the expectation–maximization
(EM) technique. Simultaneously, the model enables the
quantitative integration of multiple data types, such as
discrete and continuous variables, via dynamic Bayesian
discretization. The method also incorporates sensitivity
analysis features to allow targeted improvements of the
overall risk by prioritizing the input frequency variables with
significant impacts on the overall estimated risk considering
organizational resource constraints.

Similarly, researchers in numerous fields have used
multi criteria decision-making (MCDM) frameworks to
support risk assessment strategies, and their accuracies
have been shown to depend on the quality of data used
for the analysis [14], [60]. For instance, the analytical
hierarchy process (AHP) has been individually applied as
an MCDM tool to analyze complex projects and dynamic
issues [61], [62]. One of the widely recognized drawbacks
of AHP is the consistency of outcomes across different
questions, even when the goal or target remains constant.
However, while Saaty used AHP to provide a flexible,
systematic, and repeatable evaluation process for selecting
optimal alternatives among multiple criteria, the process
remains subjective depending on the selected targets, which
could be problematic for risk assessment of safety-critical
systems such as railway rolling stock systems [63], [64].

The remainder of this paper is organized as fol-
lows. Section II describes the proposed DHM technique.
Section III presents a comprehensive demonstration of the
DHM through a selected case study. Section IV provides an
analysis, a discussion, and the implications of the results.
Finally, Section V summarizes the conclusion of the study.

II. PROPOSED DHM FOR QUANTIFIED RISK ASSESSMENT
The proposed DHM for overall risk assessment with uncer-
tainty consists of eight fundamental steps, as depicted in
Fig. 2. The process commences by collecting and defining
the input training data, consisting of frequency and severity
variables and distributions. The datasets can represent
internal (component inherent failure rates) and external error
conditions (such as human errors, electromagnetic inter-
ference, and weather conditions). Node probability tables
(NPTs) are established using the probability distribution
and density functions of the input data. Next, the aggregate
risk function is established using the dependency and
interdependency factors. The structure is defined using a

FIGURE 2. Overview of DHM.

Bayesian network (BN) with discretization to aggregate both
discrete and continuous data. The frequency and severity
input data are aggregated using BFE with n − fold and
N − fold convolution to predict the overall risk, considering
the interdependency that exists among the variables and
distributions. The predicted risk is validated and updated
with expert knowledge and learned data using Bayesian
EM by forward and backward evidence-based propagation.
To improve the results, sensitivity analysis can be conducted
to identify and prioritize the input frequency, severity
variables, and distributions that improve the overall risk,
given the organizational resource constraints. Finally, the
predicted results can be accepted, or further iterations can
be implemented to improve the overall predicted risk using
additional expert knowledge or input data.

A. DATA INPUT (TRAINING DATA, NEW VARIABLES,
AND NPT DATA)
The model begins with data acquisition and definition of the
input variables. This step is the most critical component of
the DHM technique because the accuracy of outputs is often
indicative of the inputs used to generate them. It includes
establishing the system failure rates as well as defining the
environmental and human error condition data. Data for
a particular task (e.g., a particular repair or replacement
activity), can be derived using conventional HRA [37]–[39],
HFA [19], [43], [44], and HOF methods [18], [45] In
this study, second-generation HRA techniques were used
due to their ability to mitigate against calculation bias
and errors. These abilities are due to the facts that these
approaches can adequately overcome some of the limitations
that plague first-generation tools, especially data scarcity,
inconsistencies associated with the treatment of commission
errors, insufficient treatment of performance-shaping factors,
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cognitive abilities, and lack of systematic task analysis
structure [65].

B. ESTIMATION OF RISK FACTORS
In this step, the input data for the frequency and severity
factors are defined based on the organization operational
context, needs, and constraints. The input data for the
frequency and severity factors can be a discrete variable or
continuous distribution. Some of the external error conditions
for the frequency input data that can be defined include
weather patterns, human error conditions, earthquakes, and
electromagnetic interference. Similarly, the internal error
conditions can consider system failure rates, repair rates,
degradation times, etc. The severity or consequence factors
can consider the mortality rate (e.g., catastrophic, critical, and
moderate), legal cost, financial penalty, business reputation,
etc.

C. BUILDING OF THE OVERALL RISK AGGREGATION
MODEL
Based on the factors identified in Step 2, an estimation of
the overall risk model can be defined using the general
risk aggregation formula for fixed n systems as [58], [59],
[66], [67].

