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ABSTRACT The pressure swing adsorption (PSA) process, is a novel method for the purification and
production of bioethanol. A highly non-linear rigorous model is implemented to simulate the cyclic dynamics
of PSA, achieving purity of 99% wt of ethanol, which meets international standards to be used as fuel.
The contribution of this work focuses on obtaining an identified model capable of capturing the important
dynamics of the PSA process (with a fit above of 90%) and to be used for controller design purposes, since it
is very complicated to design control in highly nonlinear models that are represented with partial differential
equations (PDE). For proof of concept, a comparison between Hammersetein-Wienner and Artificial Neural-
Networks showed the relevance of the proposed method, using the same input and output signals. Both
identified models capture the important dynamics of the rigorous PSA model.

INDEX TERMS Artificial neural-networks, system identification, ethanol dehydration, pressure swing

adsorption.

I. INTRODUCTION

Bioethanol is an alternative fuel that can be used in ignition
engines and bivalent engines as a fuel or oxygen additive:
E100 (100 % bioethanol) requires its own combustion tech-
nology; E85 (85 % bioethanol + 15 % gasoline) is used in
the so-called FlexiFuel vehicles; the E5 (5 % bioethanol +
95 % gasoline) does not require modification of the vehicles.
For its use to be possible, bioethanol needs to be free of
water (it is then known as dehydrated ethanol). There are
several alternatives to produce bioethanol, these are extractive
distillation with salts, azeotropic distillation, vacuum distil-
lation, pervaporation, and adsorption with molecular sieves.
Currently, processes with molecular sieves have displaced
certain technologies (azeotropic and extractive distillation
with salts), since they have lower energy and equipment costs
[1]. Another advantage of this process is obtaining purities
of 99% ethanol compared to pervaporation processes that
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manage to reach purities close to 97% of ethanol. So that
pervaporation processes achieve purity of 99% of ethanol,
they need external equipment that involves other purification
steps. To purify ethanol and achieve the properties of fuel
ethanol, the adsorption process with molecular sieves has
been used using the PSA method [1]-[7]. The highly non-
linear rigorous model of PSA processes for gas separation is
a subject very little studied in the literature. Balances of mass,
energy, and moment, as well as equations on equilibrium
Thermodynamic and kinetic, form a system of partial differ-
ential equations (PDE) which describe the dynamic behavior
of the PSA process [8]. In most cases, there are works in the
literature that make simplifications on these PDE, however,
they are not feasible, since they do not have a good approxi-
mation compared to the real results, generating a loss of infor-
mation and data when making these considerations. For this
reason, it is necessary to use numerical methods to simulate
gas flow, temperature increases and pressure drops through
a packed bed for purification and production of dehydrated
ethanol. Since PSA model phenomena depend on both time
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and space, there are two main approaches to solving the PDE
equations: 1) discretizing the derivatives of time and space to
obtain a model of ordinary differential equations to be solved
simultaneously, or 2) perform system identification using the
inputs and outputs obtained from the PSA process. [9]-[17].

Various optimization methods have been used to improve
the performance of the PSA process to have an optimal and
efficient process, one of these methods is machine learning
technology, these methods are currently receiving a lot of
attention, and they are impacting sustainable energy pro-
cesses. Machine learning is an important part of artificial
intelligence. There are various machine learning methods
such as neural network, Bayesian linear regression, decision
tree, etc [18].

In literature, a method has been reported to simulate and
optimize a PSA process to separate nitrogen/air using ANN.
The network they developed was used to minimize the cost
objective function and it shows that it can easily be used
in process optimization and/or control [19]. Subsequently,
another work apply ANN to separate a N»/CH4 mixture
in a packed bed. They analyzed using artificial neural net-
works (ANN) as a surrogate model to predict and optimize
the PSA performance. Using the ANN surrogate model,
optimization time they managed to decrease from 15.7 h to
50 s. They demonstrated that the PSA cycle proposed can
achieve an optimized 99.5% nitrogen purity stream from an
85% inlet stream and a 50% purity stream from a 10% inlet
stream. they also show that nitrogen recovery can be at most
90%. They further carry out a multi-objective optimization to
demonstrate the tradeoff curve between nitrogen purity and
recovery [20].

