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ABSTRACT In this paper, we address the problem of energy consumption associated with mixed signal
components such as analog-to-digital components in millimeter-wave (mmWave) massive MIMO systems.
We employ non-orthogonal multiple access (NOMA) in millimeter-wave (mmWave) massive MIMO
systems to further enhance the spectrum efficiency. The simultaneous wireless information and power
transmission technology (SWIPT) will be used in mmWave massive Multiple-Input multiple-Output MIMO
systems. The utilization of SWIPT contributes to prolonging the battery life of mobile users (MUs) and
enhances the system energy efficiency (EE), especially in the NOMA scenario where the inter-user interfer-
ence can be reused for energy harvesting (EH). However, we initially designed a user grouping algorithm
based on the affinity propagation clustering algorithm, which preferentially groups the user equipment (UE)
based on their channel correlation and distance. Then, we design the analog RF precoder based on the
selected user grouping for all beams, followed by a low-dimensional digital baseband precoder design to
further mitigate inter-beam interference and maximize the achievable sum-rate for the considered system.
Subsequently, we transform the original optimization problem into a joint power allocation and power-
splitting maximization problem. The considered non-convex optimization problem is arduous to tackle,
resulting from the presence of coupled variables and inter-user interference. To cope with this problem,
a decoupled approach is adopted, in which the power allocation and power splitting are separated, and the
corresponding sub-problems are solved using the Lagrangian duality method. Simulation results confirm
the effectiveness of the proposed method and demonstrate that the proposed method is near-optimal and
enjoys higher spectrum and energy efficiency compared with state-of-the-art designs and the conventional
SWIPT-enabled mmWave MIMO-NOMA system.

INDEX TERMS SWIPT, mmWave, massive MIMO, NOMA, hybrid precoding, power allocation, power
splitting.

I. INTRODUCTION
With 5G wireless communication networks, it is increas-
ingly important to provide services with much higher quality,
including enhancing the system capacity within the limited
service power and spectrum resources [1]. Massive MIMO,
utilizing millimeter waves (mmWave), is an emerging tech-
nology for 5G/6G wireless communications because it offers
higher bandwidth and better spectrum efficiency [2].

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan-Hsun Tseng.

Throughput and spectral efficiency are improved by orders
of magnitude when the mmWave bandwidth is increased
[3]–[5]. This makes 5G wireless communication an appeal-
ing technology for the future. Theoretically speaking, the
capacity for multiuser MIMO (massive MIMO) to enhance
spectral efficiency by order of magnitude has been proven
to more significant multiuser gain [6]. However, the use of
non-orthogonal multiple access (NOMA) in millimeter-wave
large MIMO systems has recently been investigated to
improve the spectrum efficiency [7]–[10]. Through the com-
bination of multiple power levels on the same frequency
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resource block, NOMA can enhance the spectral efficiency
across the entire system. This has led to the emergence of
NOMA as a contender for 5G wireless communication tech-
nologies [7]. Overall, mmWave with higher frequencies is
better suited for antenna arrays with a massive MIMO system
due to small physical size of huge antenna array. In addition,
a large antenna array can use precoding to avoid free space
path loss of mmWave signals, thereby achieving significant
array gain for connections with quality Signal-to-noise ratio
(SNR) [8].

Massive MIMO systems employ a significant number of
antennas, each of which has a single RF chain, resulting in
higher costs and more energy usage. A solution to this prob-
lem has been offered in the form of hybrid precoding (HP),
which helps to significantly reduce the number of required RF
chains in mmWave massive MIMO systems without causing
a visible drop in performance [9], [10]. HP focuses on devel-
oping completely digital precoders, which are composed of
several analog and RF chains, to boost antenna gain and,
as a result, reception quality [11]. It is often common to see
HP networks with both fully connected and sub-connected
topologies [12]. Sub-connected architectures are predicted to
provide greater energy efficiency [13].

Although there are various ways to improve the system’s
energy efficiency, enhancing the endurance of numerous
power-limited mobile devices and improving the energy effi-
ciency of the system are also critical considerations for 5G
networks, especially in the application scenarios of internet
of things (IoT) and Massive Machine-Type Communications
(mMTC). A revolutionary technology termed SWIPT was
introduced in [14], [15] as a result of the advancement and
development of wireless power transfer (WPT). Although
SWIPT has certain advantages, the significant disparity in
signal sensitivity between the information decoder and rec-
tifier circuit causes this technology to be underutilized [7],
[9], [16]–[18]. Two practical receiving methods, time switch-
ing (TS) and power splitting (PS), were developed in [19]
to solve this problem. These schemes used time switching
(TS) and power splitting (PS), with information decoding
(ID) and EH, performed in separate time and power domains,
respectively. As a result, SWIPT enables an improved system
EE, a viable green communication option for future wireless
networks. Therefore, it has been noticed by both academic
and industrial people [20]–[22].

Precoding is done fully in the digital domain to eliminate
interference between distinct data streams in the standard cel-
lular frequency spectrum (e.g., 2–3 GHz) [23], [24]. Because
of the higher energy demands, each antenna requires a spe-
cialized RF chain (including a digital-to-analog converter,
up converter, etc.) with a total energy usage of approximately
250 mW per RF chain [25], [26]. A significant number of
RF chains will be required for an mmWave massive MIMO
system with 64 antennas because of the usual digital pre-
coding method. A hybrid analog-digital precoding solution
was developed to address this problem. Instead of using
traditional digital precoding, RF chains are used to obtain

these results, and an analog precoder is implemented using
a large number of analog phase shifters (PSs) [27]. There is
no performance difference between digital and hybrid pre-
coding because hybrid precoding uses fewer RF chains while
delivering equivalent energy efficiency [28], [29].

Two distinct classifications may be used for the current
hybrid precoding strategies. the preliminary works [13], [30]
that described the use of sparse precoding to hybrid pre-
coding is called ‘‘precoding with sparse precoding.’’ [31]
presented an efficient method called orthogonal matching
pursuit (OMP) to attain nearly optimum performance. In the
second hybrid precoding method, which involves iterative
searching among predefined codebooks [32]–[34], the best
hybrid precodingmatrix was found iteratively by sequentially
passing through the codebooks. Each RF chain is linked
to all base-station (BS) antennas through PSs. Under the
assumption that there are a huge number of BS antennas
(e.g., 256, as studied in [35]), the fully connected design
will require thousands of PSs, which might introduce three
new limitations: 1) in order to generate more energy, the
larger phased array radar needs to absorb more energy for
excitation; 2) in order to compensate for the insertion loss
of PS, the larger phased array radar requires more energy;
3) because of the higher computational complexity, the larger
phased array radar consumes more energy. While the hybrid
precoding method with the sub-connected design uses fewer
PSs, it requires all RF chains to be linked to each BS antenna.
Because the sub-connected architecture is projected to be
more energy efficient and simpler to implement for mmWave
MIMO systems, it follows that the sub-connected architecture
is expected to be more energy efficient and easier to imple-
ment for mmWave MIMO systems. The initial challenge
of hybrid precoding with a fully connected architecture is
difficult because of the new limitations imposed by the sub-
connected architecture [36], [37].

The NOMA technique was previously used for beamspace
MIMO for the first time in [38], which may be considered a
straightforward realization of HP, and power allocation was
adjusted to maximize the sum rate that could be achieved.
Furthermore, in [23], the HP architecture employed NOMA
overall, and digital precoding was implemented using digi-
tal block diagonalization (BD) precoding. In addition, more
complex digital precoding was suggested in [24], known as
minimization maximization (MM)-based precoding. There-
fore, the power allocation for mmWave large MIMO-NOMA
systems was adjusted to improve their energy efficiency, and
an iterative technique was suggested to optimize the power
allocation [25].

Improved spectrum efficiency, along with improvements
in energy efficiency, are among the most key performance
indicators (KPIs) for 5G, which are projected to result in an
approximately 100-fold increase in spectral efficiency com-
pared to present 4G wireless communications. Toward this
end, SWIPT, presented for the first time in [39], has gained
wide acceptance in the last few years [40], [41]. SWIPT
proposes that the same received RF signals may include both
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information and energy, and that this may be accomplished
using power-splitting receivers in practice. SWIPT is a tool
used to increase the battery life of wireless communication
devices by harvesting energy from RF signals. This can
advance networks such as the Internet of Things, especially in
IoT with many wireless devices. Careful consideration of the
trade-off between information rate and harvested energy level
is necessary when SWIPT is employed in multiuser systems
because inter-user interferences might negatively impact the
IDwhile supporting the EH [42]. Indeed, initiatives have been
put out to address this issue. In addition, in [26], the trans-
mit power was reduced under the signal-to-interference-plus-
noise ratio (SINR) and Quality of service (QoS) requirements
for multiuser MIMO systems to minimize interference and
noise [43].