Z = S0 + S1 + S2 + · · · + Sn. (1)

Here, Z is the sum of n system failure consequences, and
each Si for i = 0, . . . , n represents independent identically
distributed (IID) severity distributions. If Si originates from
a common continuous distribution function fx , then Si can be
considered a return distribution from fx written as S ∼ fx .
Thus, S ∼ fx is referred to as arbitrary constant n − fold
convolution. Now, considering that there areN systems and if
S ∼ fx , then (1) can be reformulated as N − fold convolution.

fT =
∑∞

j=0
f ∗j (x)P(N = j) (2)

where fT represent N − fold convolution.
Here, f ∗j (x) =

∫
∞

0 f ∗(j−1) (x − y) f (dy) is a recursive
n − fold convolution on severity S. Therefore, (2) can be
modelled as a discrete random variable, P (N = j) = cj, for
j = 0, ..,L, where L is the range of frequency distribution N .
Thus, the distribution of the aggregate consequences can be
represented as

P (Z ) = c0P (Z0)+c1P (Z1)+ · · · + cLP (ZL) , (3)

Z0 = S0,Z0=S0 + S1, ..,ZL = S0 + S1 + · · · + SL , (4)

where each Zj is a constant n − fold convolution, P (ZL)
represents discrete random variable, cj represents coefficient
of the random variable P (ZL) and (3) represents a compound
distribution consisting of mutually exclusive parameters.
Step 5 illustrates how the BFE technique can be implemented
to estimate the complex risk model in (3) with various
dependencies such as common cause, sequential effects, and
nonlinear effects. In addition, mixture variables are computed
by utilizing the dependent predetermined functions defined
in (4).

D. BN STRUCTURE CONSTRUCTION AND APPLICATION OF
DYNAMIC DISCRETISATION
The BN structure was constructed for all the nodes that
represent the random variables that influence frequency
and severity to establish the NPT [68], [69]. Several
scholars [57], [59], [70] have already indicated that most
of the existing risk aggregation approaches are limited in
their ability to recreate causal interactions between hybrid
variables accurately. Therefore, the incorporation of the BN
representation here enables the DHM to simulate cause-
and-effect dependencies between hybrid parameters in the
hypothesis to estimate the marginal probability distributions
for the parameters under study. Likewise, the Bayes theorem
is agnostic to the direction of dependent factors, with the
capability to hypothesize and infer the cause and effect
regardless of the form, structure, and path existing among the
parameters (or convolution to deconvolution). This operation
typically reduces the complexity of inference as described by
(5) [71]–[73]:

P (Y1, . . . ,Yn) =
∏

P(Yi|pa(Yi). (5)

Dynamic discretization entails searching for regions of
high density during hypothesizing by summing other
specific intervals while eliminating unnecessary intervals
through merging and deletion, thus overcoming the defi-
ciencies in static discretization [74]. The entropy error-
convergence technique repetitively discretized the target
parameters [71], [74], [75]. For example, for a continuous
node X , if the length of X is represented as �x , then the
density of random continuous function X can be represented
as fX . Discretisation can be achieved by estimating fX via the
following:
• Splitting �x into an interval group 9X =

{
wj
}

• Allocating each interval group with a fixed function fx .
Utilizing the maximum bound of the Kullback-Leibler

(KL) value that exists between two primary density functions
f and g, the comparative entropy error stimulated by the
discretised parameter can be estimated as

D(f ||g) =
∫
f (x) log

f (x)
g (x)

dx. (6)

With the KL parameter, the maximum parameter of a
discretized function f̃x can be specified by the average of
the parameter contained in the individual intervals of the
discretized region. The comparative entropy error obtained
from the probability density function ˜fX due to discretisation
9X =

{
wj
}
is evaluated, tested, and checked during the

iterative process to ensure that it is below a stated threshold
as defined by the convergence stopping rule. The joint
marginal distributions for all parameters in the model are
evaluated using the inference algorithm upon completing the
discretization of each parameter.

E. INITIAL RISK ESTIMATION
The BFE method that performs convolution on the
hybrid frameworks requires risk accumulation with or
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without causal effects that can be sequential, resulting
from a common cause, and other nonlinear dependences.
To reduce the conditional probability tables, the BFE
method consists of three separate steps, each perform-
ing a specific optimization task during the convolution
process [71], [76]–[79].

1) LOG-BASED AGGREGATION (LBA)
LBA computes the n − fold convolution based on a log-
based pattern, thereby improving computational efficiency,
rather than aggregation by straight summation in (4).
According to (3), Zi, where i = 1, . . . , n represents
the aggregation of specific parent parameters Zi−1 and
Si, where the summation consists of repetitive sums of
the same parameter Si. The overall aggregate parameter,
Z , is estimated when two intermediate parameters are
produced by two parents forming a hierarchy chain during
the factorization process. To avoid the computational delay
and reduce the cost, LBA first calculates and exploits
prior estimated results inductively. Therefore, an individual
stage in the process enables the iteration of results from
the posterior steps without the creation of a different BN
structure.