In more recent work, authors established an ANN model
for breakthrough curves prediction about a ternary compo-
nents gas with a two-layered adsorbent bed piled up with
Activated Carbon (AC) and zeolite, and optimization is con-
cluded by the ANN. The optimization is concentrated on the
effect of inlet flow rate, pressure, and layer ratio of activated
carbon height to zeolite height [21]. Subsequently, an inves-
tigation was developed and validated a six-step two-bed PSA
model for hydrogen purification. Based on the validated PSA
model, they produced a dataset to train the ANN model.
the multi-objective optimization of the hydrogen purification
system, they made performed based on the trained ANN
model. The ANN can be considered a very effective method
for predicting and optimizing the performance of the PSA
system for hydrogen purification [18]. On the other hand,
an integrated process for H> recovery and CO; capture from
the tail gas of hydrogen plants was presented in [22]; where
they propose a dynamic-model-based ANN for the integrated
process was developed to optimize the performance. The
synthetic datasets for the ANN were analyzed by singular
value decomposition, and the ANN models for the cryogenic,
membrane and PSA units were trained and tested within a
marginal error (< 2%).

Likewise, we found a work that was compared with
published experimental results, and the yield of hydrogen
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purification by PSA in a stratified bed was studied numer-
ically. Their results show that there is a contradiction
between hydrogen purity and recovery, so multi-objective
optimization algorithms are needed to optimize the PSA
process. They used for data analysis and prediction the
Machine learning methods; the polynomial regression (PNR)
and ANN, they used to predict the purification performance
of the two-bed six-step process [23].

NOMENCLATURE

ap Specific particle surface, (m> m~3)

Ci Molar concentration of the compo-
nent i, (kmol m~3)

Dy Molecular diffusivity i, (m2 s~

D, Effective phase diffusivity
adsorbed from component i,
(m?s™!)

Cps Specific heat capacity of adsorbent,
(MJ kmol~! K1)

F Flowrate, (kmol h™1)

E,; Axial dispersion coefficient of
component i, (m? s~ 1)

Cpai Specific heat capacity of the
adsorbed phase, (MJ kg~! K~ 1)

H; Heat transfer coefficient of liquid /
solid, (Js~Hym2K™1)

h Element size

i Component index

J; Mass transfer rate,
(kmol m~3(bed) s~!)

j j™ collocation point

K Langmuir isotherm equilibrium
constant (1 Pa—1)

k Iteration index

M Molar weight, (kg mol~')

1
IPy;, IPy;, IP3;, IPy;

Element index
Isothermal parameters of
component i

MTC; Mass transfer coefficient solid,
(1s7h)

Ksa Axial effective thermal conductiv-
ity ( Wm~! K1)

P Pressure (Pa)

Q Isosteric heat of adsorption
(J mol™1)

W; Adsorbed amount of the compo-
nent i, (kmol kg’l)

wr Adsorbed equilibrium amount of
component i, (kmol kg~—!)

R Universal gas constant (J mol™!
K1

Ip Adsorbent particle radius (m)

t Time (s)

T, Gas temperature, (K)
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Ty  Solid temperature, (K)

T  Temperature, (K)

u  Position in element

vy Surface gas velocity, (m )

x  Position in catalyst

yi  Molar fraction of the gas component i
z  Coordinate of axial distance, (m)

No works have been developed on the PSA process for
bioethanol purification using Machine Learnings, the few
found are on hydrogen and nitrogen purification. One of these
works implements a PSA cycle model that is simulated on
the Aspen Adsorption platform and is applied to observe
the dynamic behavior of a ternary-component gas mixture
with a molar fraction of H,/CO,/CO = 0.68/0.27/0.05 on
Cu — BTC adsorbent bed. Then, they built an ANN model for
predicting PSA system performance and further optimizing
the operation parameters of the PSA cycle. The performance
data they got from the Aspen model, they used to train
the ANN model. This research shows that it is feasible to
find optimal operation parameters of the PSA cycle by the
optimization algorithm based on the ANN model which was
trained on the data produced from the Aspen model [24].
In the same period of time, some researchers carried out the
development of a 4 bed and 8 steps PSA process to pro-
duce high-purity hydrogen from the steam methane reform-
ing gas mixture. They investigated two surrogate models to
optimize the process performance using ANN, which have
been well trained by the samples, obtaining from the detailed
models using Latin hypercube sampling strategy. The results
they obtained indicate that ANNs can approximate the per-
formance and dynamic behavior of the PSA process with
extremely high accuracy. Herein, they also proposed a robust
and fast multi-objective optimization approach of the PSA
process using the genetic algorithms on the support of dif-
ferent ANN-based surrogate models have, in which Dual-
and Tri-objective optimizations are taken into account. This
research that they developed shows that the method can not
only find out the optimal operating conditions of the PSA pro-
cess for hydrogen production with higher than 99% accuracy,
namely Pareto-Optimal Fronts but also provide a reliable
reference for operational enhancement [25].