A further aspect of interest is the combined transceiver
and power-splitting SWIPT downlink design, which also
uses the mean squared error (MSE) criteria [44]. The com-
bined transceiver and power splitting design was explored to
enhance the energy efficiency inmulticell multiuser downlink
SWIPT systems. Even though SWIPT is capable of providing
efficient wireless communications, it has only been tested
on single-user systems, where future challenges to the joint
transceiver and power splitting optimization will emerge.

In this paper, we are interested in a new system that can
exist by combining the spectrum-efficient mmWave mas-
sive MIMO-NOMA systems with energy-efficient SWIPT.
This work presents a new way to solve the joint power
allocation, power splitting, and joint precoding problem in
SWIPT-enabled mmWave MIMO-NOMA systems by incor-
porating user groupings.

Our contributions can be summarized as follows:
1. We explore hybrid analog/digital precoding and power

splitting optimization to create SWIPT-enabled mmWave
mMIMO-NOMA systems with hybrid analog-digital
recording. To focus on the clustering process, we first
propose a new affinity propagation clustering method
for user grouping to help with the initial cluster forma-
tion process. The parameters for this algorithm include
the channel correlation and channel distance values.
In this case, we consider the hybrid analog-digital pre-
coder, power allocation, and power slitting factor opti-
mization problem as a sum-rate maximization problem.
We seek to maximize the overall power and minimum
rate values under the set power and rate restrictions for
each UE.

2. We have now set out to build a hybrid mmWave MIMO-
NOMA precoding matrix to overcome this challenge.
In the first step, the analog precoder is intended to ensure
that all beams acquire the maximum equivalent channel
gain, depending on the user groupings. Finally, we con-
struct the digital precoding vector for each UE, which
prioritizes those users with the most substantial equivalent
channel gain per beam tominimize inter-user interference.
To simplify our total power and minimum rate restrictions
at each UE, we frame the issue as a combined optimization

of power allocation and power-splitting factors. The added
requirement is that both variables are limited.

3. To optimize the attainable data rate of the system given the
restrictions of transmit power and EH need, the combined
power allocation and splitting control issue is mathemat-
ically modeled. Because of the interrelationship between
the linked variables, non-convex and complicated issues
emerge.

4. In contrast to [8], [10], we propose decoupling the joint
power allocation and transmit power. Before attempting
to optimize the PS ratio assignment with fixed power
allocation, we address the subproblem of optimizing the
PS ratio assignment with varying power allocation. The
Lagrangian duality approach helps solve both the sub-
problems. Convergence is established when this technique
is performed several times.

HP-based mmWave massive MIMO-NOMA systems with
SWIPT were simulated to evaluate their performance in
terms of both spectrum efficiency and energy efficiency. The
results showed an enhancement in the spectrum and energy
efficiency. The proposed method for mmWave massive
MIMO-NOMA systems with SWIPT can outperform those
of mmWave massive MIMO-OMA systems with SWIPT by
achieving greater spectrum and energy efficiency.

The remainder of this paper is structured as follows.
Specifically, Section II describes the system model of the
SWIPT-enabled mmWave mMIMO-NOMA system with
hybrid analog-digital precoding as well as the sum-rate issue
formulation. Section III describes the design of the user-
grouping algorithm. Hybrid analog-digital precoder design
is presented in Section IV. In Section V, the formulation of
the problem itself and an iterative optimization technique to
further simplify the solution of the non-convex issue, are pre-
sented. Section VI presents the results of the simulations for
attainable rates and energy efficiency. Section VII concludes
the paper with a summary of the findings.
Notation: In this paper, lower-case letters denote scalars,

bold lower-case letters denote vectors, and bold uppercase
letters denote matrices. (.)T denotes the transpose operator;
(.)H represents the Hermitian transpose operator, diag (v)
represents the diagonal matrix with the vector v; vπ represents
the sub-vector consisting of the elements of indexes π ; ‖.‖p
denotes the lp-norm.

II. SYSTEM MODEL
Consider a single-cell downlink mmWave massive MIMO-
NOMA system. The base station (BS) is equipped with NRF
RF chains and Nt transmitted antennas to serve K single
antenna users. In this study, we assume that the user equip-
ment is supplied with a power-splitting receiver for SWIPT.

Each antenna is connected to a dedicated RF chain in a
fully digital MIMO system, as shown in Fig.1. (a). Moreover,
the required number of RF chains is equal to the number of
antennas, which causes high power consumption and expen-
sive hardware costs. The fully hybrid precoding architecture
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FIGURE 1. System models of massive mmWave MIMO architectures.

is shown in Fig.1. (b). It is evident that the required number
of RF chains in the hybrid precoding architecture is less than
the number of antennas. Each of the NRF RF chains in the
fully hybrid precoding is linked to all N antennas owing to
phase shifters. However, the required phase shifters are equal
to NNRF and each RF chain can employ the full array gain.
In the subconnected hybrid precoding architecture Fig.1. (c),
the required phase shifters are equal to N because each RF
chain is linked to a subset of N base-station antennas.

In [7], it has been showed that the number of RF chains
is larger than or equal to the number of beams, and each
beam can only tolerate one user in hybrid precoding based
on mmWave massive MIMO systems. However, we assume
that the number of beams,G, equals the number of RF chains,
NRF to obtain the full multiplexing gain. Moreover, NOMA
technology can be employed tomake each beam toleratemore
than one user. Consider Sg∀g = 1, 2, . . . ,G represents the
set of users supported by the gth beam with

∣∣Sg∣∣ ≥ 1, and
we have Si ∩ Sj = ∅∀i 6= j, thus

∑G
g=1

∣∣Sg∣∣ = K . Then, the
received signal at the mth user in the gth beam is given by:

yg,m= h
H
g,mA

∑G

i=1

∑|Si|

j=1
d i
√
pi,jsi,j + vg,m (1)

yg,m= h
H
g,mAdg

√
pg,msg,m

+hHg,mAdg

(∑m−1

j=1

√
pg,jsg,j+

∑|Sg|
j=m+1

√
pg,jsg,j

)
+hHg,mA

∑
i 6=g

∑|Si|

j=1
d i
√
pi,jsi,j + vg,m (2)

In equation (2), the first, second, third, and last terms rep-
resent the desired signal, intra-beam interference, inter-beam
interference, and noise, respectively. Where sg,m denotes the

transmitted signal with E
{∣∣Sg,m∣∣2} = 1, pg,m represents

the transmitted power of the mth user in the gth beam,
vg,m ∈ CN

(
0,σ2v

)
is the complex noise, dg ∈ CNRF×1

represents the digital precoding vector of the gth beam, and
A ∈ CN×NRF denotes the analog precoding matrix, where∥∥Adg∥∥2 = 1∀g = 1, 2, . . . ,G.
For the fully hybrid precoding architecture, the analog

precoding matrix A(full) is given by:

A(full) =
[
a(full)1 , a(full)2 , . . . , a(full)NRF

]
(3)

where a(full)n ∈ CN×1∀n = 1, 2, . . . ,NRF is the steering vec-
tor with the same amplitude of 1

√
N
and different phases [6].

For the sub-hybrid precoding architecture, the analog pre-
coding matrix A(sub) is given by:

A(sub) =


a(sub)1 ,0, . . . ,0

0,a(sub)2 , . . . ,0

0,0, . . . , a(sub)NRF

 (4)

With no loss of generality, let us assume thatM = N
NRF

is an
integer, and each RF chain is linked with M antennas in the
sub-hybrid precoding architecture. a(sub)n ∈ CM×1∀n = 1,
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2, . . . ,NRF is the steering vector with the same amplitude of
1
√
M

[7], [8].

