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ABSTRACT Pneumatic artificial muscle actuators possess great potential in compliant rehabilitation devices
since they are flexible and lightweight. The inherent high nonlinearities, uncertainties, hysteresis and
time-varying characteristics in pneumatic artificial muscle systems brings much challenge for accurate
system modeling and controller design. The angle tracking problem based on iterative learning control
technology is considered in this work. This research proposes a new initial-rectification adaptive iterative
learning control scheme for a pneumatic artificial muscle-actuated device with nonzero initial errors and
iteration-varying reference trajectories. A barrier Lyapunov function is used to deal with the constraint
requirement. A new initial rectification construction method is given to solve the nonzero initial error
problem. Nonparametric uncertainties in the system are approximated by using a neural network, whose
optimal weight is estimated by using difference learning method. As the iteration number increases, the
system states of angle and angular velocity can accurately track the reference trajectories over the whole
interval, respectively. In the end, the simulation results show excellent trajectory tracking performance of
the iterative learning controller even if the reference trajectories are non-repetitive over the iteration domain.

INDEX TERMS Pneumatic artificialmuscle systems, iterative learning control, initial rectification approach,
barrier Lyapunov function.

I. INTRODUCTION
As a kind of tube-like actuators, pneumatic artificial mus-
cle(PAM) actuators can contract or extend like real human
muscles by inflating and deflating pressurized air through
servo valves. The innate compliance and muscle elasticity
of PAM actuators provide safe and soft interactions. The
characteristic of low weight and flexibility of PAM actuators
make them suitable for reconfigurable, compact and portable
applications [1], [2]. Traditional electric and hydraulic
actuators exhibit high stiffness, but are too heavy and rigid
for medical rehabilitation and wearable applications. Due
to the inherent features of high nonlinearities, complex
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hysteresis, and time-varying characteristics, achieving high-
precision trajectory tracking control performance for PAM
systems is not easy such that PAM actuators have not been
extensively used in robotics to date even if they possess the
obvious advantages over conventional actuators. To obtain
satisfactory control performance, attempts have been made in
the past two decades [3]–[12]. Up to now, the high-precision
control of PAM systems is still a challenging issue.

Iterative learning control (ILC) technology has been put
forward in the early 1980s. According to the system errors
in the previous iteration(s), the control precisions of ILC
systems may be gradually improved by updating the leaning
parameters or control inputs, cycle by cycle, and better
control performances may be obtained even without using
accurate system models [13]–[22]. The special working
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principle of ILC bring continuous attention during the past
serval decades. So far, ILC has been regarded as one of the
most effective control strategies in handling repeated tracking
control tasks or rejecting periodic disturbances for nonlin-
ear systems, and has been applied in numerous practical
applications, such as servo motors, robot manipulators, batch
chemical process and traffic flows [23]–[25]. In the field of
ILC, adaptive ILC,which can be seen as a combination of ILC
and adaptive control, has been a hot topic since this century.

We will consider three important aspects in the research
of ILC on PAM systems. The initial position problem
of PAM ILC systems is the first issue that we will
discuss. Theoretically speaking, for an ILC system, through
continuous iterations by using the error information in the
previous iteration(s), the control performance may get better
and better during the whole operation time interval. However,
in most traditional ILC algorithms, the above-mentioned
excellent control performance is based on the premise that
the initial error of ILC systems in each iteration should be
zero; if the premise can not be satisfied, system divergence
may occur even if the initial error is very slight. For
the limitations of physical resetting, the zero initial error
cannot be realized in practical applications. Consequently,
how to design ILC controllers under nonzero initial error
conditions, is a fundamental research issue in the field of ILC,
which is usually be called initial position problem of ILC.
In the context of PAM systems, the research on the initial
position problem is still preliminary at present. Guo et al.
proposed a robust adaptive ILC scheme to solve the angle
tracking problem for a kind of PAM-actuated mechanism,
with alignment condition used to solve the initial position
problem [26]. Yang et al. design an angle error-track adaptive
ILC algorithm solve the angle tracking problem for a PAM
system with nonzero initial errors [27]. Overall, the number
corresponding results is very limited. The initial position
problem of PAM ILC systems is an issue worthy to be further
studied.