Il. PSA PROCESS MODEL
The ethanol purity simulations were carried out from the
Aspen Adsorption program. The model that was approached
for this research was taken from the work carried out by [8].
The parameters taken from this work were adapted to the
equations handled by the Aspen Adsorption program, as well
as the valve opening and closing configurations in the
4 steps: Adsorption, depressurization, purge, and repressur-
ization. The following assumptions were made to achieve the
expected results in the aspen adsorption program:

1) There are no reactions: There are no reactions between

the elements of the mixture (water-ethanol).
2) Only one adsorbing component (water).
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3) Gas mixture is assumed to be ideal.

4) Gaseous phase is convective with an estimated axial
dispersion.

5) The enthalpy of the adsorbed phase is significant and it
is estimated assuming constant heat capacities.

6) The axial thermal conduction for the solid phase is
characterized by a constant parameter, but the radial
contribution is not quantified.

7) The kinetic model is represented with Lumped Resis-
tance Model, in the linear form, and the driving force
is based on a solid (zeolite), considering the constant
mass transfer coefficient.

8) The adsorption equilibrium is modeled by the Lang-
muir model, expressed in terms of temperature-
dependent parameters.

The nature of the process and its operating conditions

determine the type of model to use.

In this work, a model is presented adsorption column uses
a set of PDE to represent the momentum, heat, and material
balances across the column.

From the assumptions mentioned above, a summary of the
equations is made for mass/Momentum and energy balances,
thermodynamic and kinetic equilibrium used for the PSA
process.

o Mass Balance for Gas Phase

9%¢; a(civg) ac;
—G[Ezja—zz az + 655 +Jl =0 (1)
where the flow over the solid surface is defined by:
7= 2)
N at
. A(CiVy) . . . .
The convection (=75) with estimated dispersion

(—eiEzi%) option assumes that the dispersion coefficient
varies along the length of the bed.
« Gas Phase Energy Balance

9*Ty AT x—n T,
_ksaaz_zz + Cpsps + psW Zi:](cpaiwi)g

n aW;
o) (AHia—tl) —MTCop(T, —T) =0 (3)

The energy balance (solid phase) represents the Heat of
adsorption (o Z?(AH,-%)), accumulation of heat (Cpsp05 +
ps2Ls), gas-solid heat transfer (MTCyy(Ty — Ty)).

¢ Momentum Balance

P 150x1073(1 — €;)?
o v
az Q2r,¥)2e? Ve
_ 1 —e) 2
+1.75x107°M v 4
Pg 20e 2) 4)

We use the Ergun equation, which combines the descrip-
tion of pressure drops by the Karman-Kozeny equation
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. —3(1_¢.)2 .
_%—‘Z = —(%uvg) for laminar flow and the
P i

Burke-Plummer equation (1.75x107°M pg%vg) for tur-
P i

bulent flow.
o Mass Transfer Rate

ow;
7 = MTCa(W;" = Wy ©)
where:
QD,;
MTCyi = —— (6)
Ty

and 2 is the parameter in the Glueckauf expression
o Langmuir Equation

. IP P2/ Ts p; .

L7 1 4 IPseirs/isp; 0

To solve the PDEs that represent the PSA model, initial
and boundary conditions are necessary. These allow a solu-
tion and be the start-up conditions in each step (adsorption,
depressurization, purge and repressurization) of the PSA pro-

cess. The conditions for the first cycle in the two beds are
showed in Table 2.

A. DESCRIPTION OF PSA PROCESS

The general design of the process and the operating con-
ditions were defined considering as reference the process
reported by [8].

To dehydrate ethanol, the use of type 3A zeolites was
considered, they are spheres of 1 to 2 mm. This adsorbent
can withstand the adsorption of water up to 22% of its own
weight, has a greater attraction on water molecules, has high
regeneration capacity, supports high temperatures and low
pressures, provides a very large surface area compared to
other zeolites (synthetic).