Let us consider the mmWave MIMO channel model
[6]–[8], where the N ×1 channel vector hg,m of themth user
in the gth beam is given by

hg,m =

√
N
Lg,m

∑Lg,m

l=1
α(l)g,ma

(
ϑ (l)g,m, θ

(l)
g,m

)
(5)

where Lg,m represents the number of paths of themth user in
the gth beam. α(l)g,m, ϑ

(l)
g,m and θ (l)g,m denote the complex gain,

the azimuth angle of departure (AoD) and the elevation angle
of departure of the lth path respectively. a

(
ϑ
(l)
g,m, θ

(l)
g,m

)
is the

N × 1 steering vector.
For a uniform linear array (ULA) with N1 elements in the

horizon and N2 elements in the vertical direction, the array
steering vector a

(
ϑ
(l)
g,m, θ

(l)
g,m

)
is given by

a
(
ϑ (l)g,m, θ

(l)
g,m

)
= aaz

(
ϑ (l)g,m

)
⊗ ael

(
θ (l)g,m

)
(6)

where

aaz
(
ϑ (l)g,m

)
=

1
√
N1

[
e
j2π i

(
d1
λ

)
sin
(
ϑ
(l)
g,m

)]
i∈J(N1)

(7)

and

ael
(
θ (l)g,m

)
=

1
√
N2

[
e
j2π i

(
d2
λ

)
sin
(
ϑ
(l)
g,m

)]
i∈J(N2)

(8)

where J (n) = {0,1, . . . ,n− 1}, λ is the signal wavelength,
d1 and d2 are the horizontal and antenna spacings, respec-
tively. We usually assume that d1 = d2 = λ

2 for mmWave
communication systems [7].

Power splitting receivers allow one to split the received
signal into two parts. While some of the signals are used
for information decoding (ID), others can be used for energy
harvesting (EH) [27].

The signal for energy harvesting is expressed as:

yEHg,m =
√
1−βg,myg,m (9)

where βg,m ∈ [0, 1] is the power factor for the mth user in
the gth beam, and the harvested energy is given by:

PEHg,m=η
(
1−βg,m

) (∑G

i=1

∑|Si|

j=1

∥∥∥hHg,md i∥∥∥2
2
pi,j+σ

2
v

)
(10)

where h
H
g,m = hHg,mA represents the equivalent of the channel

vector and η ∈ [0, 1] denotes the energy conversion effi-
ciency. However, the signal for information decoding is given
by

yIDg,m =
√
βg,myg,m + ug,m (11)

where ug,m ∈ CN
(
0,σ2u

)
represents the noise of the power

splitter.
Based on the NOMA at each beam, SIC at the receiver was

performed as well as intra-beam superposition coding at the
transmitter.

With no loss of generality, let us assume that
∥∥∥hHg,1d i∥∥∥2

2
≥∥∥∥hHg,2d i∥∥∥2

2
≥ . . . ≥

∥∥∥hHg,|Si|d i∥∥∥22 ∀g = 1, 2, . . . ,G. Then,

the mth user in the gth beam can be diminished the interfer-
ence from the jth user (for all j > m) in the gth beam using
the SIC method [15]. The signal for information decoding at
the mth user in the gth beam is as follows:

yIDg,m=
√
βg,m

(
h
H
g,mdg

√
pg,msg,m+h

H
g,mdg

∑m−1

j=1

√
pg,jsg,j

+ h
H
g,m

∑
i 6=g

∑|Si|

j=1
d i
√
pi,jsi,j + vg,m

)
+ ug,m

(12)

Then, the SINR at the mth user in the gth beam is expressed
as:

γ g,m =

∥∥∥hHg,mdg∥∥∥2
2
pg,m

Eg,m
(13)

where

Eg,m =
∥∥∥hHg,mdg∥∥∥2

2

∑m−1

j=1
pg,j

+

∑
i 6=g

∥∥∥hHg,md i∥∥∥2
2

∑|Si|

j=1
pi,j

+ σ2v +
σ2u
βg,m

(14)

Accordingly, the achievable rate is given by:

Rg,m = log2
(
1+ γ g,m

)
(15)

Lastly, the achievable sum rate is given by:

Rsum =
∑G

g=1

∑|Sg|
m=1

Rg,m (16)

Nevertheless, the achievable sum rate in (16) can be enhanced
by designing user grouping, the analog RF precoder matrix
ARF digital baseband precoders dg for the g-th UE, power
allocation, and power splitting factors.

III. USER GROUPING
As the number of users (K) is larger than that of the RF chain
NRF, that is, K > NRF, we need to schedule the user into
G groups, that is, G = NRF. To this end, we propose an
intuitive algorithm for user grouping. Owing to the spatial
directivity of the SWIPT-based mmWave Massive MIMO
NOMA System, we use the affinity propagation clustering
algorithm to implement the user grouping [9], [16], [17] For
mmWave large MIMO systems, a clustering technique based
on user multidimensional attributes is described in order to
increase system performance by considering the similarity of
users’ characteristics.

Our solution, which uses mmWave Massive MIMO
NOMA technology, calculates the relevance between users
based on their characteristics to cluster them efficiently and
precisely. We consider two types of features: h and p, which
represent the user channel vector and the distance between
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users respectively and we define the feature vector V =
(h, p). Furthermore, prior to clustering, it is necessary to
normalize the multidimensional aspects of the user charac-
teristics. Here, the linear normalizing approach is modified
to regulate the outcomes in the range of [0, 1] in order to
achieve better control.

Our distance measures the similarity between user chan-
nels. We utilize the Euclidean distance to measure the sim-
ilarity between users’ relative locations, which is a vector,
because the transmission channel is also a vector. The state-
ment of the relevance between users i and j, on the other hand,
is defined as [17].

S1 = H ij = arccos

∣∣∣hHi hjhHj hi∣∣∣
‖hi‖

∥∥hj∥∥ (17)

S2 = P ij = d ij (18)

Si,j = −
√
w1S21 + w2S22 (19)

where
∑2

i=1 wi = 1∀wi ∈ [0, 1] is the weight factor associ-
ated with the characteristics that meet the criteria. The higher
the similarity between two users, the closer the distance
between them. Thus, we utilize the negative distance to make
it positively linked.

The affinity propagation (AP) clustering algorithm [17] is
a semi-supervised clustering algorithm that does not require
the user to specify the initial cluster center or the number
of clusters in advance. It has good clustering stability and
a low error rate and is widely used. We utilize the idea of
information transmission of the AP method [17] based on
multidimensional similarity for grouping users, as described
in detail below.
1) By calculating and assigning the median of the similarity

matrix for each user K in the similarity matrix [S], the ref-
erence degree of user K may be determined and assigned
to the vector s(i,k).

2) Create a 0 in the responsibility r(i,k) and availability
a(i,k) matrix to represent the initial state. Calculate the
right number of iterations, Itr, as well as the damping
factor (λ);

3) Use the following procedure to repeatedly compute the
responsibility and availability for each user k with respect
to user i in Itr times:

rt+1(i, k) = s (i, k)−max
k 6=k′

{
at
(
i, k′

)
+ s

(
i, k′

)}
at+1 (i, k) = min

0,rt (k, k)
+

∑
i′ /∈{i,k}

max
{
0,rt

(
i′, k

)} , i 6= k

at+1 (i, k) =
∑
i′ 6=k

max
{
0,rt

(
i′, k

)}
4) Calculate the responsibility rt(i, k)∀i = 1, . . . ,n and

availability at (i, k)∀i = 1, . . . ,n. In order to update

information in the AP method, one can incorporate
the attenuation coefficient (γ ), which is a real number
between 0 and 1, with a typical value of between 0.5 and
0.9:

r̂t+1(i, k) = (1− γ )rt+1(i, k) C γ rt(i, k)
ât+1 (i, k) = (1− γ )at+1 (i, k) Cγ at (i, k)

5) Update the responsibility rt+1(i, k)∀i = 1, . . . ,n and
availability at+1 (i, k)∀i = 1, . . . ,n.

6) Calculate e(k, k) = r(k, k) + a(k + k)
∀k = 1, 2, . . . ,K , and if e(k, k) > 0, k is the center
of the cluster. After that, the cluster center set of users
is established. Each user is allocated to the appropriate
cluster based on the concept of the minimal distance
between the two clusters.
Algorithm 1 provides the pseudocode for the improvedAP

scheme, which is a mathematical representation of the code.