The repetitiveness of reference trajectories for PAM ILC
systems is another concern that we want to address. In most
traditional ILC algorithms, a controlled system is assumed to
perform a same specific control task during all iterations, i.e.,
the reference trajectory for a control systemmust be iteration-
invariant. However, in practical applications, there exists
the requirements on tracking iteration-varying reference
trajectories to improve the efficiencies or match the technical
processes. The earlier studies on iteration-varying trajectory
tracking were reported in [28] on contraction-mapping
ILC with slow iteration-varying reference trajectories, and
in [29] on adaptive ILC with iteration-varying reference
trajectories, respectively. On the basis of above works, some
scholars continued in-depth research on adaptive ILC with
iteration-varying reference trajectories [30]- [35]. In the
context of PAM systems, the research on this issue is still a
research blank at present.

In addition, the constraint requirement in ILC systems
is also an interesting issue. For the purpose of system

specifications and safety considerations, the system output,
the system state, or the output tracking error should be
constrained in some situations. Inspired by the development
in barrier Lyapunov function-based adaptive control [36],
[37], Jin and Xu carried out the earlier investigation on state-
constrained adaptive ILC [38] and output-constrained ILC
[39]. Later on, some further results on barrier ILC have
been reported, such as barrier error-tracking state-constrained
ILC [40], state and input-constraint ILC [41], constrained
data-driven optimal iterative learning control [42], joint
position constrained robotic ILC [43], constrained spatial
adaptive ILC [44], [45]. None of these works consider the
state/output constraint ILC for PAM systems. How to develop
an effective ILC algorithm to deal with PAM system under
nonzero initial errors, as well as to meet the requirement
of iteration-varying trajectory tracking and system constraint
during operation, has not been addressed yet.

In this work, we present a novel barrier adaptive
ILC scheme for a PAM system with nonzero initial
errors, iteration-varying reference trajectories and constraint
requirements on angle/angle velocity tracking error. Themain
results and contributions of this work can be summarized as
follows.

(1) A news construction method of rectification reference
trajectories is presented to deal with initial position problem
of PAM ILC system.

(2) The constraint requirement on angle/angluar velocity
is implemented by using barrier Lyapunov function approach
during the ILC design for the PAM system.

(3) By constructing a novel Lyapunov−Krasovskii func-
tional, an adaptive ILC law is developed to address the
iteration-varying trajectory tracking for the PAM ILC system.

The rest of this paper is organized as follows. The
problem formulation is introduced in Section II. The detailed
procedure of controller design is addressed in Section III. The
convergence analysis of closed-loop PAM systems is given in
Section IV. In Section V, the simulation results are illustrated
to verify the effectiveness of the proposed control scheme.
Finally, Section VI concludes this work.

II. PROBLEM FORMULATION
Consider the angle tracking problem of a PAM-actuated
device as shown in Fig. 1. The main component of this
device includes an air compressor, two proportional valves,
two PAM actuators, an angle sensor and a computer. In this
PAM system, the control commands which are dictated from
the computer can be sent to the two proportional valves. The
computer queries the deflection angle of pulley through the
sensor in real time. By opening and closing of the two valves,
the force may be generated by the pressurized air inside PAM
actuators.

The two control variables of this system may be described
as {

ul(t) = uo + cuu(t),
ur (t) = uo − cuu(t),

(1)
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FIGURE 1. The control structure of PAM-actuated device.

in which uo(t) is the initial preloaded control voltage, cu is the
voltage distribution coefficient, and u(t) is the control input.
The internal air pressures of actuators are determined by the
property as follows:{

P1(t) = P0 +1P(t) = c0ul(t),
P2(t) = P0 −1P(t) = c0ur (t),

(2)

where P1(t) and P2(t) are the internal pressures of two PAM
actuators, respectively; P0 is the preloaded internal pressure,
and1P is the variation of pressure. The relationship between
the pulling forces and the internal air pressures of actuators
may be expressed as follows:{

