
Received February 7, 2022, accepted February 25, 2022, date of publication February 28, 2022, date of current version March 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3155629

Parallel Specification-Based Testing for
Concurrent Programs
CANH MINH DO AND KAZUHIRO OGATA
School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa 923-1292, Japan

Corresponding author: Canh Minh Do (canhdominh@jaist.ac.jp)

This work was supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP19H04082.

ABSTRACT The paper proposes a new testing technique for concurrent programs. The technique is a
specification-based testing. For a formal specification S and a concurrent program P, state sequences are
generated from P and checked to be accepted by S. We suppose that S is specified in Maude and P is
implemented in Java. Java Pathfinder (JPF) and Maude are then used to generate state sequences from P
and to check if such state sequences are accepted by S, respectively. Even without checking any property
violations with JPF, JPF often encounters the notorious state space explosion while only generating state
sequences. Thus, we propose a technique to generate state sequences fromP and check if such state sequences
are accepted by S in a stratified way. A tool is developed to support the proposed technique that can be
processed naturally in parallel. Some experiments demonstrate that the proposed technique mitigates the
state space explosion, which cannot be achieved with the straightforward use of JPF.

INDEX TERMS Simulation, divide & conquer approach, parallel algorithms, concurrent programs,
specification-based testing.

I. INTRODUCTION
Studies on testing concurrent programs [1] have been
conducted for nearly 40 years or even more. Compared to
testing techniques for sequential programs, however, any test-
ing techniques for concurrent programs do not seem mature
enough. Moreover, many important software systems, such
as operating systems, are in the form of concurrent programs.
Therefore, testing techniques for concurrent programs must
be worth studying so that they can be matured enough.

For a formal specification S and a (concurrent) program
P, to test P based on S, we can basically take each of the
following two approaches: (1) P is tested with test cases
generated from S and (2) it is checked that state sequences
generated from P can be accepted by S. The two approaches
would be complementary to each other. Approach (1) checks
if P implements the functionalities specified in S, while
approach (2) checks if P never implements what is not spec-
ified in S. In terms of simulation, approach (1) checks if P
can simulate S, while approach (2) checks if S can simulate
P. Approaches (1) and (2) are often used in the program
testing community and the refinement-based formal methods

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish .

community, respectively, while both (1) and (2), namely bi-
simulation, are often used in process calculi. The present
paper proposes a testing technique for concurrent programs
based on approach (2) mainly because P is a concurrent
program and then could produce many different executions
due to the inherent nondeterminacy of P, which often leads
to subtle bugs in the program. Furthermore, we would like
to check whether or not the program P conforms to the
specification S.

In correct-by-construction system or software develop-
ment, a system is initially specified in a very abstract formal
specification and then incrementally developed to a concrete
formal specification through a sequence of refinement steps.
In each refinement step, we add details about data structures
and algorithms so that the final formal specification is closer
to the implementation or program from which the program
can be implemented by human programmers or generated
by automatic code generators [2]–[4]. Among formal meth-
ods in which stepwise refinement plays a crucial role are
Vienna Development Method (VDM) (or VDM++) [5], Z
method [6], Abstract StateMachine (ASM) [7], Bmethod [8],
and Event-B [9]. The final specification can be verified by
verifying each individual refinement step, while the program
generated needs to be verified by proving the very final

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 24955

https://orcid.org/0000-0002-1601-4584
https://orcid.org/0000-0002-4441-3259
https://orcid.org/0000-0002-2767-0501

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

refinement step from the final formal specification to the
program implemented or generated based on the final formal
specification or the automatic code generator, respectively.
It is very hard to verify the correctness of automatic code
generators [10], and it is also hard to verify the very final
refinement step partly because we need to have full pre-
cise formal semantics of programming languages. However,
we need to have a reasonably good technique that can be
used to check the program implemented or generated against
the final formal specification. Our specification-based testing
technique can be regarded as a complement to the very last
step in correct-by-construction software development to guar-
antee the correctness of the program with the specification.

In the present paper, we specify a formal specification S
in Maude [11] while a program P developed based on the
formal specification is implemented in Java. Java Pathfinder
(JPF) [12] is an extensible model checker for Java programs
so that we can interact with JPF while model checking a
program. Hence, we use JPF to generate state sequences
from P. Maude is equipped with reflective programming
(meta-programming) facilities, making it possible to check
whether a state sequence can be accepted by a formal spec-
ification [13], and so we use Maude to check if such state
sequences are accepted by S. Most model checkers suffer
from the notorious state space explosion problem and JPF
is no exception. Hence, JPF often encounters the notori-
ous state space explosion while generating state sequences
even without checking any property violations. Because there
could be a huge number of different states reachable from an
initial state that could make a huge number of different state
sequences generated due to the inherent nondeterminacy of
concurrent programs. In addition, a whole big heap mainly
constitutes one state in a program under test by JPF. Thus,
we propose a technique to generate state sequences from
P and check if such state sequences are accepted by S in
a stratified way. The reachable state space from each ini-
tial state is divided into multiple layers, generating multiple
sub-state spaces. We generate sub-state sequences for each
sub-state space instead of the original reachable state space.
If each sub-state space is much smaller than the original
reachable state space, then it is feasible to generate its sub-
state sequences even though it is infeasible to generate state
sequences for the original reachable state space due to the
state space explosion problem. Besides, we do not need to
combine such sub-state sequences to obtain the original state
sequences for our technique, but it suffices to check each sub-
state sequence separately.