The process consists of two columns (beds) packed with
type 3A zeolite, these columns operate in 2 stages (adsorp-
tion/regeneration) that involve 4 steps: adsorption (stage I),
depressurization, purge and repressurization (stage II).

Each step is carried out at an appropriate time to meet the
corresponding operational objective. Figure 1 shows the PSA
process flow diagram and indicates the times of each step
for each packed column. Likewise, the flow diagram includes
10 valves that serve to change the direction of the flow and
maintain the flows at the desired values through the beds.

In [7] work, the steps, structure, and characteristics of the
PSA process can be known in detail, as well as the values of
the openings of the valves and flows.

The working pressure is 379.212 kPa, since it was observed
that the higher the pressure the zeolites attract the water
molecules more, and the pressure for the regeneration stage is
13.79 kPa, this is in order to easily break the weak bond that
has formed between the adsorbent-adsorbate. On the other
hand, the production temperature should be kept approxi-
mately constant and above 440 K. A flow of 512 kmol h™!
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FEED:
FLOW-VF 512 kmol ™
ETHANOL 0.818 Molar fraction
WATER 0.182 Molar fraction
TEMPERATURE | 440 K

PRESSURE 379.212 kPa

1

&
T

Column Steps time

a Adsorption (2105) Adsorption (15 5] Adsorption (120'5)
=) Depressurization (210 5) Purge (15 5) Repressurization (120s)

i ?;;. .
\ () “";' (@] 1 c1
‘ %H‘c;_‘ S Siow:

st

FIGURE 1. Scheme of the PSA process.

is fed with a composition of 0.182 molar fraction of water
(8% wt of water) and 0.818 molar fraction of ethanol (92 %
wt of ethanol) close to the azeotropic point.

Ill. SIMULATION OF THE PSA PROCESS

Based on the parameters and conditions shown in Tables 1,
3 and 4, using the rigorous PSA model that is represented by
Equations 1, 3, 4 and 5x, simulations are carried out in order
to obtain the output signals that will be used to train an ANN.

The pressure cycle profiles with time reflect the change
of the PSA dynamics process and the product obtained of
ethanol purity, and temperature profiles with the operating
conditions presented in Figure 1.

Figure 2 shows the profile of one pressure cycle with a
duration of 690 s, the cycle comprises 4 steps: adsorption,
depressurization, purge, and repressurization. The adsorption
pressure is carried out at 379 kPa with a duration of 345 s,
then depressurization is carried out reaching a value close to
50 kPa with a duration of 210 s, later the purge is carried out
with a vacuum pressure of 18 kPa with a duration of 15 s and
to end the repressurization is carried out in a time of 120 s,

Time (s)

400 6800

Adsorption

o =B
=
e
ro
400 20
400 -l
350 .
350 231
300 E
300 . 109
kPo 250 0.28
200 Pa
150

50
400
Time (s)

FIGURE 2. Pressure profile of a cycle.
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in order to leave the bed ready to start the adsorption step
again.

Figure 3 shows the 350 cycles in 69.4 h of the pressure
profile and the CSS (cyclic stable state) of the PSA process
is reached, at that point the profiles of both temperature and
compositions (ethanol-water) are cyclically repeated without
having variation (see Figures 6 and 7).

600 T

300
500 200 7

S
=)
=)

Pressure (kPa)
n (%]
(=3 (=3
(=] o

-
o
S

0 13.8 27.7 41.6 55.5 69.4
Time (h)

FIGURE 3. Pressure reached in the upper part of the bed from the
transient start-up.

It is important to mention that due to the cyclical dynamics
presented by the PSA process, the ethanol-water purity and
temperature profiles tend to have oscillatory dynamics due to
their cyclical nature as shown in Figures 6a and 6b.

Figures 2 and 7 present the profiles of temperature and
water-ethanol concentrations during 350 PSA cycles. The bed
is initially filled with a steam feed at 512 kmol h~' with a
production pressure of 379 kPa and a temperature of 440 K.
It can be seen that after 350 cycles (69.4 h) the profiles are
stable but cyclical, resulting in a purity of 99.5% wt of ethanol
(see Figure 6a). On the other hand, the water concentration
decreases until reaching purities of 0.5% wt (see Figure 6b).
The purity of ethanol obtained meets international standards
to be used as a fuel or oxygen additive. For the temperature
profile (see Figure 7), the maximum height of 7.3 m equiv-
alent to node 20 has been chosen, it is possible to observe
how in the first 20 cycles the temperature decreases, this is
due to the endothermic energy that is generated between the
adsorbent and the molecule of water at the time of adsorption,
after 120 cycles the temperature stabilizes by a release of
exothermic energy.