F1(t) = P1(t)(c1ε21 (t)+ c2ε1(t)+ c3)+ c4,
F2(t) = P2(t)(c1ε22 (t)+ c2ε1(t)+ c3)+ c4,

(3)

where F1(t) and F2(t) are two pulling forces of PAM
actuators, c1-c4 are four parameters, and ε1(t) and ε2(t) are
derived according to (4).{

ε1(t) = ε0 + rl
−1
0 θ (t),

ε2(t) = ε0 − rl
−1
0 θ (t),

(4)

where θ (t) and r are the deflection angle and the radius
of pulley, respectively; ε0 and l0 are the initial shrinking
rate and initial length of PAM actuators, respectively. The
driving moment Tp(t) of the device may be deduced from the
following equation as

Tp(t) = Jpθ̈ (t)+ bpθ̇ (t)

= F1(t)r − F2(t)r + dp(θ (t), θ̇ (t), t), (5)

where Jp is the moment of inertia, bp is the damping coef-
ficient, and dp(θ (t), θ̇ (t), t) denotes unmodeled dynamics.
Substituting (1)-(4) into (5) yields

Jpθ̈(t)+ bpθ̇ (t)

= c0uor(4c1ε0rl
−1
0 + 2c2rl

−1
0 )θ (t)+ c0cur

[
2c1ε20

+ 2c1(rθ (t)l
−1
0 )2 + 2c2ε0 + 2c3

]
u(t)+ dp(θ (t), θ̇ (t), t)

(6)

In the following of this paper, dp(θ (t), θ̇ (t), t) is abbrevi-
ated as dp, and function arguments are sometimes omitted
when no confusion arises. In real situations, the defection
angle θ (t) is very small, such that 2c1(rθ (t)l

−1
0 )2 ≈ 0 [4]

and then (6) can be rewritten as

θ̈ (t) = −
bp
Jp
θ̇ (t)+

2c0uor2(2c1ε0 + c2)l
−1
0

Jp
θ (t)

+
2c0cur(c1ε20 + c2ε0 + c3)

Jp
u(t)+

dp
Jp
. (7)

Let x1(t) = θ (t), x2(t) = θ̇ (t) and y(t) = x1(t). From (7),
we get the state-space model of PAM systems during the kth
iteration as

ẋ1,k = x2,k ,

ẋ2,k = uo,kη1x1,k + η2x2,k + guk +
dp,k
Jp

yk = x1,k

(8)

where η1 =
2k0r2(2k1ε0+k2)l

−1
0

Jp
, η2 = −

bp
Jp

and g =
2k0kur(k1ε20+k2ε0+k3)

Jp
.

Let xxxk = [x1, x2]T , xxxd = [x1d , x2d ] = [yd , ẏd ]T and eeek =
[e1,k , e2,k ]T = xxxk −xxxd . The control task of this work is to let
yk accurately track yd over [0,T ] while eeek (0) = 0 cannot be
guaranteed, as the iteration index k increases.

III. CONTROLLER DESIGN
In order to achieve the control objective, our control strategy
is to make xxxk (t) follow the initial-rectification reference
trajectory xxxrk (t) = [xr1,k (t), xr2,k (t)] for t ∈ [0,T ], which
is formed as follows:

xr1,k (t) = x1,d (t)+ ω(t)e1,k (0)+ ω(t)te2,k (0), (9)

xr2,k (t) = ẋ1,d (t)+ ω̇(t)e1,k (0)+ [ω(t)+ ω̇(t)× t]e2,k (0),

(10)

where

ω(t) =

 (1−
t
tω
)3, if 0 ≤ t ≤ tω,

0, if tω < t ≤ T .

According to the construction in (9)-(10), xrk possesses the
following properties: i) xxxrk (0) = xxxk (0); ii) xxxrk (t) = xxxk (t) for
t ∈ [tω,T ]; iii) xr2,k (t) = xr1,k (t) and xxxrk (t) is differentiable
for t ∈ (0,T ).
Define eeer,k = [er1,k , er2,k ]T = xxxk − xxxr,k . Note that

eeer,k (0) = 0 holds, which is of significance to carry out the
controller design in the next step. From (8), we have ėr1,k = er2,k ,

ėr2,k = uo,kη1x1,k + η2x2,k + guk +
dp,k
Jp
− ẋr2,k .