Algorithm 1: Presented User Grouping Method
Input:

Number of UEs: K > NRF

Number of RF chains: NRF

Number of beams: G
Channel Matrix: H = [h1,h2, . . . ,hK ]
Number of BS antennas: N
Initialization: M = 0G

Set predefined threshold: 0 ≤ γ ≤ 1
Output:

Optimized User Grouping:

�

=

{
1, 1, . . . , G

}
1: K = {1, 2, . . . ,K }
2: Initialize �(1)

m = km ∈ K∀m = 1, 2, . . . ,G
3: 9 =

[
‖h1‖2 , ‖h2‖2 , . . . , ‖hK‖2

]
4: H =

[
h1
‖h1‖2

, h2
‖h2‖2

, . . . , hK
‖hK‖2

]
5: Calculate Si,j

Si,j = −
√
w1S21 + w2S22

6: t = 1.
7: While Loop
8: Initialize m = �

(t)
m

9: For k ∈ K
/{
�
(t)
m

}
g = arg max

1≤g≤M
Si,j

�

= m ∪ k
10: End for
11: t = t + 1.
12: Update �(t)

m for m = 1, 2, . . . ,G
13: If

{
�
(t)
m = �

(t−1)
m

}
End While loop

14: Return

�

=

{
1, 1, . . . , G

}

IV. HYBRID PRECODER DESIGN
To maximize (11) for each UE, we should reduce the
inter-beam interference while simultaneously increasing the
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effective channel gain. Zero forcing (ZF) is a technique that
may be used in conventional multiuser MIMO (MU-MIMO)
systems [7], [10], and [34].

We propose to use phase-only array response adjustment
to link the NRF RF chain outputs with the NBS BS antennas,
using low-cost phase shifters, in order to decrease hardware
restrictions while still realizing the full potential of mmWave
huge MIMO-NOMA systems.

Unfortunately, because of the elementwise constant-
magnitude limitation on the analog precoder, that is,∣∣∣[FRF ]i,j∣∣∣ = 1

√
NBS

,∀i, j, they cannot be used directly in the

hybrid analog-digital precoding method [7], [10], and [34].
Because of the constant-magnitude restriction, the subsets
of feasible areas are not convex; thus, the solution is non-
convex. Consequently, we are considering creating the analog
RF precoder and the digital baseband precoder in distinct
phases of the development process. Based on [7] and [11],
we present an efficient analog RF precoding algorithm to
design FRF and a low-dimensional digital baseband precod-
ing algorithm to design FBB for downlinkmultiuser mmWave
massive MIMO-NOMA systems. As a first step, we designed
the analog RF precoding matrix.

A. ANALOG RF PRECODING METHOD
Our goal with the analog RF precoder is for the phases
of H = [h1,h2, . . . ,hK ] to be aligned so that the high
array gain delivered by the massive MIMO system can be
harvested effectively. Using Algorithm 2, we can quickly
review the analog RF precoder architecture. For simplicity,
it is preferable to focus on the main element of the proposed
algorithm rather than providing a redundant demonstration.
Initially, we start the analog precoder as an all-zero matrix to
ensure that it operates correctly. It is necessary to extract the
phases of the conjugate transpose of the aggregate downlink
mmWave massive MIMO-NOMA channel from the BS to
numerous users in Step 4 to complete the computation. Phase
alignment of channel components is performed in Step 10 to
build the analog RF precoder in order to harvest a signifi-
cant array gain. Subsequently, once the effective baseband
channel has been coupled with the ideal analog RF precoder
acquired, the digital baseband precoder design is carried out
to minimize interference and maximize the sum rate that can
be accomplished.

B. DIGITAL BASEBAND PRECODING METHOD
The digital baseband precoding matrix is designed such that
only the UEs in each beam with strong channels are selected
to eliminate inter-user interference. To avoid inter-beam inter-
ference, the design of digital precoding is transformed into
a typical massive MIMO-NOMA precoding issue. As shown
in [7] and [10], the low-complexity zero-forcing (ZF) precod-
ing technique is used for digital precoding without sacrificing
generality.

Specifically, we present an algorithmic solution based on
the concepts of [7] and [10] after designing the analog RF

Algorithm 2: Presented Analog RF Precoding Method for
mmWave Massive MIMO-NOMA Systems With SWIPT
Input:

Number of UEs: K > NRF

Number of RF chains: NRF

Channel Matrix: H = [h1,h2, . . . ,hK ]
Optimized User Grouping:

{
1, 1, . . . , G

}
Number of BS antennas:N
Initialization: FRF = 0N×N

RF

Number of quantization bits: B
Output:

Optimal analog RF precoding: FRF

1: Set the phase: 3 =
{
2πn
2B , n = 0, 1, . . . ., 2B−1

}
2: For Loop: g = 1 to G
3: Recall the optimized user grouping:

{
1, 1, . . . , G

}
4: Set the aggregate downlink channel: H = [H]

:, d

5: Extract phase of the H:G = 6 H
6: Initialize angle: ϑ = 0N

7: For m = 1 to
∣∣Sg∣∣

[∼, k] = min |[G]m −3|
ϑ(m) = [3]k

8: End for
9: Compute the optimal analog RF precoding:

FRF (:, g) = exp(jϑ)
10: End for

precoder (FRF ). The pseudocode for the digital baseband
precoder is given in Algorithm 3. We first set the number of
UEs (K ), number of RF chains NRF , number of BS antennas
(N ), channel matrix H , the optimized analog RF precoder
(F̂RF ) from Algorithm 2, and the optimized user grouping
from Algorithm 1. The precoding algorithm then employs
a zero-force precoding algorithm to reduce inter-user inter-
ference. As a result, the digital baseband precoder can be
represented as

F̂BB = HH
(
HHH

)−1
(20)

Then, we normalize the digital precoder as follows.

F̂BB =

[
f̂ BB1

f BB∗1

,
f̂ BB2

f BB∗2

, . . . ,
f̂ BBNRF

f BB∗NRF

,

]
(21)

where f BB∗n = repmat
(∥∥FRF f BB∗n

∥∥
2 ,N

RF , 1
)
∀n =

1, . . . ,NRF and
∥∥FRF f BB∗n

∥∥
2 =

√∑∣∣FRF f BB∗n

∣∣2.
V. JOINT OPTIMIZATION OF POWER ALLOCATION AND
POWER SPLITTING
In this section, we have investigated the combined power allo-
cation and power splitting optimization to achieve the high-
est possible data rate in mmWave Massive MIMO-NOMA
systems with SWIPT. Because of the presence of bothin-
ter -and intra-group interferences in MIMO-NOMA systems
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Algorithm 3: Presented Digital Baseband Precoding Method
for mmWave Massive MIMO-NOMA Systems With SWIPT
Input:

Number of UEs: K > NRF

Number of RF chains: NRF

Channel Matrix: H = [h1,h2, . . . ,hK ]
Optimized User Grouping:

{
1, 1, . . . , G

}
Number of BS antennas: N
Optimal analog RF precoding: FRF

Number of quantization bits: B
Output:

Optimal Baseband precoding: FBB

1: Set the phase: 3 =
{
2πn
2B , n = 0, 1, . . . ., 2B−1

}
2: H = HHFRF

3: H̃ =
[
H
]
:, 1

4: F̂
BB
= H̃

H (
H̃H̃

H)−1

5: F̂
BB
=

[
f̂
BB
1

f BB∗1
,
f̂
BB
2

f BB∗2
, . . . ,

f̂
BB
NRF

f BB∗
NRF

,

]
where
f BB∗n = repmat

(∥∥FRF f BB∗n

∥∥
2 ,N

RF , 1
)
∀n

= 1, . . . ,NRF

6: Initialize baseband precoding: FBB = 0N
RF
×K

7:
[
FBB

]
:, 1
= F̂BB

8: For Loop: g = 1 to G

3 = nonzeros
(
[3]ĝg

)T
9: For m = 2 to |3|

FBB(:,3n) =
[
FBB

]
:, g

10: End for
11: End for

with SWIPT, the existing optimization methods for solv-
ing the joint optimization problem of power allocation and
power splitting in MIMO systems with SWIPT cannot be
directly applied in MIMO-NOMA systems with SWIPT,
where there are multiple groups and multiple users in each
group. As a result, obtaining optimal solutions is quite dif-
ficult. To address this intractable problem, an iterative opti-
mization technique is created in this section, which allows
for the generation of suboptimal solutions while fulfilling the
intended EH restrictions and the transmit power constraint
requirements. Furthermore, the following formulation may
be used to precisely express the issue of combined power
allocation and power-splitting optimization:

max
{pg,m},{βm}

Rsum
(
pg,m, βm

)
(22)

s.t.
∑G

g=1

∑|Sg|
m=1

Pg,m ≤ PT (23)