Let us suppose that each layer l has depth d(l). Let d(0) be
0. For each layer l, state sequences sl0, . . . , s

l
d(l) whose depth

is d(l) are generated from each state at depth d(0) + . . . +
d(l−1) from P. Each sli is converted into the state representa-
tion f (sli) used in S, where f is a simulation relation candidate
fromP to S.We conjecture that if S is refined enough, f would
be an identity function. There may be adjacent states f (sli) and
f (sli+1) such that f (s

l
i) is the same as f (sli+1). If so, one of them

is deleted. We then have state sequences f (sl0), . . . , f (s
l
N),

where the numberN+1 of the states in the sequence is usually
much smaller than d(l) + 1 because execution units in P are
much finer than those in S. We check if each f (sl0), . . . , f (s

l
N)

is accepted by S with Maude [13]. The proposed technique
is called a divide & conquer approach to testing concurrent
programs. Generating sub-state sequences from each sub-
state space in one layer are basically independent. This is one
of the most important advantages of the technique, making
it possible to generate sub-state sequences and check them
with Maude in parallel. We develop a tool supporting the
proposed technique in Java that can be proceeded in parallel.
Some experiments demonstrate that the proposed technique
mitigates the state space explosion, which cannot be achieved
with the straightforward use of JPF. In summary, the present
paper makes the following contributions:
• A new testing technique for concurrent programs to
check the correctness of the program with the specifi-
cation that can be used to complement the very last step
in correct-by-constructions software development. For
programmers who prefer developing programs based
on specifications from scratch, our technique is fruit-
ful to be used to verify that programs conform to
specifications.

• A divide & conquer approach to testing concurrent pro-
grams that can mitigate the state space explosion prob-
lem and be naturally parallelized to improve the running
performance of model checking. A tool is developed to
support the technique.

• Experimental results show that the approach can detect
bugs and mitigate the state space explosion in model
checking. Our tool and case studies are publicly avail-
able at the webpage.1

The present paper is an extended and improved version of our
workshop paper [14] with the following improvements:
• We improve our tool so that it can check state sequences
generated by JPF with Maude on the fly in parallel
instead of storing such state sequences to disk and check-
ing it with Maude subsequently.

• We describe how our specification-based technique
can be regarded as a complement to the very last
step in correct-by-construction software development
to guarantee the correctness of the program with the
specification.

• We demonstrate how programmers can know the maxi-
mum number of step transitions in our technique with a
case study, namely Alternating Bit Protocol (ABP).

• Finally, we conduct more case studies to demonstrate the
usefulness of our tool as well as our technique/approach.

The rest of the paper is organized as follows: § II Prelimi-
naries, § III Specification-based Concurrent Program Testing
with a Simulation Relation, § IV State Sequence Genera-
tion from Concurrent Programs, §V A Divide & Conquer

1https://github.com/canhminhdo/spec-based

24956 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

Approach to Generating State Sequences, §VI A Divide &
Conquer Approach to Testing Concurrent Programs, §VII
Case Studies: Alternating Bit Protocol (ABP), CloudSync
Protocol, NSLPK Protocol, §VIII Related Work and § IX
Conclusion.

II. PRELIMINARIES
A state machine M , 〈S, I ,T 〉 consists of a set S of states,
the set I ⊆ S of initial states and a binary relation T ⊆ S × S
over states. (s, s′) ∈ T is called a state transition and may be
written as s →M s′. Let→∗M be the reflexive and transitive
closure of→M . The set RM ⊆ S of reachable states w.r.t. M
is inductively defined as follows: (1) for each s ∈ I , s ∈ R
and (2) if s ∈ R and (s, s′) ∈ T , then s′ ∈ R. A state predicate
p is called invariant w.r.t. M iff p(s) holds for all s ∈ RM .
A finite sequence s0, . . . , si, si+1, . . . , sn of states is called a
finite semi-computation of M if s0 ∈ I and si →∗M si+1 for
each i = 0, . . . , n− 1. If that is the case, it is said thatM can
accept s0, . . . , si, si+1, . . . , sn.
Given two state machines MC and MA, a relation r over

RC and RA is called a simulation relation fromMC toMA if r
satisfies the following two conditions: (1) for each sC ∈ IC ,
there exists sA ∈ IA such that r(sC , sA) and (2) for each
sC , s′C ∈ RC and sA ∈ RA such that r(sC , sA) and sC →MC s