(11)

Let sr,k = λer1,k + er2,k with λ > 0. Obviously, sr,k (0) = 0.
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Define a barrier Lyapunov function

Vk (t) =
1
2

s2r,k
b2s − s

2
r,k

, (12)

with bs > 0. Taking its time derivative with respect to t yields

V̇k = σksr,kg
[
g−1λer2,k + g−1uo,kη1x1,k + g−1η2x2,k + uk

+
dp,k
gJp
− g−1ẋr2,k

]
= σksr,kg($$$ Tξξξ k + uk +

dp,k
gJp

), (13)

in which σk =
b2s

(b2s−s
2
φk )

2 , $$$ , [g−1, g−1η1, g−1η2, g−1]T

and ξξξ k , [λer2,k , uo,kx1,k , x2,k , ẋr2,k ]T .
Then, radial basis function (RBF) neural network is applied

to approximate dp,k
gJp

as follows:

dp,k
gJp
= www∗T (t)ϕϕϕ(XXX k )+ ε(XXX k ), (14)

where www∗(t) is the ideal weight of neural network, ε(XXX k )
is the approximation error of neural network, XXX k =

[er1,k , er2,k , xr1,k , xr2,k , ẋr2,k ]T , |ε(xxxk )| ≤ εN , and ϕϕϕ(xxxk ) =
[ϕ1,k , ϕ2,k , · · · , ϕm,k ]T with

ϕj,k = e
−
‖XXXk−cccj‖

2

2b2j , j = 1, 2, · · · ,m. (15)

Here, cccj and bj are the center vector and the width of the
hidden layer, respectively. Combining (13) with (14) yields

V̇k ≤ σksr,kg($$$ Tξξξ k + uk )+ σksr,kgwww∗T (t)ϕϕϕ(xxxk )

+ σksr,kgεN , (16)

Let ϕϕϕk be the abbreviation of ϕϕϕ(xxxk ). On the basis of (16),
we design control law and learning laws as follows:

uk = −γ1sr,k −$$$ T
k ξξξ k −www

T
k ϕϕϕk − εN ,k tanh(σkεN ,k

× (k + 1)2sr,k ) (17)

$$$ k = sat$,$̄ ($$$ k−1)+ γ2σksφ,kξξξ k ,$−1$−1$−1 = 0, (18)

wkwkwk = satw,w̄(wwwk−1)+ γ3σksφ,kϕϕϕk ,w−1w−1w−1 = 0, (19)

εN ,k = sat0,ε̄N (εN ,k−1)+ γ4σk |sr,k |, εN ,−1 = 0, (20)

where γ1 > 0, γ2 > 0, γ3 > 0, γ4 > 0, and εN ,k is used
to estimate εN . For a scalar β̂, which is the estimation to a
scalar β,

satβ,β̄ (β̂) :=


β̄, if â > β̄

β̂, if β ≤ β̂ ≤ β̄
β, if β̂ < β

,

where β and β̄ are the lower bound and upper bound of the
scalar β, respectively. For a vector β̂ββ = [β̂1, β̂2, · · · , β̂m] ∈
Rm, satβ,β̄ (β̂ββ) :=

[
satβ,β̄ (β̂1), satβ,β̄ (β̂2), · · · , satβ,β̄ (β̂m)

]T .

IV. CONVERGENCE ANALYSIS
Theorem 1: For the closed-loop PAM ILC system com-

posed of (8) and (17)-(20), the tracking performance and
system stability are guaranteed as follows:

(i) limk→∞ ‖eeek (t)‖ = 0 holds for t ∈ [tω,T ];
(ii) |sr,k (t)| < bs holds during each iteration for t ∈ [0,T ].
(iii) All adjustable control parameters and internal signals

are bounded ∀t ∈ [0,T ], ∀k .
Proof 1: Define a barrier Lyapunov functional as

follows:

Lk = Vk +
g
2γ2

∫ t

0
$̃$$ T

k $̃$$ kdτ +
g
2γ3

∫ t

0
w̃wwTk w̃wwkdτ

+
g
2γ4

∫ t

0
ε̃2N ,kdτ, (21)

where $̃$$ k =$$$ −$$$ k , w̃wwk = www∗−wwwk and ε̃N ,k = εN −εN ,k .
part A In this part, we will give the detailed calculation

process of Lk − Lk−1 for subsequent analysis.
While k > 0, according to the definition of Lk , we obtain

Lk − Lk−1 = Vk−Vk−1+
g
2γ2

∫ t

0
($̃$$ T

k $̃$$ k−$̃$$
T
k−1$̃$$ k−1)dτ

+
g
2γ3

∫ t

0
(w̃wwTk w̃wwk − w̃ww

T
k−1w̃wwk−1)dτ

+
g
2γ4

∫ t

0
(ε̃2N ,k − ε̃

2
N ,k−1)dτ. (22)

Combining (17) with (16) yields

V̇k ≤ −γ σkgs2r,k + σksr,kg$̃$$
T
k ξξξ k + σksr,kgw̃ww

T
k (t)ϕϕϕ(xxxk )

+ σksr,kgε̃N ,k + σksr,kgεN ,k−σksr,kgεN ,k tanh(σksr,k
× εN ,k (k + 1)2), (23)

By the property 0 ≤ |α| − α tanh(α
ε
) ≤ 0.2785ε, we obtain

σksr,kgεN ,k − σksr,kgεN ,k tanh(σksr,kεN ,k (k + 1)2)

≤
0.2785g
(k + 1)2

. (24)

Note that Vk (0) = 0 holds because sr,k (0) = 0 is guaranteed
according to the construction strategy of eeer,k (t). Based on
(23) and (24), calculating the integral of V̇k from 0 to t ,
we have

Vk ≤ −γ1g
∫ t

0
σks2r,kdτ +

∫ t

0
σksr,kg$̃$$

T
k ξξξ kdτ

+

∫ t

0
gσksr,kw̃ww

T
k ϕϕϕkdτ +

∫ t

0
gσk |sr,k |ε̃N ,kdτ

+
0.2785gt
(k + 1)2

. (25)

Then, substituting (25) into (22), we get

Lk − Lk−1 ≤ −γ1g
∫ t

0
σks2r,kdτ +

∫ t

0
σksr,kg$̃$$

T
k ξξξ kdτ

+

∫ t

0
gσksr,kw̃ww

T
k ϕϕϕkdτ +

∫ t

0
gσk |sr,k |ε̃N ,kdτ

−Vk−1 +
g
2γ2

∫ t

0
($̃$$ T

k $̃$$ k − $̃$$
T
k−1$̃$$ k−1)dτ
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+
0.2785gt
(k + 1)2

+
g
2γ3

∫ t

0
(w̃wwTk w̃wwk − w̃ww

T
k−1w̃wwk−1)dτ

+
g
2γ4

∫ t

0
(ε̃2N ,k − ε̃

2
N ,k−1)dτ. (26)

From (18), we obtain
g
2γ2

($̃$$ T
k $̃$$ k − $̃$$

T
k−1$̃$$ k−1)+ gσksφ,k$̃$$

T
k ξξξ k

≤
g
2γ2

[($$$−$$$ k )T ($$$−$$$ k )−($$$ − sat$,$̄ ($$$ k−1))T ($$$

− sat$,$̄ ($$$ k−1))]+ gσksφ,k$̃$$
T
k ξξξ k

≤
g
2γ2

(2$$$−$$$ k−sat$,$̄ ($$$ k−1))T (sat$,$̄ ($$$ k−1)−$$$ k )

+ gσksφ,k$̃$$
T
k ξξξ k

≤
g
γ2

($$$ −$$$ k )T [sat$,$̄ ($$$ k−1)−$$$ k + γ2σksφ,kξξξ k ]

= 0. (27)