0 ≤ βm ≤ 1 ∀m (24)

pg,m ≥ 0 ∀g,m (25)

PEHg,m ≥ p
req
g,m (26)

Constraint (23) indicates that the transmitted power con-
straint, that is,

∑G
g=1

∑|Sg|
m=1 Pg,m, cannot exceed the threshold

of PT being the maximum total transmission power of the BS.
Constraint (24) limits the power splitting factor βm for themth
user to be in the range of [0, 1]. Constraint (25) indicates the
non-negativity of the power allocated to the mth user in the
gth beam. Constraint (26) shows that each mth user in the gth
beam is required to harvest at least preqg,m W Power being the
minimum harvested energy for eachmth user in the gth beam.
As a consequence of the objective function and the cou-

pling of the multiple variables, the optimization issue of the
attainable data rate described in (22)–(26) is neither convex
nor linear owing to the objective function. Furthermore, the
optimization problem mentioned above is a well-known NP-
hard problem, and as a result, the solution is complex and
cannot be easily achieved. There is a possibility that an
exhaustive search approach will provide a solution to this
problem. The computational complexity of the exhaustive
search technique, on the other hand, increases substantially
as the number of users increase. As a result, this technique
is far from feasible, particularly in the context of IoT, where
there is a desire for massive MIMO systems. We will create
an iterative strategy to tackle this problem based on the
Lagrangian duality methodology in this section, which will
be as follows:

It is feasible for any optimization issue containing many
variables to deal with the sub-problem over a subset of vari-
ables while treating the remainder as constants and then deal-
ing with the sub-problem over the remaining variables. This
is supported by the literature [30] and [31]. This separation
of pg,m and βm allows us to create a realistic and effective
solution for the studied optimization issue in (22)–(26).

First, we examine the scenario in which all the compo-
nents of the power allocation, pg,m∀g,m, are constants. Here,
we focus on optimizing the power splitting factors βm∀m
under the fixed power allocation pg,m∀g,m. Therefore, the
optimization subproblem can be rewritten as follows:

max
{p,g,m},{βg,m}

Rsum (βm) (27)

s.t. 0 ≤ βm ≤ 1 ∀m (28)

PEHg,m ≥ p
req
g,m (29)

According to (10) and constraint (29), βm∀m is required to
satisfy the following condition:

βm ≤ 1−
preqg,m

η

(∑G
i=1

∑|Si|
j=1

∥∥∥hHg,md i∥∥∥22 pi,j + σ 2
v

) ∼= βUBm
(30)

Considering (28) and (30) together, the supposed optimiza-
tion problem is infeasible unless the βUBm > 0∀m.
Proposition 1: Assume that the process of power splitting

in the receiver is almost idealized, and the noise power for
all users in the gth beam is equal, that is, |σu|2 → 0. The
considered optimization problem in (27)-(29) is convex with
respect to the power splitting factors β,m∀m.
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Proof: First, we ensure that the viable power splitting
factor area is not empty and convex to guarantee the convexity
of the optimization issue in (27)–(29). Because of the limita-
tion of βUBm > 0∀m, the feasible area of the power splitting
factor is not empty, and its convexity can be determined using
Equations (29) and (30), respectively. After that, we conclude
that the objective function in (27) is concave on the power
splitting factors βm∀m. Let us recall the equation in (15),
(31) and (32), as shown at the bottom of the page.

Let us assume that

Ag,m =
∥∥∥hHg,mdg∥∥∥22 pg,m (33)

Bg,m =
∥∥∥hHg,mdg∥∥∥22∑m−1

j=1
pg,j+

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|

j=1
pi,j

+ σ 2
v (34)

Given

Rg =
∑|Sg|

m=1
log2

(
1+

Ag,mβm
Bg,mβm + σ 2

u

)
(35)

Which represents the achievable data rate on the gth beam.
Thus, Rsum (βm) in (27) is given as

Rsum (βm) =
∑G

g=1
Rg (36)

Rsum (βm) =
∑G

g=1

∑|Sg|
m=1

log2

(
1+

Ag,mβm
Bg,mβm + σ 2

u

)
(37)

Then the first derivative of Rg with respect to βm is given by

∂Rg
∂βm
=

1
ln2
·

Ag,mσ 2
u(

Ag,mβm + Bg,mβm+σ
2
u

) (
Bg,mβm + σ 2

u
) (38)

Moreover, the second derivative of Rg with respect to βm is
given by

∂2Rg
∂β2m

= −
1
ln2

·
Ag,mσ 2

u
(
2
(
Ag,m + Bg,m

)
Bg,mβm + 2Bg,mσ 2

u + Ag,mσ
2
u
)(

Ag,mβm + Bg,mβm + σ
2
u

) (
Bg,mβm + σ 2

u
)

(39)

And

∂2Rg
∂βn∂βm

= 0 ∀n 6= m (40)

According to the equation above, the corresponding Hessian
matrix H is given by

H =

H1 · · · 0
...

. . .
...

0 · · · H|Sg|

 (41)

where Hm =
∂2Rg
∂β2m
≤ 0∀m ∈

[
1,
∣∣Sg∣∣]. Correspondingly,

the Hessian matrix is negative or equal to zero for all values
of βm∀m ∈

[
1,
∣∣Sg∣∣], then the Rg is concave with respect

to βm. Therefore, the objective function in (27) is concave
on the power splitting factors βm∀m because it represents
the finite summation of concave functions. To that end, one
can obtain the near-optimal solution for the optimization
problem in (27)–(29) by using the Lagrangian duality-based
method [30]. The corresponding Lagrangian function is for-
mulated as in (42), shown at the bottom of the page, where

λ =
[
λ1, λ2, . . . , λ|Sg|

]T
and µ =

[
µ1, µ2, . . . , µ|Sg|

]T
are non-negative Lagrange multipliers, which correspond to

constraint (28). υ =
[
ν1, ν2, . . . , ν|Sg|

]T
is a non-negative

Lagrange multiplier corresponding to constraint (29).
Accordingly, one can express the Lagrange dual objective

function as follows

0 (λ,µ,υ) = max
β
ϒ (β,λ,µ,υ) (43)

Rg,m = log2

1+

∥∥∥hHg,mdg∥∥∥22 pg,m∥∥∥hHg,mdg∥∥∥22∑m−1
j=1 pg,j +

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|j=1 pi,j + σ
2
v +

σ 2u
βm

 (31)

= log2

1+

∥∥∥hHg,mdg∥∥∥22 βmpg,m
βm

(∥∥∥hHg,mdg∥∥∥22∑m−1
j=1 pg,j +

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|j=1 pi,j + σ
2
v

)
+ σ 2

u

 (32)

ϒ (β,λ,µ,υ) =

G∑
g=1

|Sg|∑
m=1

log2

1+
βm

∥∥∥hHg,mdg∥∥∥22 pg,m
βm

(∥∥∥hHg,mdg∥∥∥22∑m−1
j=1 pg,j +

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|j=1 pi,j + σ
2
v

)
+ σ 2

u


+

|Sg|∑
m=1

λmβm +

|Sg|∑
m=1

µm (1− βm)+
|Sg|∑
m=1

νm

η (1− βm)
 G∑
i=1

|Si|∑
j=1

∥∥∥hHg,md i∥∥∥22 pi,j + σ 2
v

− preqg,m
 (42)
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Then, one canmodel the Lagrange dual optimization problem
as follows

min
λ,µ,υ

0 (λ,µ,υ) (44)

s.t. λ < 0, µ < 0, υ < 0 (45)

To solve the Lagrange dual issue mentioned earlier, we first
optimize the PS factor β using the provided dual variables
(λ,µ,υ) using the gradient ascent technique, and then update
the dual variables (λ,µ,υ) with the optimized β using a
well-known sub-gradient methodology [31] to obtain the
optimal.
1) We find the gradient direction of the Lagrange objec-

tive function in (46) regarding to power splitting factor
βm∀m to optimize the βm with given variables (λ,µ,υ)
as follows

∇βmϒ =

G∑
g=1

1
ln2

·
Ag,mσ 2

u(
Ag,mβm + Bg,mβm + σ

2
u

) (
Bg,mβm + σ 2

u
)

+ λm − µm − νm

×

η
 G∑
i=1

|Si|∑
j=1

∥∥∥hHg,md i∥∥∥22 pi,j + σ 2
v

− preqg,m

(46)

where Ag,m and Bg,m are defined in (33) and (34),
respectively.