′
C ,

there exists s′A ∈ RA such that r(s′C , s
′
A) and sA →

∗
MA

s′A [15]
(see Fig. 1). If that is the case, wemaywrite thatMA simulates
MC with r . There is a theorem on simulation relations from
MC to MA and invariants w.r.t MC and MA: for any state
machines MC and MA such that there exists a simulation
relation r fromMC toMA, any state predicates pC forMC and
pA forMA such that pA(sA)⇒ pC (sC) for any reachable states
sA ∈ RMA and sC ∈ RMC with r(sC , sA), if pA(sA) holds for
all sA ∈ RMA , then pC (sC) holds for all sC ∈ RMC [15]. The
theorem makes it possible to verify that pC is invariant w.r.t.
MC by proving that pA is invariant w.r.t. MA, MA simulates
MC with r and pA(sA) implies pC (sC) for all sA ∈ RMA and
sC ∈ RMC with r(sC , sA). In this paper, MA is specified
in Maude, while MC is implemented in Java. The proposed
testing technique checks if MA simulates MC with a simula-
tion relation candidate r such that r is an identity function
or almost an identity function such that invariants w.r.t. MA
are preserved by r . If the proposed technique detects that
MA does not simulate MC , MC is likely not to satisfy some
desired invariants. Otherwise, MC enjoys desired invariants
in the reachable state space tested.

States are expressed as braced soups of observable com-
ponents, where soups are associative-commutative collec-
tions, and observable components are name-value pairs in
this paper. The state that consists of observable components
oc1, oc2 and oc3 is expressed as {oc1 oc2 oc3}, which equals
{oc3 oc1 oc2} and some others because of associativity and
commutativity. We use Maude [11], a rewriting logic-based
computer language, as a specification language because
Maude makes it possible to use associative-commutative col-
lections. State transitions are specified by rewrite rules in
Maude.

FIGURE 1. A simulation relation from MC to MA.

Let us consider an example a mutual exclusion proto-
col (the test&set protocol) in which the atomic instruction
test&set is used. The protocol written in Algol-like pseudo-
code is as follows:

Loop : ‘‘Remainder Section (RS)’’
rs : repeat while test&set(lock) = true;
‘‘Critical Section (CS)’’

cs : lock := false;

lock is a Boolean variable shared by all processes (or threads)
participating in the protocol. test&set(lock) does the fol-
lowing atomically: it sets lock to true and returns the old
value stored in lock . Each process is located at either rs
(remainder section) or cs (critical section). Initially, each
process is located at rs and lock is false. When a process is
located at rs, it does something (which is abstracted away in
the pseudo-code) that never requires any shared resources;
if it wants to use some shared resources that must be used
in the critical section, then it performs the repeat while
loop. It waits there while test&set(lock) returns true. When
test&set(lock) returns false, the process is allowed to enter
the critical section. The process then does something (which
is also abstracted away in the pseudo-code) that requires to
use some shared resources in the critical section. When the
process finishes its task in the critical section, it leaves there,
sets lock to false and goes back to the remainder section.
When there are three processes p1, p2, and p3,

each state of the protocol is formalized as a term
{(lock : b) (pc[p1] :l1) (pc[p2] : l2) (pc[p3] : l3)}, where b is
a Boolean value and each li is either rs or cs for i = 1,2,3.
Initially, b is false and each li is rs. The state transitions are
formalized as two rewrite rules. One rewrite rule says that if b
is false and li is rs, then b becomes true, li becomes cs, and any
other lj (such that j 6= i) does not change. The other rewrite
rule says that if li is cs, then b becomes false, li becomes rs
and, any other lj (such that j 6= i) does not change. The two
rules are specified in Maude as follows:

rl [enter] : {(lock: false) (pc[I]: rs) OCs}
=> {(lock: true) (pc[I]: cs) OCs} .

rl [leave] : {(lock: B) (pc[I]: cs) OCs}
=> {(lock: false) (pc[I]: rs) OCs} .

where enter and leave are the labels (or names) given
to the two rewrite rules, I is a Maude variable of process
IDs, B is a Maude variable of Boolean values, and OCs is

VOLUME 10, 2022 24957

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

a Maude variable of observable component soups. OCs rep-
resents the remaining part (the other processes but process I)
of the system. Both rules never change OCs. Let St&s refer to
the specification of the test&set protocol in Maude.

III. SPECIFICATION-BASED CONCURRENT PROGRAM
TESTING WITH A SIMULATION RELATION
We have proposed a new testing technique for concurrent
programs that is a specification-based one and uses a simula-
tion relation candidate from a concurrent program to a formal
specification [13]. The technique is depicted in Fig. 2. Let S
be a formal specification of a state machine and P be a con-
current program. Let us suppose that we know a simulation
relation candidate r from P to S. The proposed technique
does the following: (1) finite state sequences s1, s2, . . . , sn
are generated from P, (2) each si of P is converted to a state
s′i of S with r , (3) one of each two consecutive states s′i and
s′i+1 such that s′i = s′i+1 is deleted, (4) finite state sequences

s′′1, s
′′

2, . . . , s
′′
m are then obtained, where s′′i 6= s′′i+1 for each

i = 1, . . . ,m−1, and (5) it is checked that s′′1, s
′′

2, . . . , s
′′
m can

be accepted by S.
We suppose that programmers write concurrent programs

based on formal specifications, although it may be possible
to generate concurrent programs (semi-)automatically from
formal specifications in some cases. The FeliCa team has
demonstrated that programmers can write programs based
on formal specifications and moreover use of formal spec-
ifications can make programs high-quality [16]. Therefore,
our assumption is meaningful as well as feasible. If so,
programmers must have profound enough understandings of
both formal specifications and concurrent programs so that
they can come up with simulation relation candidates from
the latter to the former. Even though consecutive equal states
except for one are deleted, generating s′′1, s