Combining (27) with (28), we have

Lk − Lk−1 ≤ −γ1g
∫ t

0
σks2r,kdτ +

∫ t

0
gσksr,kw̃ww

T
k ϕϕϕkdτ

+
0.2785gt
(k + 1)2

+

∫ t

0
gσk |sr,k |ε̃N ,kdτ − Vk−1

+
g
2γ3

∫ t

0
(w̃wwTk w̃wwk − w̃ww

T
k−1w̃wwk−1)dτ

+
g
2γ4

∫ t

0
(ε̃2N ,k − ε̃

2
N ,k−1)dτ. (28)

From (19), we have
g
2γ3

(w̃wwTk w̃wwk − w̃ww
T
k−1w̃wwk−1)+ gσksφ,kw̃ww

T
k ϕϕϕk

≤
g
2γ3

[(www∗ −wwwk )T (www∗ −wwwk )− (www∗ − satw,w̄(wwwk−1))T (www∗

− satw,w̄(wwwk−1))]+ gσksφ,kw̃ww
T
k ϕϕϕk

≤
g
2γ3

(2www∗ −wwwk − satw,w̄(wwwk−1))T (satw,w̄(wwwk−1)−wwwk )

+ gσksφ,kw̃ww
T
k ϕϕϕk

≤
g
γ3

(www∗ −wwwk )T [satw,w̄(wwwk−1)−wwwk + γ3σksφ,kϕϕϕk ]

= 0. (29)

Similarly, from (20), we get
g
2γ4

(ε̃2N ,k − ε̃
2
N ,k−1)+ gσk |sr,k |ε̃N ,k

≤
g
γ4

(εN − εN ,k )
[
sat0,ε̄N (εN ,k−1)− εN ,k + γ4gσk |sr,k |

]
= 0. (30)

It follows from the above three inequations that

Lk − Lk−1 ≤ −Vk−1 +
0.2785gt
(k + 1)2

. (31)

Note that limk→∞
∑j=k+1

j=1
0.2785gt

j2
=

0.2785π2gt
3 holds.

Further, we can get the recursive result of (31) as

Lk (t) ≤ L0(t)+
0.2785π2gt

3
−

1
2

k−1∑
j=0

s2r,k
b2s − s

2
r,k

. (32)

part B In this part, we will prove that b2s − s
2
r,k (t) > 0,∀k ,

for t ∈ [0,T ].
From (21)-(24), we have

L̇k ≤ −γ σkgs2r,k + σksr,kg$̃$$
T
k ξξξ k + σksr,kgw̃ww

T
k ϕϕϕk

+ σksr,kgε̃N ,k +
0.2785g
(k + 1)2

+
g
2γ2

η̃ηηTk η̃ηηk +
g
2γ3

w̃wwTk w̃wwk

+
g
2γ4

ε̃2N ,k . (33)

By the property of saturation function and (18), we have

σksr,kg$̃$$
T
k ξξξ k +

1
2γ2

g$̃$$ T
k $̃$$ k

=
g
2γ2

($$$ −$$$ k )T (2$$$ k − 2sat$,$̄ ($$$ k−1)+$$$ −$$$ k )

=
g
2γ2

[−$$$ T
k$$$ k +$$$

T$$$ − 2$$$ T sat$,$̄ ($$$ k−1)

+ 2$$$ T
k sat$,$̄ ($$$ k−1)]

= −
g
2γ2

[$$$ k − sat$,$̄ ($$$ k−1)]T [$$$ k − sat$,$̄ ($$$ k−1)]

+
g
2γ2

[sat$,$̄ ($$$ T
k−1)sat$,$̄ ($$$ k−1)+$$$ T$$$

− 2$$$ T sat$,$̄ ($$$ k−1)]

≤
g
2γ2

[sat$,$̄ ($$$ T
k−1)sat$,$̄ ($$$ k−1)+$$$ T$$$

− 2$$$ T sat$,$̄ ($$$ k−1)]

≤ m$ , (34)

in whichm$ is a proper positive number. Similarly, for a large
enough mw > 0, by using the learning law (19), we obtain

σksr,kgw̃ww
T
k ϕϕϕk +

g
2γ2

w̃wwTk w̃wwk

=
g
2γ2

[−wwwTkwwwk +www
∗Twww∗ − 2www∗T satw,w̄(wwwk−1)