After having simulated the PSA process from the start-up
and achieving the CSS in 350 cycles, a parametric study is
carried out at the point reached (99.5% wt of ethanol) to
know the primary control loop (input and output). This study
is developed by adding variations generated with a uniform
distribution in the possible input variables (pressure, temper-
ature, composition, and flow) that will control the desired
purity (ethanol).

A. PARAMETRIC STUDY OF THE PSA PROCESS

At this point, a parametric study was proposed to analyze
the possible input variables that affect the purity obtained
from the 2 bioethanol generating columns. The analysis was
developed by generating steps with an increase of 5% over
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FIGURE 4. Profiles of the compositions of water-ethanol reached from
the transient start-up of the bed.

Temperature (K)

Time (h)

FIGURE 5. Temperature reached in the upper part of the bed from the
Transient start-up.

the nominal value of the possible input variables, the results
are shown in the following Figure 16.

Itis possible to see the different oscillatory dynamics based
on the changes generated in the inputs on the nominal value.
The first case that we observe are those of the feeding temper-
ature, these changes have a great effect on the purity obtained,
giving as results purities that reach 0.9908 molar fraction
(99.63 wt of ethanol) with an increase of +5% over 440 K
and on the other hand, with a decrease of -5% purity of
0.9806 molar fraction (99.23% wt of ethanol) is reached.
In both cases a CSS is reached again in an approximate time
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(a) Purity obtained using 418 K.  (b) Purity obtained using 462 K.
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FIGURE 6. Profiles of the compositions of water-ethanol reached from
the transient start-up of the bed.

of 111 h, equivalent to 579 cycles using the increase of +5%
and with the decrease the CSS was reached again in 69.4 h,
equivalent to 363 cycles. In summary, Table 5 shows the data
obtained with the aforementioned analysis of the variations
in the feeding temperature.

Table 5 shows 9 simulations, the first simulation (pink
text) presents the case with nominal start-up values of the
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TABLE 1. Analysis of the possible input variables that have the greatest
effect on the purity obtained.

Run Temperatura Flow Pressure Composition Purity Number

(K) kg h—! kPa Water-Ethanol % wt of ethanol  of cycles
1 440 512 379 0.182-0.818 99.5 350
2 418 512 379 0.182-0.818 99.23 363
3 462 512 379 0.182-0.818 99.63 579
4 440 379 0.182-0.818 99.75 579
5 440 379 0.182-0.818 99.33 370
6 440 512 360 0.182-0.818 99.60 362
7 440 512 398 0.182-0.818 99.54 440
8 440 512 379 0.2229-0.818 98.95 327
9 440 512 379 0.1411-0.8589 99.71 464

PSA process, a purity of 99.5% is obtained, which meets
international standards to be used as a fuel or additive oxy-
genating. Based on the nominal start-up values and being in
the CSS, changes of +5% were made on the variables of
temperature (blue text), flow (yellow text), pressure (red text),
and composition (green text).

After having simulated each of the changes generated in
the possible input variables (see figure 6), it was observed (see
Table 5) that the effects on the purity obtained (ethanol) are
favorable in different characteristics. The input variable that
generated the highest purity was the effect of the feed flow
with a step of -5%, this variable generates the highest purity
(99.75% wt of ethanol) compared to the effects of the other
input variables, however, the cycle time to achieve this purity
was 579. On the other hand, the input variable that presented
the greatest quickness generating an insignificant increase in
purity (99.60% wt of ethanol) was the feed pressure with
a cycle time of 362. For the cases of the input variables
of temperature and feed composition, the results in purities
obtained were below the purity obtained with the changes
of the feed flow variable and concerning cycle times, these
were greater compared to the cycle time generated by the feed
pressure.

Therefore, the feed flow can be defined as an input vari-
able, since it has a greater effect on the purity of ethanol
obtained as the final product. It is important to mention that
although it takes more time to reach CSS, what is sought is to
have more control in achieving a large increase in the purity
obtained.

After having defined the input and output variable, the
identification of the PSA process will be carried out with
these two signals, generating an excitation on the rigorous
PSA model, to obtain a model in ANN that capture the
important dynamics of the process PSA.