′′

2, . . . , s
′′
m such that

s′′i 6= s′′i+1 for each i = 1, . . . ,m − 1, there may not be
exactly one transition step but zero or more transition steps so
that s′′i can reach s

′′

i+1 w.r.t. P. Programmers are able to know
the maximum number of atomic code fragments in programs
for one atomic state transitions in formal specifications if
programs are implemented/generated from formal specifica-
tions based on some reasonable techniques. EventB2Java [3]
can generate concurrent Java programs from Event-B models
in which actions of each event are translated to one atomic
fragment and a shared lock is used to guarantee that at most
one atomic fragment (or an event) can be executed at the same
time by multiple threads in programs. Hence, one possible
way to implement programs from formal specifications is to
use a shared lock by multiple threads and translate each state
transition in specifications to one atomic fragment in pro-
grams. If so, the maximum number of such transition steps in
specifications is one. However, we can usemore than one lock
to implement programs. For ABP protocol implementation,
we use two locks shared bymultiple threads in the program as
shown in Algorithm 2. One atomic fragment protected by one
lock and another atomic fragment protected by the other lock

FIGURE 2. Specification-based concurrent program testing with a
simulation relation.

can be executed in parallel. Hence, at most two atomic code
fragments may be executed by multiple threads in parallel
(or simultaneously), although each atomic action (or state
transition) in the formal specification is implemented by one
atomic code fragment in the program. In general, the number
of locks used is the maximum steps in programs for one
atomic state transition in formal specifications. We suppose
that P is written in Java and Java Pathfinder (JPF) is used to
generate state sequences from P [14].

IV. STATE SEQUENCE GENERATION FROM CONCURRENT
PROGRAMS
A. JAVA PATHFINDER (JPF)
JPF is an extensible software model checking framework for
Java bytecode programs that are generated by a standard Java
compiler from programs written in Java. JPF has a special
Virtual Machine (VM) in it to support model checking of
concurrent Java programs, being able to detect some flaws
lurking in concurrent Java programs, such as race conditions
and deadlocks. When a flaw is detected, it reports a whole
execution leading to the flaw. JPF explores all potential exe-
cutions of a program under test, while an ordinary Java VM
executes the code in only one possible way. JPF is basically
able to identify points that represent execution choices in a
program under test from which the execution could proceed
differently.

Although JPF is a powerful model checker for concurrent
Java programs, its straightforward use does not scale well
and often encounters the notorious state space explosion.
We anticipated previously [13] that we might mitigate the
state space explosion if we do not check anything while JPF
explores a program under test to generate state sequences.
It is, however, revealed that we could not escape the state
space explosion just without checking anything during the
exploration conducted by JPF. This is because a whole big
heap mainly constitutes one state in a program under test by
JPF, while one state is typically expressed as a small term
in formal specifications. The present paper then proposes
a divide & conquer approach to generating state sequences
from a concurrent program in a stratified way.

24958 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

B. GENERATING STATE SEQUENCES BY JPF
JPF consists of two main components: (1) a VM and (2) a
search component. The VM is a state generator. It generates
state representations by interpreting Java bytecode instruc-
tions. A state is mainly constituted of a heap and threads plus
an execution history (or path) that leads to the state. Each
state is given a unique ID number. The VM implements a
state management that makes it possible to do state match-
ing, state storing, and execution backtracking when exploring
a state space. Three key methods of the VM are employed by
the search component:
• forward - it generates the next state and reports if the
generated state has a successor; if so, it stores the suc-
cessor on a backtrack stack for efficient restoration;

• backtrack - it restores the last state on the backtrack
stack;

• restoreState - it restores an arbitrary state.
At any state, the search component is responsible for

selecting the next state on which the VM should work, either
by directing the VM to generate the next state (forward)
or by telling it to backtrack to a previously generated one
(backtrack). The search component works as a driver for the
VM. There are some strategies that can be used to traverse
the state space. By default, the search component uses depth-
first search (DFS), although we can configure to use different
strategies, such as breadth-first search.