Particularly, βm can be updated using the following for-
mula

βm (Itr + 1) = βm (Itr)+ ε (Itr)∇βm(Itr)ϒ (47)

where βm (Itr) and βm (Itr + 1) represent the βm in the Itr-
th and (Itr + 1)-th iterations, respectively. ε (Itr) defines the
updated step size for the βm in the Itr-th iteration and satisfies
the following condition:

ε (Itr) = argmax
ε
ϒ

(β (Itr + 1) ,λ,µ,υ) |βm(Itr+1)=βm(Itr)+ε(Itr)∇βm(Itr)ϒ (48)

Process in (46) is repeated until
∣∣∇βm(Itr)ϒ∣∣ ≤ ε1∀m, and the

optimal power splitting factor is denoted as β∗. Therefore, the
Lagrange dual-objective function in (43) is given by

0 (λ,µ,υ) = ϒ
(
β∗,λ,µ,υ

)
(49)

2) We update and determine the optimal Lagrangemultipli-
ers (λ,µ,υ) by solving the Lagrange dual optimization
problem in (50)–(51) as follows

min
λ,µ,υ

0 (λ,µ,υ) (50)

s.t. λ < 0, µ < 0, υ < 0 (51)

To state it bluntly, the dual issue is convex on the set of
Lagrange multipliers (λ,µ,υ). As a result, to maximize the

dual variables, a one-dimensional search strategy can be used.
Nonetheless, the objective function (44) is not always differ-
entiable; therefore, this gradient-based method is not always
possible in all situations. The dual variables (λ,µ,υ) are
determined using the widely used sub-gradient approach (as
shown below), with the sub-gradient directions being applied
as follows:

∇λm0 = β
∗
m (52)

∇µm0 = 1− β∗m (53)

∇νm0 =

 η (1−β∗m) (∑G
i=1

∑|Si|
j=1

∥∥∥hHg,md i∥∥∥22 pi,j+σ 2
v

)
−preqg,m


(54)

To that end, the value of λm decreases if the ∇λm0 > 0,
the value of µm decreases if the ∇µm0 > 0, and the value
of νm decreases if the ∇νm0 > 0. Based on this remark,
we employ the binary search method [32] with an error toler-
ance ε2 to identify the best Lagrangemultipliers

(
λ∗,µ∗,υ∗

)
for the particular scenario. Thus, the algorithms developed
in steps 1 and 2 operate alternately until the duality gap no
longer changes, that is,∣∣Rsum (β∗)− 0 (λ∗,µ∗,υ∗)∣∣ = Const (55)

where Const represents a non-negative constant value.
Second, we optimize the power allocation with a fixed

power splitting factor in the optimization problem (22)–(26).
We aim to find the power allocation pg,m∀g,m under the
optimized power splitting factor β∗. However, we can rewrite
the optimization problem in (22)–(26) as follows:

max
{pg,m}

Rsum
(
pg,m

)
(56)

s.t.
∑G

g=1

∑|Sg|
m=1

Pg,m ≤ PT (57)

pg,m ≥ 0 ∀g,m (58)

PEHg,m ≥ p
req
g,m (59)

Proposition 2: Assume that the process of power splitting
in the receiver is almost idealized, and the noise power for all
users in the gth beam is equal, that is, |σu|2→ 0. In (56)–(59),
the convexity of the sub-optimization issue is determined by
whether or not the feasible domain is empty.

Proof: It should be noted that the feasible domain of
the sub-problems (56)–(59) is assumed to be non-empty and
its convexity can be easily deduced from the constraints in
(57)–(59). Next, we will examine the concavity of the
objective function (56) in relation to the power allocation
pg,m∀g,m.
Based on the assumption above, the objective function can

be written as (60) and (61), shown at the bottom of the next
page, where, (62), as shown at the bottom of the next page.
Let us define the relationship between the m-th user and its
decoding order as m = ψ(m). Because the process of power
splitting in the receiver is almost idealized and the noise

VOLUME 10, 2022 28877



A. Jawarneh et al.: Decoupling Energy Efficient Approach

power for all users in the gth beam is equal, the objective
function can be rewritten as follows:

Rg

=

|Sg|∑
m=1

log2

1+

∥∥∥hHg,ψ(m)dg∥∥∥22 pg,ψ(m)(∥∥∥hHg,ψ(m)dg∥∥∥22∑|Sg|j=m+1 pg,ψ(j) + σ
2
v

)


(63)

Rg

=

|Sg|∑
m=1

log2


∥∥∥hHg,ψ(m)dg∥∥∥222g,m + σ

2
v(∥∥∥hHg,ψ(m)dg∥∥∥222g,m+1 + σ 2
v

)
 (64)

Rg

=

|Sg|∑
m=1

log2

(∥∥∥hHg,ψ(m)dg∥∥∥222g,m + σ
2
v

)

−

|Sg|∑
m=1

log2

(∥∥∥hHg,ψ(m)dg∥∥∥222g,m+1 + σ
2
v

)
(65)

where 2g,m =
∑|Sg|

j=m pg,ψ(j) and 2g,m+1 =
∑|Sg|

j=m+1 pg,ψ(j).

Now, one can find the first derivative of Rg with respect to
pg,ψ(m) as follows:

∂Rg
∂pg,ψ(m)

=
1
ln2
·

∥∥∥hHg,ψ (1)dg
∥∥∥2
2(∥∥∥hHg,ψ (1)dg

∥∥∥2
2
2g,1 + σ 2

v

) ∀m = 1

(66)

And, (67) as shown at the bottom of the page. Moreover,
the second derivative of Rg with respect to pg,ψ(m) is given by

∂2Rg
∂pg,ψ(m)∂pg,ψ(n)

= −
1
ln2
·

∥∥∥hHg,ψ (1)dg
∥∥∥4
2(∥∥∥hHg,ψ (1)dg

∥∥∥2
2
2g,1 + σ 2

v

)2 −
1
ln2

·

m∑
l=2


∥∥∥hHg,ψ(l)dg∥∥∥42(∥∥∥hHg,ψ(l)dg∥∥∥222g,l + σ 2

v

)2

−

∥∥∥hHg,ψ(l−1)dg∥∥∥42(∥∥∥hHg,ψ(l−1)dg∥∥∥222g,l + σ 2
v

)2

 ∀m

(68)

According to (68), it can easily be inferred that the Hessian
matrix of Rg with respect to pg,m∀g,m is negative or equal to
zero. Consequently, the Rg is concave with respect to pg,m.
Therefore, because the sum of a finite number of concave
functions stays concave, the objective function in (56) is
concave on the power allocations pg,m∀g,m. Additionally,
this study uses the Lagrangian duality-basedmethod to obtain
the near-optimal power allocation [30].

The corresponding Lagrangian function for the sub-
problem in (56)–(59) is formulated as (69), as shown at the
bottom of the next page.

Rsum
(
pg,m

)
=

G∑
g=1

Rg (60)

Rsum
(
pg,m

)
=

G∑
g=1

|Sg|∑
m=1

log2

1+

∥∥∥hHg,mdg∥∥∥22 pg,m(∥∥∥hHg,mdg∥∥∥22∑m−1
j=1 pg,j +

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|j=1 pi,j + σ
2
v

)
 (61)

Rg =
|Sg|∑
m=1

log2

1+

∥∥∥hHg,mdg∥∥∥22 pg,m(∥∥∥hHg,mdg∥∥∥22∑m−1
j=1 pg,j +

∑
i 6=g

∥∥∥hHg,md i∥∥∥22∑|Si|j=1 pi,j + σ
2
v

)
 (62)

∂Rg
∂pg,ψ(m)

=
1
ln2
·


∥∥∥hHg,ψ(1)dg∥∥∥22(∥∥∥hHg,ψ(1)dg∥∥∥222g,1 + σ 2

v

)

+

m∑
l=2


∥∥∥hHg,ψ(l)dg∥∥∥22(∥∥∥hHg,ψ(l)dg∥∥∥222g,l + σ 2

v

) −
∥∥∥hHg,ψ(l−1)dg∥∥∥22(∥∥∥hHg,ψ(l−1)dg∥∥∥222g,l + σ 2

v

)

 ∀2 ≤ m ≤

∣∣Sg∣∣ (67)
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where α =
[
α1, α2, . . . , α|Sg|

]T
, η =

[
η1, η2, . . . , η|Sg|

]T
and κ =

[
κ1, κ2, . . . , κ|Sg|

]T
are non-negative Lagrange

multipliers that correspond to the constraints in (57), (58), and

(59), respectively. Notably, αn =
[
αn,1, αn,2, . . . , αn,|Sg|

]T
is a non-negative Lagrange multiplier corresponding to con-
straint (57).