2) VARIABLE ELIMINATION (VE)
In this stage, parameters are repetitively deleted in the LBA
iteration step, significantly enhancing the computational
efficiency for evaluating arbitrary fixed n−fold convolutions.
The objective of VE is to eliminate nodes in the BN structure
through marginalization for mutually exclusive variables
outside the boundary of the query sets. However, VE reduces
the number of variables in the analysis but integrates
additional steps to capitalize on the repeated structures and
frameworks within the model. For an n− fold convolution of
IID severity parameters, the graph in Fig. 3(a) illustrates the
factorization model of the computation of Zn =

∑n
j=0 Sj after

introducing the intermediate variables
{
Z1,Z2,, ..,Zn−1

}
.

Hence, the marginal distribution for Zn has the following
form:

P (Zn)

=

∑
(S0,..,Sn,Z1,..,Zn−1)

P(S0,S1,.., Sn,Z1,Z2,, ..,Zn−1,Zn)

=

∑
(S0,..,Sn,Z1,..,Zn−1)

P(Zn|Zn−1, Sn) (7)

P (Zn−1|Zn−2, Sn−1) ..P (Z1|S0, S1)P (S0) ,P (S1) ..P (Sn) .

(8)

However, by exploiting the conditional independence
relations in Fig. 3(a), it can be observed that all the pairs
of Zi and Si+1 are independent of each other. Therefore, it is
feasible to marginalize each pair of Zi and Si+1 individually,
as shown in the model.

FIGURE 3. BN models of (a) N − Fold convolution when severities are IID
and (b) N − fold convolution when severities are common cause
dependent on arbitrary vector H with binary types (W ∗

1 ,W ∗

2 ).

Thus, based on the ‘‘query blocks,’’ (7) can be rewritten as

P (Zn)

=

∑
Zn−1,Sn



∑

Z1,S2
P(Z2|Z1, S2){∑

Z1,S2
P(Z2|Z1, S2)P (S0)P (S1)

}
P(S2)}P(Sn)

(9)

With (9), it is feasible to marginalize each pair of parents Zi
and Si+1 iteratively out of the model through elimination or
pruning. For example, the elimination order in (9) could be
{S0, S1}, {Z1, S2} , . . . , {Zn−1, Sn}. The marginal probability
distribution of Zn, which refers to the last query set, is then
determined at the final deletion stage.

Nevertheless, in the scenario in which BN exhibits
common cause effects including dependency features as
illustrated byW2 in Fig. 3(b), the set to be directly eliminated
during the VE process includes the leaf nodes. The common
parent node H is the desired node that should be preserved
in the query at each step. Marginal distribution W2 can be
evaluated and expressed by computing posterior distribution
W2 in BN W ∗2 , as illustrated in Fig. 3(b), as follows:

P (Z2) =
∑

H ,S0,S1,S2,T1

P(Z2|Z1, S2)P (Z1|S0, S1)

×P (S0|H)P (S1|H)P (S2|H)P (H) . (10)

=

∑
H ,S2,T1

P(Z2|Z1, S2)P (S2|H)P (H)

×

{∑
S0′S1

P(Z1|S0, S1)P(S0|H )P(S1|H )
}
. (11)

To eliminate S0 and S1 by marginalising them from (11),

P(Z1|H ) =
∑

S0,S1
P(Z1|S0, S1)P (S0|H)P (S2|H) . (12)

VOLUME 10, 2022 24591



F. Appoh, A. Yunusa-Kaltungo: Dynamic Hybrid Model for Comprehensive Risk Assessment

The posterior marginal of Z2 can also be defined in
combination with H , Z1, and S2 as

P(Z2) =
∑

H ,S2,T1
P(Z2|Z1, S2)P (S2|H)P (Z1|H)P(H ).

(13)

Next, S2 and Z1 can be expressed as

P(Z2|H ) =
∑

T1,S2
P(Z2|Z1, S2)P (S2|H)P (Z1|H) . (14)

The conditional probability distribution for each parameter
Zn−1 can be obtained with the following expression:

P (Zn−1|H)

=

∑
Tn−1,Sn−2

P(Zn−1|Zn−2, Sn−1)P (Zn−2|H)P (Sn−1|H).

(15)

Therefore, the target n − fold convolution with variable
Zn−1 aggregate can be achieved for the posterior probability
distribution through the marginalization of H by specifying
the conditional distribution for variable Zn−1|H . The output
from (15) can be considered a universal expression for
common causes, dependency, and nonlinear effects with
multiple influencing factors for risk prediction.