The most important extension mechanism of JPF is listen-
ers which provide a way to observe, interact with, and extend
JPF execution. We can configure JPF with many of our own
listener classes provided that our own listener classes need to
extend the ListenerAdapter class. The ListenerAdapter class
consists of all event notifications from the VMListener and
SearchListener classes. It allows us to subscribe to VMLis-
tener and SearchListener event notifications by overriding
some methods, such as:
• searchStarted - it is invoked when JPF has just entered
the search loop but before the first forward;

• stateAdvanced - it is invoked when JPF has just got the
next state;

• stateBacktracked - it is invoked when JPF has just
backtracked one step;

• searchFinished - it is invoked when JPF is just done.
A SequenceState class that extends ListenerAdapter class

is made to observe and interact with JPF execution.
In SequenceState class, we override the two important meth-
ods: stateAdvanced and stateBacktracked . Whenever the
stateAdvanced method is invoked, we need to retrieve all
necessary information about the next state at this step. We use
an instance Path of ArrayList class to maintain the path from
the beginning state to the current state being visited by the
DFS. Each element ofPath corresponds to a state in JPF and is
encapsulated as an instance of a Configuration class prepared
by us. Each element of Path only stores the information for
our testing purpose, which is mainly the values of observable
components. For example, the information for the test&set
mutual exclusion protocol is as follows:

FIGURE 3. A way to generate state sequences with JPF.

• stateId - the unique id of a state;
• depth - the current depth of search path;
• lock - a Lock object that contains the lock observable
component value, which is either true or false;

• threads - an ArrayList object of threads, each of which
consists of the current location information that is either
rs or cs.

We need to keep up with the change of observable compo-
nents in each state stored in Path. Observable components are
implemented as object data in JPF. To obtain that information,
we need to look inside the heap of JPF. The heap contains a
dynamic array of ElementInfo objects where the array indices
are used as object reference values. An ElementInfo object
contains a Fields object that actually stores the values of
observable components. Thereby, we can gather the values of
observable components, create a new Configuration object,
and append it to Path whenever the stateAdvanced method is
invoked.

Whenever JPF hits an end state, a state that has been
already visited or a depth bound, a path (or a state sequence)
is made, all but one are deleted from each of consecutive
same states in the path. A cache is used to store all paths that
have been explored. If the path does not exist in the cache,
we save the path to the cache and then send it to another
part of our system to check whether the path conforms to the
specification with Maude on the fly subsequently. Otherwise,
we just discard the path.

Because the reachable state space could be huge, we man-
age a parameter in order to prevent JPF from diverging as
follows:
• DEPTH - the maximum depth from the initial state;
once JPF reaches any state whose depth from the initial
state is DEPTH , a backtrack message is sent to the
search component for backtracking.

DEPTH could be set to unbounded, meaning that we ask
JPF to generate as deep state sequences as possible. Every
time JPF performs backtracking because of no more suc-
cessor state, the last state is deleted from Path in the
stateBacktracked method to keep up with the change of the
current path in the DFS.

The way to generate state sequences from concurrent pro-
grams with JPF is depicted in Fig. 3. White nodes with a

VOLUME 10, 2022 24959

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

FIGURE 4. A divide & conquer approach to generating state sequences.

thick border in red indicate that those nodes have been visited
by JPF. Blue nodes cause backtracking because the node (or
state) does not have any more successor node and such a node
has been seen (or visited) before or the depth of the node
reaches DEPTH .

V. A DIVIDE & CONQUER APPROACH TO GENERATING
STATE SEQUENCES
JPF often encounters the notorious state space explosion even
without checking any property violation while exploring a
state space. When we do not set DEPTH to a moderately
small number and ask JPF to exhaustively (or almost exhaus-
tively) explore all (or a huge number of) possible states,
JPF may not finish the exploration and may lead to out of
memory. To mitigate the situation, the present paper proposes
a technique to generate state sequences from concurrent pro-
grams in a stratified way, which is called a divide & conquer
approach to generating state sequences. Given a concurrent
program P, our approach splits the reachable state space from
each initial state sd0 into multiple layers, for example L layers
(where L is a non-zero natural number) as shown in Fig. 4.
Let d(i) be the depth of layer i for i = 0, 1, . . . ,L.We suppose
that there virtually exists layer 0 such that d(0) = 0. d(i)
is a non-zero natural number if i = 1, . . . ,L. Let di be
d(0)+ . . .+ d(i) for i = 0, . . . ,L, namely that di is the depth
of the bottom of layer i (or the depth of the top of layer i+ 1)
from the initial state. States located at the depth di are called
beginning states of layer i + 1 (or ending states of layer i).
The depth of a state is the depth from the initial state where
the state is located. In Fig. 4, sdi denotes a beginning state of
layer i + 1 for i = 0, . . . ,L, and sjidi denotes an ending state

of layer i for i = 0, . . . ,L, although we do not use sj0d0 (which
is an ending state of layer 0, a beginning state of layer 1, and
the same as sd0) in the figure. sjidi is also a beginning state of

layer i+ 1, such as sdl that equals s
jl
dl in Fig. 4.