Accordingly, one can express the Lagrange dual objective
function as follows

0 (α, η, κ) = max
p
ϒ (p,α, η, κ) (70)

Then, one canmodel the Lagrange dual optimization problem
as follows

min
α,η,κ

0 (α, η, κ) (71)

s.t. α < 0, η < 0, κ < 0 (72)

The proposed algorithm to solve the corresponding optimiza-
tion problems consists of the following two steps:

First, we employed the gradient ascent method to deter-
mine the optimal power allocation p∗. The gradient direction
of the Lagrangian function with respect to the power alloca-
tion is given as

∇pg,ψ(m)ϒ =
1
ln2
·


∥∥∥hHg,ψ(1)dg∥∥∥22(∥∥∥hHg,ψ(1)dg∥∥∥222g,1 + σ 2

v

)

+

m∑
l=2


∥∥∥hHg,ψ(l)dg∥∥∥22(∥∥∥hHg,ψ(l)dg∥∥∥222g,l + σ 2

v

)

−

∥∥∥hHg,ψ(l−1)dg∥∥∥22(∥∥∥hHg,ψ(l−1)dg∥∥∥222g,l + σ 2
v

)



+αg,m − ηm

+

 |Si|∑
j=1

κjη
(
1− β∗j

) ∥∥∥hHg,ψ(j)dg∥∥∥22
 (73)

In particular, the power allocation for each user on the g-
th beam (1 ≤ g ≤ G) can be sequentially updated using the
following expressions:

pg,ψ(m) (Itr + 1) = pg,ψ(m) (Itr)+ ε (Itr)∇pg,ψ(m)(Itr)ϒ

(74)

where pg,ψ(m) (Itr) and pg,ψ(m) (Itr + 1) represents the
pg,ψ(m) in the Itr-th and (Itr + 1)-th iterations, respectively.
ε (Itr) defines the updated step size for the pg,ψ(m) in the
Itr-th iteration and it satisfies the condition

∣∣∇pg,ψ(m)ϒ∣∣ ≤
ε3∀1 ≤.
The updated process in (73) and (74) for the power alloca-

tion on the g-th beam is repeated until
∣∣∇pg,ψ(m)ϒ∣∣ ≤ ε3∀1 ≤

m ≤
∣∣Sg∣∣ And the optimal power allocation is denoted as p∗.

Therefore, the Lagrange dual-objective function in (70) is
given by

0 (λ,µ,υ) = ϒ
(
p∗,α, η, κ

)
(75)

Next, we can update and determine the optimal Lagrange
multipliers (α, η, κ) by solving the Lagrange dual optimiza-
tion problem in (71)–(72) as follows:

min
α,η,υ

0 (α, η, κ) (76)

s.t. α0, η0, κ0 (77)

We utilize the commonly used sub-gradient technique to
find the dual variables (α, η, κ),, for which the sub-gradient
directions are applied in the following ways:

∇αm0 = pg,ψ(m) (78)

∇ηm0 = PT −
G∑
g=1

pg,ψ(m) (79)

∇κm0 =
(
η
(
1− β∗m

)
×

(∑G

i=1

∑|Si|

j=1

∥∥∥hHg,ψ(j)dψ(j)∥∥∥22 pi,ψ(j) + σ 2
v

)
− preqg,ψ(m)

)
(80)

In this paper, we apply the binary search technique with error
tolerance ε4 to find the optimal solution of the Lagrange

ϒ (p,α, η, κ)

=

G∑
g=1

|Sg|∑
m=1

log2

1+ 1+

∥∥∥hHg,ψ(m)dg∥∥∥22 pg,ψ(m)(∥∥∥hHg,ψ(m)dg∥∥∥22∑|Sg|j=m+1 pg,ψ(j) + σ
2
v

)


+

G∑
g=1

|Sg|∑
m=1

αg,mpg,ψ(m) +
|Sg|∑
m=1

ηm

PT − G∑
g=1

pg,ψ(m)


+

|Sg|∑
m=1

κm

η (1− β∗m)
 G∑
i=1

|Si|∑
j=1

∥∥∥hHg,ψ(j)dψ(j)∥∥∥22 pi,ψ(j) + σ 2
v

− preqg,ψ(m)
 (69)
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multipliers in their many forms
(
α∗, η∗, κ∗

)
. As a result, the

proposed algorithm runs alternatively until the duality gap no
longer changes, that is,∣∣Rsum (p∗)− 0 (α∗, η∗, κ∗)∣∣ = Const (81)

where Const represents a non-negative constant value.
To that end, we have developed a solution to the sub-

problems to optimize the power allocation and power split-
ting factor. Nevertheless, the algorithm developed for the
joint optimization problem in (22)–(26) is presented in
Algorithm 4. The computational complexity of the devel-
oped method is given as

O

(
G
∣∣Sg∣∣2 log( 1

ε21

)
log

(
1

ε22

)
log

(
1

ε23

)
log

(
1

ε24

))
(82)

VI. SIMULATION RESULTS
Spectral efficiency is defined as the sum rate attained when
operating within a given spectrum (16). In contrast, energy
efficiency refers to the ratio between the sum rate obtained
and the total power consumed [18] i.e.

EE =
Achievable sum rate

Total power consumption
(83)

EE =
RSum

Pt + NRFPRF + NphaseshiftPphaseshift + PBB
(84)

where Pt =
∑G

g=1
∑|Sg|

m=1 pg,m is the total transmitted power,
PRF is the power consumed by each RF chain, PBB rep-
resents the baseband power consumption, and Pphaseshift is
the power consumption of each phase shift. In particular,
PRF = 300 mW , Pphaseshift = 40 mW∀B = 4 bit phase
shifter, and PBB = 200mW are adopted as the typical values.
In addition, Nphaseshift is the number of phase shifters and is
equal to NNRF for hybrid precoding. Moreover, all presented
results are averaged over 100 random channel realizations.

To demonstrate the performance of the proposed tech-
nique, we present the simulation results to illustrate both
the spectrum efficiency and energy efficiency of the hybrid
precoding architecture. The following parameters are pro-
vided for the simulation: the system’s bandwidth is defined
as 1 Hz, corresponding to a rate as high as possible (15).
The BS and UE are equipped with uniform linear antennas
(ULAs) with half-wavelength spacing. The BS is equipped
with N = 64 antennas and NRF = 4 RF chains, and can
serve up to K ≥ NRF UEs simultaneously. All K UEs are
clustered into G = N, RF = 4 beams, with each beam con-
sisting of more than one user simultaneously. According to
equation (5), a channel vector for the mth user in the gth beam
is created by considering one line-of-sight (LoS) component
as well as two non-line-of-sight (NLoS) components, that
is, the number of routes that the mth user takes in the gth
beam (Lg,m = 3). The complex gain of the LoS path is
α
(1)
g,m ∼ CN (0, 1) and the complex gains of the NLoS paths

Algorithm 4: Proposed Method for mmWave Massive
MIMO-NOMA Systems With SWIPT

Input:
Channel vectors: hg,m∀g,m
Digital precoding vectors: dg∀g
Noise variance: σ 2

v
Maximum iteration times: Itrmax

Output:
Optimal power allocation: p∗ =

p∗g,m∀g,m
Optimal power splitting factors β∗ =

β∗m∀m
1: Initialize p and stop criteria ε1, ε2, ε3, ε4
2: While Loop 1:
3: Step 1: Optimize the power splitting factors
βm∀m

under fixed power allocationp.
4: While Loop 2
5: Initialize dual variables (λ,µ,υ)
6: Solve the problem in (27) to obtain the
optimal power splitting factors β∗ according to
(46)-(48).