3) COMPOUND DENSITY FACTORISATION (CDF)
CDF is the final process in the BFE method, by which the
algorithm factorizes the compound sum of (3) to reduce large
NPTs into smaller ones. Consider the compound probability
density function, P(Z ), as expressed in (3) for an N − fold
convolution with severity S, in which Zj =

∑j
i=0 Si, j = 0

with corresponding assigned weight Zj can be shown to lack
space and range. The insufficient space can be addressed
through factorisation. Two additional Boolean factorsGj with
two possible states, true and false, are initiated to assign
comparable weights to cj for each pair of nodes in the
configuration. This process is accomplished for {Z0,Z1},
{F0,Z2} , ..,

{
Fj−2,Zj

}
by factorising (3) as shown in Fig. 4.

The weighted aggregate for the individual stage up to the full
range, L, of the N − fold convolution can be evaluated by
initiating two-factor variablesMj. NPT for Gj−1 is defined as

P
(
Gj−1 = True

)
=
c0 + c1 + · · · cj−1
c0 + c1 + · · · cj

. (16)

Therefore, the conditionally deterministic expression for
variable Gj−1, which is referred to in BN parlance as the
partitioned node, can be expressed as

Mj−1 =

{
Mj−2, if Gj−1 = True
Zj, if Gj−1 = False.

(17)

In addition, Z0 and Z1 are mutually exclusive variables; the
marginal probability distribution for variablesM0 is

M0 = P (G0 = True)P (Z0)+ P (G0 = False)P (Z )

= c0P (Z0)+ c1P (Z1) . (18)

FIGURE 4. Adaptation of compound density factorization [71], [76]–[79].

This expression is similar to the first two terms for compound
density function P(Z ) in (3). Hence, the marginal probability
for Mj assumes

Mj−1=P
(
Gj−1 = True

)
P
(
Mj−2

)
+
(
Gj−1 = False

)
P
(
Zj
)
.

(19)

Therefore, through the BFEmethod, the compound density
function in (3) can be computed efficiently. Note that the
robustness of BN enables any type of labelling node to be
considered. Hence, other labelling such as ‘‘Yes’’ and ‘‘No’’
or ‘‘On’’ and ‘‘Off,’’ among others, could be used instead of
‘‘True’’ and ‘‘False.’’

F. INCORPORATION OF EXPERT KNOWLEDGE INTO RISK
ESTIMATION
Assume that we wish to express a joint probability density
function through maximum likelihood estimation (MLE);
however, some data or information is missing. In this case,
we can use expert knowledge and learned data as observable
variables to update the model for greatly improved overall
risk prediction. Let xi be the missing or hidden data, D be
the dimensionality of the data vector, θ be the vector of the
unknown parameter, and training data = {xi|i = 1 : N },
(µ,σ 2) be a multivariate Gaussian distribution of the hybrid

model withµ as the mean of themultivariate distribution with
variance σ 2. Then, we can use the EM in two steps to update
the model. The goal is to performMLE for θ , which becomes
θ̂ as [80]–[82]

θ̂ = argmaxQ
(
θ, θ t−1

)
θ

. (20)

At the expectation (E) step, we can evaluate the expected
comprehensive data log-likelihood at t iteratively as follows:

Q
(
θ, θ t−1

)
=E

[∑N

i=1
log

(
xi|µ,

∑)
| , θ t−1

]
, (21)

=−
N
2
log|2π

∑
|−

1
2

∑
i
E
[
(xi−µ)T

∑−1
(xi − µ)

]
,

(22)
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=−
N
2
log|2π

∑
|−

1
2
tr
(∑−1∑

i
E
[
(xi−µ) (xi−µ)T

])
,

(23)

=−
N
2
log|

∑
| −

ND
2
log (2π)−

1
2
tr
(∑−1

E [S (µ)]
)
,

(24)

where E [S (µ)] =
∑

i
(
E
[
xixiT

]
+ µµT − 2µE [xi]T

)
are

the expected sufficient statics,
∑
−1 represents the inverse

covariance matrix,
∑

represents the covariance matrix and
(xi − µ)T represents transpose of vector (xi − µ).
To compute

∑
i E [xi] and

∑
i E
[
xixTi

]
at the E-step,

consider a scenario i consisting of observed and unobserved
variables and h with Gaussian distribution (mi,V i) with
covariance matrix

∑
hv and inverse covariance matrix,

∑
−1
vv

respectively:

xih|xiv, θ ∼ (mi,V i) (25)

mi , µh +
∑

hv

∑−1

vv

(
xiv − µv

)
(26)

V i ,
∑

hh
−

∑
hv

∑−1

vv
∑

vh
. (27)

Thus, the expected sufficient statistics can be expressed as

E [xi] = (E [xih] ; xiv) = (mi; xiv) . (28)