Intuitively, we first generate state sequences from each
initial state, where the length of each sequence is d(1) (see

Algorithm 1: A Divide & Conquer Approach to Gener-
ating State Sequences for L Layers
input : P – a concurrent program 50 – the set of initial

states of P d(1) . . . d(L) – a list of non-zero
natural numbers, where L is a non-zero natural
number

output: a set of state sequences

1 forall l ∈ 1 . . . L do
2 5l ← ∅;
3 forall π ∈ 5l−1 do
4 Seq← gen(last(π), d(l));
5 forall π ′ ∈ Seq do
6 5l ← 5l ∪ combine(π, π ′);

7 return 5L ;

Fig. 4). If d(1) is small enough, it is possible to do so.We then
generate state sequences from each of the states at depth d(1),
where the length of each sequence is d(2). If d(2) is small
enough, it is also possible to do so. Given one initial state,
there is one sub-state space in the first layer explored by
JPF, while there are as many sub-state spaces in the second
layer as the number of states at depth d(1) reachable from the
initial state. Combining each state sequence seq1 in layer 1
and each state sequence seq2 in layer 2 such that the last
state of seq1 equals the first state of seq2 and either the last
state of seq1 or the first state of seq2 is removed, we are to
generate state sequences, where the length of each sequence
is d(1) + d(2), which can be done even though d(1) + d(2)
is large. Similarly, we could generate state sequences up to
depth d(1)+ . . .+ d(L) for L layers (see Fig. 4).

Let 5i for i = 0, . . . ,L be the set of all state sequences
generated in layer i reachable from initial states. Initially,
50 is the set of initial states whose depth is 0. For a state
sequence π ∈ 5i for i = 0, . . . ,L, let last(π) be the last
state in π . For a state sdi at the bottom of the ith layer or the
beginning of the i+1st layer (see in Fig. 4), let gen(sdi , d(i+
1)) for i = 0, . . . ,L − 1 be the set of state sequences in the
i + 1st layer reachable from sdi , where the length of each
state sequence is d(i + 1). For two state sequences π and π ′

such that the last state of π is equal to the first state of π ′,
let combine(π, π ′) be the combined state sequence of π and
π ′, where either the last state of π or the first state of π ′ is
removed. Algorithm 1 shows a divide & conquer approach to
generating state sequences for L layers reachable from the set
of initial states 50. For each layer l ∈ 1 . . . L, 5l is initially
set to empty at line 2. Suppose that we have the set of state
sequences 5l−1 of the l − 1st layer, which is obvious for
layer 1 because 50 has initialized. For each state sequence
π in the preceding layer, whose length is dl−1, we get the last
state of π to generate a set of state sequences reachable from
last(π), where the length of each state sequence is d(l), and
assign to Seq at line 4. If d(l) is small enough, it is possible

24960 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

to do so. For each state sequence π ′ in Seq, we can combine
the state sequence π and π ′ to get a state sequence of the lth
layer, whose length is dl , because the last state of π is equal to
the first state of π ′, and add it to5l at line 6. Generating state
sequences at each layer and combining with state sequences
at the preceding layer, we are able to generate state sequences
for L layers even though dL is large.5L is returned as the final
result of Algorithm 1 at line 7.

When generating state sequences for L or unbounded
layers, DEPTH can be regarded as d(1) + . . . + d(L) or
unbounded, respectively. When the entire reachable state
space is huge, DEPTH parameter is also shared by many
bounding techniques, which systematically explore a part
of the entire reachable state space, such as bounded model
checking (BMC) [17]–[19] and context bounding [20], [21].
In those existing studies, the depth parameter is iteratively
increased until a bug or counterexample is found. In our
environment, selecting DEPTH , or in other words, the depth
of each layer is essential. We can select each layer depth as
follows. We start with a small depth, namely ten, as the layer
depth and increment it by one small number, namely five,
until JPF is not able to explore the entire sub-state space up
to the depth reachable from an initial state in a reasonable
amount of time. The depth in which JPF is able to do so at
the last should be used as each layer depth. In addition, the
number of states located at the first layer for each depth option
is also considered. However, finding good depth information
for layers is one piece of our future work.

Let us consider the test&set protocol and suppose that we
write a concurrent program (denoted Pt&s) in Java based on
the specification St&s of the protocol. We suppose that there
are three processes participating in the protocol. St&s has one
initial state and so does Pt&s. Let each of d(1) and d(2) be
50 and let us use the proposed technique to generate state
sequences from Pt&s. One of the state sequences (denoted
seq1) generated in layer 1 is as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} |

{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs)
(lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} | nil

where _|_ is the constructor for non-empty state sequences
and nil denotes the empty state sequence. Note that atomic
execution units used in Pt&s are totally different from those
used in St&s. Therefore, the depth of layer 1 is 50, but the
length of the state sequence generated is three. One of the
state sequences (denoted seq2) generated in layer 2 is as
follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} |

{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs)
(lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} | nil

Note that the last state in the first state sequence is the same
as the first state in the second state sequence. Combining the

two state sequences such that consecutive equal states are
removed to withhold one, we get the combined state sequence
(denoted seq3) as follows:

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} |

{(pc[p1]: rs) (pc[p2]: cs) (pc[p3]: rs)
(lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} |

{(pc[p1]: cs) (pc[p2]: rs) (pc[p3]: rs)
(lock: true)} |

{(pc[p1]: rs) (pc[p2]: rs) (pc[p3]: rs)
(lock: false)} | nil

This is one state sequence generated from Pt&s, where
DEPTH is 100.