Until
∣∣∇βm(Itr)ϒ∣∣ ≤ ε1∀m

7: Determine the optimal Lagrange dual
multipliers(

λ∗,µ∗,υ∗
)
according to equations in

(52)-(53).
8: Until∣∣Rsum (β∗)− 0 (λ∗,µ∗,υ∗)∣∣ = Const
9: Step 2: Optimize the power allocation with
fixed

the power splitting factors β∗

10: While Loop 3
11: Initialize the power splitting factors β∗

12: Solve the problem in (56) to obtain the
optimal power allocation p∗ according to
(70)-(74).

Until
∣∣∇pg,ψ(m)ϒ∣∣ ≤ ε3∀1 ≤ m ≤ ∣∣Sg∣∣

13: Determine the optimal Lagrange dual
multipliers

(
α∗, η∗, κ∗

)
according to

equations in (78)-(80).
14: Until∣∣Rsum (p∗)− 0 (α∗, η∗, κ∗)∣∣ = Const
15: Until

Rsum (p∗) = Rsum
(
β∗
)

are α(l)g,m ∼ CN (0, 0.1)∀2 ≤ l ≤ Lg,m. The azimuth angle of
departure (AoD) is ϑ (l)g,m and elevation angle of departure θ (l)g,m
of the lth path is assumed to follow the uniform distribution
U (−π, π)∀1 ≤ l ≤ Lg,m. The bit resolution B = 4 is
used to quantize the phase shifters. The SNR is defined as
the ratio of signal to noise

(pt/
σ 2
)
, where the maximum

transmitted power pt = 30 mW , the minimal achievable rate
for each user, is Rming,m/10, where R

min
g,m is the lowest possible
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rate among all users when completely digital ZF precoding is
used, and the lowest amount of energy collected by each user
is pming,m = 0.1 mW .

In the simulations, we consider the proposed method with
the following four methods of mmWave massive MIMO
systems with SWIPT for comparison: (1) ‘‘SWIPT-Fully dig-
ital ZF Precoding,’’ (2) ‘‘SWIPT-Hybrid Precoding NOMA
proposed in [7],’’ (3) ’’SWIPT-Hybrid Precoding NOMA
proposed in [9],’’ and (4) ‘‘SWIPT-Hybrid Precoding OMA,’’
where OMA is implemented for UEs in each beam. An Intel
Core i5-2400S @ 1.6 GHz (4 cores) and 8 GB of RAM were
used to run the simulations.

FIGURE 2. Spectrum efficiency of HP system versus the number of
iterations for the joint power allocation and power splitting optimization.

Fig. 2 shows the spectrum efficiency as a function of the
number of iterations, where the number of users is fixed at
K = 6, and the SNR is set to 0 dB. The curves depicted
in Fig. 2 illustrate the convergence of the proposed method
described in Section IV, which addresses the problem of joint
power allocation and power splitting for systems with fixed
K users. From Fig. 2, the spectrum efficiency appears to
have stabilized after the proposed method in Section IV has
been iterated 13 times, which demonstrates the convergence
of the proposed method. However, our proposed techniques
require approximately 13 iterations for the combined power
allocation and power splitting optimization to converge,
whereas the SWIPT-Hybrid Precoding NOMA described
in [7] requires approximately nine iterations for convergence.
The SWIPT-Hybrid Precoding NOMA described in [7] con-
verges to a greater spectrum efficiency than our proposed
method. According to the SWIPT-Hybrid Precoding NOMA
described in [9], the joint power allocation and power splitting
optimization require approximately 12 iterations to converge.
Therefore, to guarantee that each scheme can remain stable
during the simulations, the number of iterations for the power
allocation and power slitting optimization is set to 14.

The spectrum efficiency of the system is illustrated in
Fig. 3. We consider the spectrum efficiency, SNR, and
the number of users to determine which of the four
signal-processing methods offers the best tradeoff between

FIGURE 3. Spectrum efficiency against SNR.

performance and cost. Because of NOMA’s greater spectrum
efficiency, we can say that the proposed mmWave massive
MIMO-NOMA systemswith SWIPT can achieve better spec-
trum efficiency than that of mmWave massive MIMO-OMA
systems with SWIPT. As can be seen in Fig. 3, the spectrum
efficiency increases as the SNR increases for all the methods
being examined. SWIPT-Full-digital ZF Precoding performs
better in increasing the overall spectral efficiency compared
to all the precoding schemes, but it requires more processing
than other methods.

Fig. 4 depicts the SNR-adjusted energy efficiency, which
can accommodate up to six users. According to our findings
in Fig. 4, the proposed mmWave massive MIMO-NOMA
systems with SWIPT achieved greater energy efficiency than
both mmWave massive MIMO-OMA systems with SWIPT
and completely digital MIMO systems with SWIPT. With
RF chains, as in fully digital MIMO systems, each RF chain
needs 300 mW of power. Contrary to this statement, with
SWIPT-Hybrid Precoding NOMA systems, the number of
RF chains is significantly lower than the number of antennas.

FIGURE 4. Energy efficiency against SNR.
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FIGURE 5. Spectrum efficiency of hybrid precoding system versus the
number of users for the joint power allocation and power splitting
optimization.

FIGURE 6. Energy efficiency of hybrid precoding system versus the
number of users for the joint power allocation and power splitting
optimization.

Therefore, compared to completely digital MIMO systems,
RF chains generate much less energy. Furthermore, the
SWIPT-enabled mmWave massive MIMO-NOMA system
with hybrid precoding is shown to perform better than current
systems in moderate to high SNR regimes because of the
usage of NOMA.

Fig. 5 depicts a comparison of the spectrum efficiency vs.
the number of UEs for all five schemes under discussion,
with the SNR fixed at 10 dB for all five schemes consid-
ered. As shown in Fig. 5, the efficiency of the spectrum
increases for all curves as the number of UEs increases.
In this case, several UEs can share the same time-frequency
resource block by utilizing intra-beam superposition coding
at the base station and SIC at the receiver, which allows for
greater efficiency. The proposed SWIPT-enabled mmWave
huge MIMO-NOMA systems with hybrid precoding, on the
other hand, outperforms the other methods and achieve per-
formance that is comparable to the SWIPT-Full-digital ZF

Precoding. As a result, using the suggested user grouping,
analog RF precoder and digital baseband precoder design
methods are helpful for interbeam interference cancellation
while also enhancing the overall system performance and
efficiency.

The energy efficiency versus the number of users is shown
in Fig. 6. The SNR was adjusted to 10 dB. For illustration,
Fig. 6 depicts several curves with various degrees of curva-
ture. The energy efficiency of the SWIPT-Hybrid Precoding
OMA system decreases with an increasing number of UEs.
Another important observation is that the energy efficiency
of the SWIPT-Full-digital ZF Precoding scheme increases
with the number of UEs. Moreover, we have also noticed
that the SWIPT-enabled mmWave mMIMO-NOMA sys-
tem with SWIPT MMIMO-NOMA capability shows supe-
rior energy efficiency at a low and medium number of
users. It increases efficiency as we go up with a number of
users.

VII. CONCLUSION
In this study, hybrid precoding for SWIPT-enabled mmWave
mMIMO-NOMA systems to enhance the attainable sum-rate
and total energy efficiency. The optimization of user grouping
is given first, followed by the creation of hybrid analog-
digital precoders. Then, given the maximum transmit power
budget restrictions and minimal EH need, we examined the
feasible data rate maximization problem for SWIPT-enabled
mmWave mMIMO-NOMA systems with PS receivers.
Because of the coupling of many variables and the pres-
ence of inter-user interference, the maximization issue was
non-convex, making it difficult to obtain the best solution
directly. We used a decoupled strategy to solve this prob-
lem, in which the linked variables, such as power allocation
and PS ratio assignment, were separated. The Lagrangian
duality-based technique was then used to solve the associated
subproblems. The proposed technique with hybrid precoding
considerably increased the spectrum efficiency and energy
efficiency of the studied system compared to existing state-
of-the-art systems, demonstrating its efficacy. Furthermore,
mmWave MIMO-NOMA continues to outperform mmWave
MIMO-OMA.
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