IV. SYSTEM IDENTIFICATION

A. SYSTEM DESCRIPTION

The rigorous PSA model presented in the previous section
acts as a virtual PSA plant, with the objective of evaluating its
dynamic performance under various operating conditions and
achieving acquisition input and output data, which are used to
identify a reduced or simplified model capable of capturing
the important dynamics of the PSA process. The importance
of system identification is based on finding a reduced model
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(a) Input signals (feed flow).
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(b) Output signals (ethanol purity).
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FIGURE 7. Ethanol purity response to feeding flow pulses with different
time amplitudes.

that relates the input variable (feed flow) and the output
variable (ethanol purity) with a good approximation to the
rigorous PSA model.

In this work, input data (Figure 19a) were generated from
the nominal value of the feed flow. The development of the
array of inputs was from the design of a 5 bits PRBS with
a variation of £0.5% that includes a time for the purity of
ethanol to converge in a CSS, this is shown in the time
from 0 to 49 h. These data were injected into the rigorous PSA
model resulting in output data (Figure 19b), these variations
of signals that are injected into the rigorous PSA model per-
sistently excite the system, obtaining variations in the purity
of ethanol and comply with the aim of obtaining a reduced
and less complex model.

The input and output data are shown in the
Figure 19a and 19b. These signals are used in order to
identify the reduced model. As is mentioned above, this
data is defined as the inlet steam with a composition of
0.183 water and 0.818 of ethanol in molar fraction and, the
output is the bioethanol purity. The database is composed
by 799200 samples, each sample is taken every second. The
dataset was divided in two different parts to estimate and
validate the models that is, 399600 samples to estimate the
parameters of the model and 399600 unknown samples to
validate the model.
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B. PROPOSED SYSTEM MODELING

Figure 8 shows the Artificial Neural-Network (ANN) archi-
tecture used in this paper. The ANN is composed of three
layers in order to process the inputs of the ANN which are
the input and output of the real system. This input layer
which is composed of two neurons, splits the input and output
completely in order to generalize the auto regressive models,
that is, if the activation functions were identity functions
(f(x) = x), the ANN structure would be an autoregressive
model with exogenous input. Then, the ANN is composed
of a hidden layer with two neurons in order to add more
degrees of freedom. Finally, in the output layer, the proposed
ANN is composed of one neuron which it is in charge for
linking the dynamics of the input and output of the system.
The ANN is composed of five neurons in total. One of the
neurons at the input layer processes the input monitored
signals and propagates its resulting output vector v, to an
independent hidden neuron. The other input neuron processes
the previous n, outputs of the ANN, and propagates its output
vector vy to a second independent hidden network. Finally,
both hidden neurons feed the output neuron to produce the
estimated bioethanol purity y[k]. this is the reason of the ANN
name. Therefore, the neural model represented in Figure nnl
is described by 8.

haty[k]

Na
=X3(z592 (le (Z widlk — il + 9&) + V&h)

i=1

np
+2up [ vugr | Y whulk —me—jl+60u | +van | +21)
j=1

®)

where X, z5, v5, . Vi, Zus Vus Ous Vuh, 7 € R, ws € R,
and w, € R represents the parameter of the model or the
well known synaptic weights. Finally, the model output and
inputs dynamics is represented for y[k] and u[k] respectively.

For this research paper, the synaptic weights are computed
with a learning algorithm based on gradient descendent such

ulk —ni — 1] @ -. w)

2 .‘
ulk = ny — 2] 0~-“-)‘b~~9'-‘->-.
4 Zu

- A
ulk —ne—m] @14, Uuh
Sk=1] @, w) JIk]
w? U3 éZh
Sk — 2] ...:..Jp ..... > . ;
v
Ik = na) .".w;“ it Vi

FIGURE 8. 2-2-1 Neural-Network for system identification.
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Hammerstein-Wiener model
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FIGURE 9. Structure of the hammerstein-wiener model.

as the Levenberg-Marquardt algorithm shown in Eq. (9),
-1
AW = [JWTIWo + | I, ©)

where Wy represents the parameter to optimize, J(-) repre-
sents the Jacaobian matrix based in the parameter Wy, u the
learning rate and e represents the difference between the real
output and the output obtained by the ANN.