Without loss of generality, let the unobserved variables
precede the observed variables in the order of the node.
To determine E

[
xixTi

]
, we consider covariance x to be

cov [x] = E
[
xxT

]
-E [x]E

[
xT
]
. Therefore,

E
[
xixTi

]
= E

[ (
xih
xiv

) (
xTih xTiv

)]

=

 E
[
xihxTih

]
E [xih] xTiv

xivE [xih]T xivxTiv

 . (29)

E
[
xihxTih

]
= E [xih] xivE [xih]T + V i. (30)

For the maximation (M) step, we optimize the auxiliary
function ∇Q

(
θ, θ (t−1)

)
= 0, where

µt =
1
N

∑
i
E [xi] . (31)∑t

=
1
N

∑
i
E
[
xixiT

]
− µt

(
µt
)T
. (32)

Equations (31) and (32) provide the inference for EM
application for a dynamic hybrid model with missing and
unknown variables, where we cannot replace variables by
their expectations and apply MLE. Instead, we calculate the
expectation of sufficient statics and insert that into the MLE
in (20).

G. SENSITIVITY ANALYSIS
Upon completing the EM learning process to validate and
improve the predicted overall risk, further improvement
can be achieved through prioritization and targeting the
frequencies with the highest impact on aggregated risk. Let
S
(
Ē,V

)
be a discrete frequency node in a compound risk

estimation; then, the sensitivity node can be expressed with a
generalized approach [71], [83]:

S
(
Ē = ē,V = v

)
=
P
(
V = v|a, Ē = ē

)
p (V = v|a)

, (33)

where p (V = v|a) is the current probability value for V ,
given evidence, and P

(
V = v|a, Ē = ē

)
is the new value

taken by V when values for the set of observable variables,
Ē , are inserted into the BN model. Note that the current
instantiated nodes denoted by evidence a will be excluded
from Ē . On evaluation, the joint sensitivity of the target,
being the overall risk to perturbations in the source nodes,
is exponential in time and space. Therefore, pairwise
sensitivity can be adopted with a generalized approach
to (33):

S (E = e,V = v) =
P (V = v|a,E = e)

p (V = v|a)
. (34)

Considering inward analysis whereby all the values are
set on the source variable Ē , assessing the change in V and
broadcasting involves changing only the target node E and
evaluating the changes in the source set Ē [83]. In addition,
the broadcasting evaluates changes to the source nodes in
parallel and provides time-saving opportunities as follows:

P (V = v|a,E = e)
p (V = v|a)

=
P (E = e|V = v, a)

p (E = e|a)
. (35)

In the case of continuous data, sensitivity analysis is
derived by broadcasting the changes in value for V and stor-
ing the full distributions: P (V = v|a,E = e) , p (V = v|a) ,
p (E = e|a), as required in the discrete case. The statistics and
percentiles derived at the end will give the variety of results
proportional to the corresponding impact on risk, and these
can be represented in a tornado graph for different observable
variables with respect to the target node (i.e., the overall
risk) [71].

H. OVERALL SYSTEM RISK ESTIMATION
Further iterations of the processes in Section II.F can be
initiated by iterating and updating the model with new expert
knowledge and data learned from the training data as more
information becomes available via design, operation, and
model maturity. The DHM can be repeated and iterated
from the initial step described in Section II.B with a new
observable variable for frequency or severity, and from the
descriptions in Section II.F with new expert knowledge and
learned data. The iterations and computations for the DHM
follow the described stable-entropy and low-entropy error-
convergence stopping rules [74], [75], [84].

SEE=

{
1−α≤

S(l−k)X

S(l−k+1)X

≤ 1+α ∀k=1, 2, 3, l=1, .., n

}
,

(36)

where n is the total number of iterations, S(l)X =
∑

Wj
Ej is the

approximate relative entropy error, and k is the observable
three-sequential iterations to establish whether the entropy

VOLUME 10, 2022 24593



F. Appoh, A. Yunusa-Kaltungo: Dynamic Hybrid Model for Comprehensive Risk Assessment

has converged to a stable parameter with the restricted region
(1−α, 1+α). The LEE stopping rule determines the absolute
entropy error threshold convergence for NPT.

LEE =
{
SXi < β

}
(37)

I. DHM ALGORITHM FOR COMPREHENSIVE RISK
ASSESSMENT
Given input training data with N frequency distribution and
variables and S severity distributions and variables, the DHM
algorithm is as follows:

1. Initialize the function P (Z ) in (3).
2. Construct and compute the prior probability variables

and distributions for the input NPTs based on the input
data.