If each sub-state space is much smaller than the original
reachable state space, then it is feasible to generate its sub-
state sequences even though it is infeasible to generate state
sequences for the original reachable state space due to the
state space explosion problem. Therefore, using the divide &
conquer approach to generating state sequences, we are able
to generate longer or deeper state sequences that are unfea-
sible by using JPF only without our approach. In addition,
generating state sequences for each sub-state space is inde-
pendent from that for any other sub-state spaces. Especially
for sub-state spaces in one layer, generating state sequences
for each sub-state space is totally independent from that
for each other. This characteristic of the proposed technique
makes it possible to generate state sequences from concurrent
programs in parallel. For example, once we have generated
state sequences in layer l, we can generate state sequences
for all sub-state spaces in layer l + 1 simultaneously. This is
an advantage of the divide & conquer approach to generating
state sequences from concurrent programs.

VI. A DIVIDE & CONQUER APPROACH TO TESTING
CONCURRENT PROGRAMS AND THE SUPPORT TOOL
Once state sequences are generated from a concurrent pro-
gram P, we check if a formal specification S can accept the
state sequences with Maude on the fly and show the result.
For example, we can check if seq3 can be accepted by St&s
with Maude. Instead of checking if seq3 can be accepted by
St&s, however, it suffices to check if each of seq1 and seq2 can
be accepted by St&s.
For each layer l, we generate state sequences that start

from each state located at depth d(1) + . . . + d(l − 1) from
a concurrent program P with JPF and check if each state
sequence generated in layer l can be accepted by a formal
specification S with Maude. We could first generate all (sub-
)state sequences from P in the stratified way and then could
check if each state sequence can be accepted by S as shown
in Algorithm 1. But, we do not combine multiple (sub-)state
sequences to generate a whole state sequence of P because
we do not need to do so and it suffices to check if each (sub-
)state sequence can be accepted by S in order to check if
a whole state sequence can be accepted by S. This way to
generate (sub-)state sequences from P and to check if each

VOLUME 10, 2022 24961

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

FIGURE 5. The architecture of a tool supporting the proposed technique.

(sub-)state sequence is accepted by S is called a divide &
conquer approach to testing concurrent programs.

Our tool that supports the divide & conquer approach to
testing concurrent programs has been implemented in Java.
The tool architecture is depicted in Fig. 5 that is a master-
worker model (or pattern), where there are two main groups.
The first left half group uses one RabbitMQ master (1) and
four JPFworkers to generate state sequences while the second
right half group also uses one RabbitMQ master (2) and four
Maude workers to check whether or not state sequences can
be accepted by specifications on the fly. Note that we can
use as many workers as possible in each group. Both state
sequence generation and conformance checking to specifi-
cations are conducted in parallel. We use Redis [22] and
RabbitMQ [23] to develop our tool.

• Redis is an advanced key-value store and supports many
different kinds of data structures, such as strings, lists,
maps, sets, and sorted sets. It could hold its database
entirely in memory as a big hash table. Redis is used
as an efficient cache to avoid duplicating states and state
sequences while generating state sequences.

• RabbitMQ is used as a message broker. The RabbitMQ
master maintains a message queue to store and dispatch
messages from/to RabbitMQ (RMQ) clients. In the first
group, each JPF worker consists of a RabbitMQ client to
fetch messages (states) from the RabbitMQ master (1).
For a fetched message (a state), a JPF instance that
is internally started by the worker starts generating
state sequences from the state up to a depth. For each
state sequence generated, we obtain the last state in
the state sequence and check if the state exists in a cache
of states. If not, the state is sent back to the RabbitMQ
master (1). We jointly check if the state sequence exists
in a cache of state sequences. If not, the state sequence
is sent to the RabbitMQ master (2). In the second group,
each Maude worker consists of a RabbitMQ client to
fetch messages (state sequences) from the RabbitMQ
master (2). For a fetched message (a state sequence),

a Maude instance that is internally started by the worker
checks if the state sequence can be accepted by a formal
specification.

Initially, we run a starter program to send an initial message
to the RabbitMQmaster (1) for JPF to kick off the tool, where
an initial message is regarded as an initial state specified
in a specification. The starter program is just specialized in
sending an initial message. First of all, we flush all keys and
values from the Redis cache to clean up data in memory.
Secondly, we make a connection to RabbitMQ master for
JPF with a designated configuration. After making sure that
it is connected, we prepare an initial message to send to the
message queuemaintained by RabbitMQmaster (1). The data
is encapsulated into a Configuration object, namely config.
Before sending the initial message to the RabbitMQ mas-
ter, we use SerializationUtils class supported by the Apache
Commons Lang [24] to serialize the config object that makes
it easy to deserialize to the original object at the receiver side
without doing any extra thing.

As soon as the RabbitMQ master has received a mes-
sage from a worker, the message is stored in a message
queue. By default, the RabbitMQ master will pop a message
from the message queue and then dispatch it to a worker,
in sequence. RabbitMQ has a noticeable parameter that needs
to be configured, namely, prefetch. It indicates a maximum
of unacknowledged messages that each worker may receive
at once. If prefetch is not configured, the default value is
unlimited. From our experience, it takes much more time
for JPF workers to generate state sequences than for Maude
workers to check if state sequences are accepted by formal
specifications. Hence, to improve the stability and efficiency
of our environment, prefetch value is assigned to 1 and 10 for
JPF workers and Maude workers, respectively.