As is shown in Eq. (8), there are several parameters to
estimate in spite of the synaptic weights, these parameters are
the regression values which allows to represent the system
dynamics. Otherwise (the case where the system is static),
these parameters does not exist. The parameters n,, n;, and
ny are chosen with the implementation of a grid search
algorithm, that is, an interval composed of integer posi-
tive numbers is proposed for each parameter for instance,
ng = {1,2,3,--- ,NA}, n, = {1,2,3,--- ,NB}, nx =
{1,2,3,---,NK}. The values of NA, NB and NK are chosen
by the user. In this sense, the grid search algorithm realize and
evaluate the performance of each possible combination from
these n,, np and ny parameters. The result of the process is an
array with NA x NBx NK possible performance combinations.

This methodology has been proposed in several research
papers in order to develop the system identification procedure
of vast and different systems. The effectiveness of this ANN
structure is presented in the following papers [26]-[30].

V. RESULTS
A Hammerstein-Wiener (HW) model has been also proposed
in order to compare the performance of our model with
another identification techniques. The HW model is a series
connection of a static nonlinear blocks with a dynamic linear
block. This kind of methodology is suitable to use it in differ-
ent areas such as electromechanical systems modeling, radio
frequency components, audio, speech processing, predictive
control, etc. [31]-[33]. The identified HW model is also
implemented in [17] and, its structure is shown in Fig. 22.
According to the Fig. nnl description and, selecting as
¢m(x) = ¢3(x) = x and @;(x) = tanh(x) then, the ANN
equation is expressed as Eq. (10).

Nq
$[k] = V;tanh (Z wisTk — i + 95,)
i=1

np

+ V, tanh <Z whulk —ng — il + 9u) + Vi (10
i=1

27778

g 0.98888 - | 0-228886 |

= | 0.988384

% 0.98886 - ’ \\0.088882

=

= 0.98884¢

ks

,g 0.98882 -

% =—System Behavior

S 0.9888| Estimated ANN

-~ ‘ ‘ N ‘ ‘ *E‘stimated‘HW modgl

1 2 3 4 5 6 7 8

Samples «10°

FIGURE 10. Temporal behavior of the real system, HW model and ANN
model.

In order to optimize the regression parameters (7, np
and ny ), the FIT shown in Eq. (11)

FIT = 100 % (1 - "y‘X“)

ly = I
where y represents the real output of the system, y repre-
sents the simulated output from the identified model and y
represents the mean of the real output signal. The root mean

square error was also used as shown in Eq. (12) with the same
proposes.

(11)

N
D i — %)

RMSE = | =L (12)

where, x; represents a sample of the real output system and,
X; is a sample of the estimated output system.

The result of this procedure is the selection of n, = 8§,
np = 6 and ny = 4. Therefore, the total number of model
parameters is 19. Figure r1 shows the behavior of both models
with the same input, this figure is shown in order to illustrate
how the models acts according to real input signal. The FIT
equation (see Eq. (11)) shows how a signal is related with
another, i.e., if the estimated output is strongly similar to
the real system output, the computed FIT would be close to
100%. In this sense, the HW model has obtained a 75.8325%
while, the ANN model has obtained a 97.9985%.

A comparison of the distribution of each system is
included, in the Figures 11 and 12, the distribution of each
estimation is shown where, the ANN model is superior than
the HW model due, the distribution of the real system and
the ANN model is almost the same. In order to compare
numerically these relations, the RMSE (shown in Eq. (12))
is computed. The RMSE value shows the mean distance
between two signals using the error (which is a compari-
son between the real and estimated signal and is shown in
Eq. (13)), i.e., if both signal are similar then the RMSE tends
to zero otherwise, the error can tend to infinity. In this sense,
the RMSE computed for the HW model is 6.4175e-06 while
the ANN model has obtained 1.4490e-09 which is more than
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one thousand times the RMSE provided by the HW model.

ei=y—3 (13)
where y represents the real output signal and y is the estimated
output.

Finally, the slope-intercept test is performed in order to
include another statistical test to our estimated system. Ide-
ally, the slope should be equal to one and the intercept equal
to zero in the representation of a strength line which fits to the
comparison between the real output signal and the estimated
signal.

In this case, the slope of the ANN is m = 1 and intercept
b = 0. While, the slope computed for the HW model is m =
0.9992 and intercept b = 0.0008 which is acceptable and
competitive with the ANN model.

The results obtained from the modeling by means of an
artificial neural network were highly satisfactory in all the
tested senses. The results have been compared with other
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systems identification techniques such as the Hammerstein-
Winner model, which is a highly used method for the identi-
fication of real plants. Even with this comparison, the neural
network model was highly satisfactory.