+ 2wwwTk satw,w̄(wwwk−1)]

= −
g
2γ2

[wwwk − satw,w̄(wwwk−1)]T [wwwk − satw,w̄(wwwk−1)]

+
g
2γ2

[satw,w̄(www∗Tk−1)satw,w̄(wwwk−1)+www
∗Twww∗

− 2www∗T satw,w̄(wwwk−1)]

≤
g
2γ2

[satw,w̄(www∗Tk−1)satw,w̄(wwwk−1)+www
∗Twww∗

− 2www∗T satw,w̄(wwwk−1)]

≤ mw. (35)

For a large enough mε > 0, with the help of the learning law
(20), we have

σk |sr,k |ε̃N ,k +
1
2γ5

ε̃2N ,k

=
1
2γ5

[−ε2N ,k + ε
2
N − 2εN sat0,ε̄(εN ,k−1)

+ 2εksat0,ε̄N (εN ,k−1)]

=
1
2γ5

[sat0,ε̄N (εN ,k−1)sat0,ε̄(εN ,k−1)+ ε
2
N
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− 2εN sat0,ε̄N (εN ,k−1)]

−
1
2γ5

[εN ,k − sat0,ε̄N (εN ,k−1)]
2

≤
1
2γ5

[sat0,ε̄N (εk−1)sat0,ε̄N (εN ,k−1)+ ε
2
N − 2εN

× sat0,ε̄N (εN ,k−1)]

≤ mε . (36)

Substituting (34)-(36) into (33) yields

L̇k ≤
0.2785g
(k + 1)2

+ m$ + mw + mε . (37)

On the basis of which and Lk (0) = 0, we get

Lk (t) ≤
0.2785gt
(k + 1)2

+ t(m$ + mw + mε). (38)

According to the definition of Lk (t), we then deduce

Vk (t) =
s2r,k (t)

2(b2s − s
2
r,k (t))

≤
0.2785gt
(k + 1)2

+ t(m$ + mw + mε)

(39)

holds during each iteration for t ∈ [0,T ]. Note that s2r,k (0) =
0 for any k ≥ 0. Suppose that |sr,k (t)| may increase to bs−
for any t ∈ (0,T ], then

Vk (t) =
s2r,k (t)

2(b2s − s
2
r,k (t))

→+∞ (40)

would happen, which is contrary to the inequality (39).
Therefore,

|sr,k (t)| < bs− (41)

holds during each iteration. By Using the relationship
λer1,k + ėr1,k = sr,k , from (41), we can obtain

|er1,k (t)| < e−λt |er1,k (0)| +
(1− e−λt )bs

λ

=
(1− e−λt )bs

λ
. (42)

On the other hand, according to (41), the boundedness of
er1,k , er2,k , xr1,k and xr2,k may be deduced. Then, from (18)-
(20), we can check that$$$ k , wwwk and εk are bounded. Further,
uk and all other signals in the closed-loop system may be
verified to be bounded.

part C In this part, we will analyze the convergence of
tracking error.

It is a direct result of (38) that

L0(t) ≤ 0.2785gt + t(m$ + mw + mε). (43)

Applying the conclusion given in (43), we have

Lk (t) ≤ 0.2785gt + t(m$ + mw + mε)+
0.2785π2gt

3

−
1
2

k−1∑
j=0

s2r,k
b2s − s

2
r,k

TABLE 1. Parameters of PAM system.

FIGURE 2. x1 and its reference signal x1,d (k = 29).

FIGURE 3. x2 and its reference signal x2,d (k = 29).

≤ 0.2785gt + t(m$ + mw + mε)+
0.2785π2gt

3

−
1
2b2s

k−1∑
j=0

s2r,k . (44)

By using the nonnegativity of Lk (t), (44) means

0.2785gt + t(m$ + mw + mε)+
0.2785π2gt

3

−
1
2b2s

k−1∑
j=0

s2r,k (t) ≥ 0. (45)

From (45), we have

lim
k→+∞

|sr,k (t)| = 0. (46)

Considering the fact that cer1,k + ėr1,k = sr,k , er1,k (0) =
0 and ėr1,k (0) = 0 hold, from (46), we can see that
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FIGURE 4. The error e1 (k = 29).