3. Compute the posterior probability for the NPTs using
(5) and (6).

4. Compute the marginal distribution based on the
BN structure and interdependency factors in Step
2 using (7)–(15).

5. Compute the initial overall risk P (Z ) using the
convergence stopping rules in (36) and (37).

6. Validate the predicted risk via Bayesian EM in (20)
with learned data and expert knowledge using the
convergence stopping rules in (36) and (37).

7. Compare and contrast the predicted initial risk in Step
4 and validated risk in Step 5.

8. Accept the predicted overall risk or continue iteration
with new expert knowledge and learned data.

9. Identify and prioritize the highest input frequency
variable and distributions for further improvement
in the predicted risk via sensitivity analysis using
(33)–(35).

10. After completing Step 9, iterate Steps 4–7.
11. With new input data for severity and frequency, iterate

Steps 1–9.
12. End.

III. CASE STUDY: TRAIN COUPLER FAILURE
Section II provides a full description of the theoretical
framework of the proposed approach. For a practical
demonstration of its proficiency, a semi-permanent coupler
of a three-car EMU train operating in the UK was used
to demonstrate the overall risk assessment. This approach
enables the implementation of robust mitigation factors and
facilitates the adoption of safety management plans. The
coupler incorporates a center pivot, which consists of male
and female mechanical couplers with two-socket joints that
are placed over the flange of the coupler halves. The coupler
joins two train carriages together and has a deformation
tube that absorbs excess forces during collision. The core
is pressed into the deformation tube, which in turn expands,
thereby enabling the coupler to be compressed and for energy
to be absorbed. A rubber doughnut anchor absorbs energy,
which enables pivoting and transfer of forces between the
center section and vehicle underframe. Pneumatic jumper

TABLE 1. Control mode. Source: [27], [85].

hoses are provided for the main reservoir pipe and brake
pipe between intermediate ends. Jumper connections for train
carriages are permanently mounted between the intermediate
ends of each car to enable electric power and pneumatic
hoses to be connected. Failure of the semi-permanent coupler
can be catastrophic, especially for high-speed trains, and
could lead to derailment, collision, and fires with multiple
casualties. The objective of this case study was to assess
the overall risk for a three-car EMU fleet based in the UK
similar to Fig. 1 considering coupler failure rate, human
error conditions during maintenance, and electromagnetic
interference (EMI) from the rail infrastructure. Therefore, the
sources of risks considered for this case study include human
or maintenance errors, electromagnetic interference (EMI)
from railway infrastructure, and couplers inherent failure
rates.

The analysis began with data curation and NPT definitions
for semi-permanent coupler failure frequency and severity
variables. The frequency data have four subcategories:
coupler 1 failure rates, coupler 2 failure rates, human error
probabilities (HEP) due to coupler maintenance activities,
and EMI. For semi-permanent couplers, EMI is a product of
rail infrastructure and other trains, which cause intermittent
loss of electrical and signal transmissions along the jumper
cables, affecting critical subsystem functionalities such as
door control systems, braking systems, and lighting systems.
Three severity variables were identified: severity related to
fatalities of up to five people, severities related to more
than five fatalities, and severities related to financial loss
to the operator due to settlements, penalties, and rail line
closures. The HEP for the semi-permanent coupler was
estimated for experienced and inexperienced technicians
using the second-generation cognitive reliability and error
analysis method (CREAM). The semi-permanent coupler
maintenance activity encompassed the following tasks:
• Task 1: Visual inspection of the coupler and associated
electrical devices for damage.

• Task 2: Inspection of the coupler with NDT for cracks
and damage.

• Task 3: Replacement of any damaged jumper cables
including wiring.

• Task 4: Ensuring that all jumpers and locks are securely
fitted and test the system for correct functionality.

Tables 1 and 2 show the common performance condi-
tions (CPCs) that can be defined for Tasks 1–4, which enable
the estimation of the context influence index (CII) [27], [85]:

CII =
∑

Reduce−
∑

Improve. (38)
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TABLE 2. CPCs. Source: [27], [85].

The overall HEPs for inexperienced and experienced
technicianswere estimated to be 0.820 and 0.182, as indicated
in Tables 3 and 4. Tasks 2 and 3 demand more significant
cognitive aspects; although there are cognitive aspects in
Tasks 1 and 4, they are less significant. In addition, the
probabilities of failure and success of the couplers were
predicted at a train operating time t of 2000 h. All models,
including the NPTs, were run for 30 iterations with a
convergence error of 0.01, as expressed in (36) and (37).
The remainder of the discrete and continuous NPTs were
defined for frequency and severity, respectively, as shown in
Table 5. The overall severity was divided by a factor of 10 to
normalize the overall risk scale from 1 (very low) to 6 (very
high) to enable comparison with the risk matrix table of the
UK-based operating company. The analysis was conducted
using AgenaRisk tool [86].