VI. CONCLUSION

The system identification procedure is an empirical modeling
method in order to obtain or propose a model that mimics the
real behavior of a real system. In this method, the real system
output and input signals are the only information needed in
order to compute the model. As is shown above, there exist
several methodologies in order to identify a system, in this
research, an ANN is proposed which, has been compared with
an HW model. The ANN has shown the best performance
among the computed models (HW vs ANN), using several
testing procedures and performance indexes, for instance, the
FIT where the ANN has a 97.9985% while the HW model has
75.8325%. In the particular case of the slope-intercept test,
the performance of both models is similar due to the system
output amplitude; which has not any major changes through
time, i.e., the output oscillations are between 0.998879 and
0.98888. In the same sense, the RMSE in both methods are
similar because the difference of the real output and esti-
mated output are close to the amplitude of the oscillations,
even if this error is small, the ANN has shown a better
performance than the HW model. On the other hand, if the
number of parameters is compared, the ANN model estimates
its output with 19 parameters to represent the real system
behavior while, the HW model requires around 37 parameters
to estimate the output real system; this is not a substantial
difference on the implement ion point of view but, it is for
the models quality, the quality of a model is related strongly
by the number of estimated parameters, in this sense, when
the model has a low number of parameters, the quality is
high. Therefore, with 19 parameters the ANN model quality
is higher than the HW model. Finally, we can conclude that
it is of great importance to obtain a model identified with
ANN to design controllers, since in the highly non-linear rig-
orous PSA model it is difficult to design controllers. Another
contribution of this new model identified with ANN, allows a
better approximation to the ethanol purity results that can be
obtained in the real PSA plant, therefore this new model can
be used to predict the dynamic behavior and avoid a decrease
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in ethanol purity, allowing the real plant to have predictions
to adjust its parameters and avoid these loss problems.
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APPENDIX A

TABLE 2. Initial and boundary conditions.

Adsorption (Cycle step D: Purgue (Cycle step ):
t=0;y =W =0,T =Ty, P =Py =0y =yUD, w=wUD 7=7UD p=pa)
0: ,T =Ty, F=Fy 2=0;y =yp, T = Tp, F = F(valve)

=0 z=L; P =P, 2:0*%:0
Depressurization (Cycle step IT): Represurization (Cycle step TV):
t=0y =y D, W =wD 7=7D p=pD =0y =y Ww=wUD 77U p_ pUI)
2=0;y =yp, T = Tp, F = F(valve)
2=L; 2 =020 =0

APPENDIX B

TABLE 3. Operating parameters of the PSA process [8] and [17].

Value Units
Bed height 7.3 m
Internal diameter of bed 2.4 m
Inter-particle voidage 0.4 m?3 void m—3
Intra-particle voidage 0.63 m3 void m—3
Adsorbent shape factor 1 n/a
Constant mass transfer coefficient (Ethanol)  1.996 s—1
Constant mass transfer coefficient (Water) 2.949 s~
Molecular diffusivity (ethanol) 2.1796e=5  m2s!
Molecular diffusivity (Water) 3.728¢~6 m2s—1
Heat Capacity of the adsorbent 1260 JKg 1K1
Constant for heat of adsorption (Water) -39.3 MJ kmol —1
Constant for heat of adsorption (Ethanol) -51.9 MJ kmol —1
Constant for the heat transfer coefficient 1e8 Js~ilm—2K-!
Adsorbent thermal conductivity 41.26 Wm~t K1t
TABLE 4. PSA process feed parameters.
Value Units

Production temperature 440 K

Production pressure 379.212  kPa

Purge Pressure 13.79 kPa

Molar fraction (Water) 0.182 kmol kmol ~!
Molar fraction (Ethanol)  0.818 kmol kmol—1
Number of nodes 20

Discretization Method OCFE2

TABLE 5. Characteristics of the adsorbent and parameters of the
Langmuir isotherm [8] and [17].

Value Units
Bulk density of adsorbent 729.62 kgm—3
Adsorbent particle radius 0.0015875 m
IP1 (Water) 1.9064e~7  Pa~!
I P2 (Water) 6242.13 Pa~!
IP3 (Water) 1.7874e=®  Pa~!
IP4 (Water) 6242.13 Pqg~!
IPy 2 3.4 (Ethanol) 0 Pa~!
Specific surface area of adsorbent ~ 1133.86 m~1!
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