FIGURE 5. The error e2 (k = 29).

limk→+∞ |er1,k (t)| = 0 and limk→+∞ |er2,k (t)| = 0 hold,
which implies limk→∞ ‖eeek (t)‖ = 0 holds for t ∈ [tω,T ].
In this work, barrier Lyapunov function approach is used to

design the iterative learning controller. Through constraining
sr,k , we implement the constraint to er1,k and er2,k during
each iteration.

V. NUMERICAL SIMULATION
The numerical simulation is performed for the PAM system
(8), where dp,k = 3 + 2rand1 + 1.5x21,k + x1,kx2,k +
0.5 sin(x1,k )x2,k + 0.1sgn(x1,kx2,k ), [x1,k (0), x2,k (0) = [1 +
0.1rand2, 0.05rand3]T and the model parameters are listed in
TABLE 1. Here, rand1− rand3 are random numbers between
0 and 1.

The reference position trajectories is set as

yd (t) =

{
0.5 cos(π t) k = 0, 2, 4, 6, · · ·

1.6 cos(
π

2
t) k = 1, 3, 5, 7, · · ·

(47)

The parameters of RBF network neurons in (15) are set as
follows: bj = 3.5 and cj is evenly spaced on [−3, 3]×[−3, 3],
for j = 1, 2, · · · ,m, m = 7. The control parameters and
gains in control law (17) and learning laws (18)-(19) are set
as follows: λ = 2, γ1 = 5, γ2 = 1, γ3 = 1, γ4 = 0.1,
bs = 0.2, tω = 0.8s,T = 5s.

FIGURE 6. Control input (k = 29).

FIGURE 7. x1 and its reference signal x1,d (k = 30).

FIGURE 8. x2 and its reference signal x2,d (k = 30).

Figs. 2-12 express the simulation results. Figs. 2-3
give the profiles of angle position/angular velocity x1 and
their reference signals x1,d and x2,d during 29th iteration,
respectively. Figs. 4-5 show the curves of er1 and er2 during
29th iteration, respectively. The control signal uq(t) during
29th iteration is depicted in Fig. 6. Figs. 7-8 give the profiles
of angle position/angular velocity x1 and their reference
signals x1,d and x2,d during 30th iteration, respectively.
Figs. 9-10 show the curves of er1 and er2 during 30th

24200 VOLUME 10, 2022



Y. Yu, S. Lai: Initial-Rectification Barrier ILC for PAM Systems With Nonzero Initial Errors and Iteration-Varying Reference Trajectories

FIGURE 9. The error e1 (k = 30).

FIGURE 10. The error e2 (k = 30).

FIGURE 11. Control input (k = 30).

iteration, respectively. The control signal uq(t) during 30th
iteration is depicted in Fig. 11. From Figs. 2-3 and Figs. 7-8,
we can see that angle position/angular velocity states can
accurately the reference signals for t ∈ [tω,T ], respectively.
As shown in Figs. 4-5 and Figs. 9-10, the rectification state
error converges to zero over the interval [0,T ] as the iteration
number increases. It can be observed from Fig. 12 that sr,k
converges to zero, and |sr,k | is constrained between 0 and

FIGURE 12. History of sr ,k convergence.

bs during each iteration, where Jk , maxt∈[0,T ] |sr,k |. The
above simulation results show that the tracking performance
of closed-loop PAM ILC system improves progressively as
the iteration number increases.

VI. CONCLUSION
An initial-rectification adaptive ILC scheme is proposed for a
PAM system with nonzero initial errors and iteration-varying
reference trajectories. The iterative learning controller is
developed by using barrier Lyapunov function approach
so as to constraint rectification filtering error during each
iteration. A new initial rectification construction method is
given to solve the nonzero initial error problem of PAM ILC
system. The nonparametric uncertainties in the system are
approximated by using a difference-learning neural network.
As the iteration number increases, the system state can
accurately track the reference trajectory over the whole
interval, even if the reference trajectories are non-repetitive
over the iteration domain.
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