IV. ANALYSIS AND DISCUSSION OF OUTCOMES
The overall BN structure for the complete model, including
the frequency, severity, and synthetic nodes for NPTs of
various data types is shown in Fig. 5. The synthetic node
coupler status is introduced into the BFE computations.
A hidden/synthetic link connects the overall risk node to the
overall severity and frequency for the BN structure. Firstly,

TABLE 3. HEP prediction based on CREAM method for an inexperienced
technician.

TABLE 4. HEP prediction based on CREAM method for an experienced
technician.

we estimated the overall risk after a train time t of 2000 h.
In scenario 1, we assumed normal operating conditions
with severities as IID and with the two couplers working
as required, maintained by an experienced technician in
the presence of low EMI. The overall risk was estimated
using (3)–(19). Further, (5) and (6) enabled the mixture of
discrete and continuous nodes to be computed conveniently
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TABLE 5. Prior NPT data and information.

FIGURE 5. BN structure for semi-permanent coupler overall risk.

using dynamic discretization. The corresponding marginal
distribution for the query, including the overall risk in
scenario one, is shown in Fig. 6. The resulting overall risk
for train derailment caused by coupler failure was estimated
to have a mean of 3.04 with a 99th percentile interval of
0.33–7.53. Compared to the quantitative risk assessment
conducted based on the coupler failure rate only, the overall
risk of the derailment was estimated to be 1, which represents
low risk. This finding implies that coupler derailment could
occur, but it would be an exceptional event and significantly
unlikely. However, when additional frequency factors were
considered in combination with the inherent failure rate, the
overall risk indicated was moderate risk of 3 (3.04 ≈ 3),
indicating the event was a distinct possibility but rare.

In scenario 2, assuming IID for the severities, when the
human error NPT was set to an inexperienced technician and
with EMI set to high as shown in Fig. 7, the worst-case

FIGURE 6. Scenario 1: overall risk of causing derailment under normal
operation with low EMI and an experienced technician.

scenario overall risk of coupler derailment was estimated
at 6 (6.02 ≈ 6) very high risk, even though the couplers
were considered to be fully operational. The risk rating of
6 indicated that the probability of an accident due to coupler
derailment was frequent under scenario 2.

The predicted risk ratings from scenarios 1 and 2 were
validated through further comparisons and incorporation
of new test data from a similar three-car EMU with
different EMI distributions and coupler maintenance error
probabilities with expert knowledge of the fleet performance.
The ratio of expert knowledge to new test data was considered
to be 50%, meaning that there was equal confidence with the
new test data and with the current NPTs in scenarios 1 and 2.
Hence, learned NPT data from scenarios 1 and 2 were
used for missing NPT data. The Bayesian EM learning
algorithm in (20)−(32) was utilized to conduct the learning
and validation process. This step began with the validation
of overall risk from scenario 2 in scenario 3 with new
NPTs, as shown in Fig. 8. The high EMI was considered
to be 59.98%, contrasting with the 100% in scenario 2.
Furthermore, based on expert knowledge of test data, HEP
for the inexperienced technician was considered as 40%, with
couplers 1 and 2 having success probabilities of 79.073%
and 60%, respectively, contrasting with the value of 100%
in scenario 2. After a maximum of 30 iterations with a
convergence threshold of 0.01, the new overall risk was
estimated to be 5.72 (mid-range between high and very high
risk), as shown in scenario 3 in Fig. 8. Comparing the new
overall risk in scenario 3 to scenario 2 indicates a minor
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FIGURE 7. Scenario 2: worst-case overall risk estimation for coupler
derailment caused by an inexperienced technician and high EMI.

FIGURE 8. Scenario 3: worst-case overall risk estimation using new
expert knowledge and test data: (a) overall frequency, (b) overall severity,
and (c) overall risk.

difference between the very high risk predicted using original
data (6.02) and that predicted based on test data with expert
knowledge (5.72). The confidence level achieved for the
predicted overall risk is greater in scenario 2. The node with
‘‘M’’ indicates that the NPTs have been learned as a mixture,
consisting partially of learned data from the previous NPT
and from expert knowledge about the test data. It also means

FIGURE 9. Scenario 4: overall risk estimation for normal operating using
new expert knowledge and test data for (a) overall frequency, (b) overall
severity, and (c) overall risk.

that the expert knowledge to data ratio is higher than 0% and
lower than 100% (50% as indicated). ‘‘K’’ shows that the
NPTs were solely based on learned data from existing NPTs.

Similarly, the overall risk for scenario 1 (i.e. normal oper-
ation) as shown in Fig. 6 was validated using scenario 4 as
shown in Fig. 9. The figure shows the same NPTs from
expert knowledge on test data and learned data as those
discussed in scenario 3. Thus, the conditions in scenarios 1
and 4 were set identically, using an experienced technician
with fully functioning couplers and low EMI. The overall
risk for coupler derailment in scenario 4 was estimated to
be 3 (2.93 ≈ 3). The original risk predicted in scenario 1
(3.00) under normal conditions is similar to that predicted
in scenario 4 (2.93), with learned data as well as expert
knowledge.

Finally, sensitivity analysis was conducted based on
(33)–(35) to prioritize improvement actions for the highest
frequency factor with a significant impact on the overall
risk to reduce the likelihood of derailment. The overall
risk was selected as the targeted node, and the discrete
frequency factors (HEP, EMI, couplers 1 and 2 failure rates)
and continuous severities were selected as sensitive nodes.
As shown in Fig. 10, the overall coupler frequency (i.e., the
synthetic node for all individual frequency factors) has the
greatest effect on the predicted overall risk, reaching 25.71 on
the Tornado scale for train derailment. This value contrasts
with the overall severity of 2.929. Further analysis indicated
that the EMI had the greatest effect on the overall frequency,
the overall risk with a factor of 7.32, followed by human error
factors at 4.882, and the inherent factors of couplers 2 and 1
at 4.881 and 3.704, respectively. The results highlight a
significant need for EMI improvements, such as the proper
insulation of cables and use of twisted pair cables. These

VOLUME 10, 2022 24597



F. Appoh, A. Yunusa-Kaltungo: Dynamic Hybrid Model for Comprehensive Risk Assessment

FIGURE 10. Sensitivity analysis of overall risk.

measures can help reduce the loop areas and induced voltage,
minimizing EMI and improving overall risk for coupler-
against-rail derailment. The results indicate that technicians
require further training to improve their competence levels
and to reduce human errors during coupler maintenance.

V. CONCLUSION
Herein, a hybrid model was proposed for the comprehensive
quantitative risk assessment of multiple hazard sources.
Unlike other quantitative risk assessment methods, to predict
the overall risk from multiple sources, the proposed approach
harnesses and aggregates discrete variable and continuous
distribution data dynamically. Some of the theoretical and
experimental benefits of DHM include the following:

i. It can aggregate various risk sources from previous data
and integrate the causative elements among the risk
sources to aid overall risk prediction.

ii. It uses Bayesian factorization and elimination tech-
nique to incorporate expert knowledge to update
predicted risk, depending on changing input data
sources stochastically.

iii. It enables mathematical combination of several types
of data (i.e. discrete and continuous data) to facilitate
overall risk estimate, utilizing the Kullback-Leibler
dynamic discretization method.

iv. The DHM method’s sensitivity analysis function
allows for targeted improvements in overall risk by
prioritizing the highest input risk, which substantially
impacts the overall predicted risk in light of organiza-
tional resource constraints.

The BFE algorithm embodied in the DHM technique
enables the utilization of interdependent factors betweenmul-
tiple sources of risk, which complements in the overall risk
estimation. The dynamic updating feature of the DHM via
the Bayesian expectation–maximization technique achieves
accurate risk prediction in dynamic operating contexts by
enabling themodel to be updated using forward and backward
propagation with additional data and new expert knowledge.

The addition of sensitivity analysis to the DHM technique
significantly enhances holistic risk assessment by prioritizing
the input data (hazards) with the greatest effects on the

predicted risk for further improvements in the context of
organizational resource constraints. As a result, when com-
pared to analyzing individual sources of risk independently
of one another, the ability to amalgamate the sources of
risk using the DHM technique aids in showing the broader
degree of risk and their implications. As demonstrated in the
case study and various scenarios, the results indicate that
the risk predicted using the DHM is far more robust and
presents a more comprehensive view of the risk of semi-
permanent rail derailment than conventional risk estimation
based only on inherent failure rate. It was also observed
that the DHM can quantitatively and dynamically aggregate
various sources of risk into a single holistic outcome for
effective risk mitigation. However, the availability of quality
data may be a shortcoming in the implementation of the
DHM. This issue can be addressed through more effective
data collection methods. While the DHM technique is
versatile and robust, it should be tailored to the specific
system under study, available data, and verified assumptions
to support the analysis. Furthermore, while the DHM has
been demonstrated in its application using a UK rolling
stock electrical multiple units as a case study, it is worth
noting that the application of a different rolling stock
configuration in a different country should take into account
the rules and regulations governing risk assessments for
fleet-wide acceptance into operation in that country. Future
studies can consider software and online development of the
DHM algorithm, including further validation of the proposed
technique via new case studies.
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