Let us consider the first left half group in the environment
architecture. Firstly, JPF workers make a connection to the
RabbitMQ master (1). After connected, workers are willing
to receive messages from RabbitMQ master (1). Whenever
a worker receives a message from RabbitMQ master (1),

24962 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

the worker deserializes the message into its original object,
namely config, which is an object of Configuration class, by
invoking the deserialize method of SerializationUtils class.
Given the config object, we create an instance of RunJPF
class. Then the instance invokes the run method to initialize
a JPF instance with some configuration that is built from the
config object. We need to let the JPF instance know which
message arguments are passed to the system under test and
also need to register our listener class to the JPF instance so
that we can interact with the JPF instance. Consequently, the
worker can internally start a JPF instance to generate state
sequences from the given message.

Note that all workers, as well as JPF instances, are run-
ning in parallel and using one shared Redis instance. A JPF
instance traverses the (sub-)state space reachable from the
state derived from a given message. Whenever a JPF instance
reaches the designated depth or finds that the current state
being visited has no more successor states, our listener class
does the following:
• Removing all consecutive same states except for one
from the state sequence;

• Converting the state sequence to a string representation,
then using the SHA256 algorithm to hash the string
representation to a unique signature;

• Asking the Redis cachewhether the state sequence exists
or not; If yes, skipping what follows; Otherwise, saving
the signature as the key and the string representation
as the value into the Redis cache, making a connection
to the RabbitMQ master for Maude (2), and then send-
ing the state sequence as a message to the RabbitMQ
master (2) for conformance checking to formal specifi-
cations in the second group subsequently;

• Obtaining the last state from the state sequence, convert-
ing it to a string representation, and using the SHA256
algorithm to hash the string to a unique signature;

• Asking the Redis cache whether the state exists or not; If
yes, skipping what follows; Otherwise, asking the Redis
cache to save the signature as the key and the string
representation for the last state as the value into the
Redis cache and sending a message that contains the last
state’s information to RabbitMQ master (1), which then
prepares a message that asks a worker to generate state
sequences from the state unless the current layer is the
final one.

Let us consider the second right half group where the tool
has been integrated with Maude so that a Maude instance
can check if state sequences are accepted by formal spec-
ifications on the fly. The RabbitMQ master (2) is used to
gather all state sequences emitted from the workers in the
first group. We have known that once JPF instances have
generated state sequences, they send the state sequences to the
RabbitMQ master (2) where a message queue is maintained
to store such state sequences. The RabbitMQ master (2) then
gradually dispatches state sequences as messages to Maude
workers. Initially, each Maude worker makes a connection
to the RabbitMQ master (2) with a designated configuration.

After connected, the worker launches internally a Maude
instance and feeds to the Maude instance some Maude files
that are a specification of a concurrent program being tack-
led and a meta-programming script to check the correctness
of state sequences. Whenever the worker receives a mes-
sage, the worker deserializes the message into the original
object that represents a state sequence. Then it calls to the
Maude instance to check whether or not the state sequence is
accepted by the specification loaded into the Maude instance
before. Given a command line with a designated module
name, a state sequence, and a depth, an instruction that can be
fed into the Maude instance is constructed. Let M be a module
name, Seq is a state sequence being checked, and D is a depth
that is the possible number of transition steps (see § III). The
instruction looks like as follows:

reduce checkConform(M, Seq, D) .

Whenever the Maude instance receives the instruction,
the Maude instance executes it and checks whether Seq is
accepted by M with depth D. A result will be returned in the
form of either a success or failuremessage. As the worker that
calls the Maude instance to check the state sequence receives
the message result from the Maude instance, it parses the
message to know what it is, and then displays the result to
the console output. All state sequences and their results can
be stored into MySQL [25] to easily monitor and diagnose
problems if needed. Note that all workers are running in
parallel and use different Maude instances but load the same
specification and the meta-programming script.

VII. CASE STUDIES
We conducted case studies in which Alternating Bit Protocol
(ABP), a cloud synchronization protocol (CloudSync) and
Needham-Schroeder-Lowe Public-Key authentication proto-
col (NSLPK) were tackled.We experimented on two versions
of CloudSync protocol, including Revised CloudSync and
Original CloudSync that are described in detail in this section.
Hence, we conducted four case studies in total. Our experi-
ments were carried out by an Apple iMac Late 2015 that had
Processor 4GHz Intel Core i7 and Memory 32GB 1867 MHz
DDR3.

A. ALTERNATING BIT PROTOCOL (ABP)
1) INTRODUCTION
Alternating Bit Protocol (ABP) is a communication protocol
and can be regarded as a simplified version of TCP. ABP
makes it possible to reliably deliver data from a sender to a
receiver even though two channels between the sender and
receiver are unreliable in that elements in the channels may be
dropped and/or duplicated. The sender maintains two pieces
of information: sb that stores a Boolean value and data that
stores the data to be delivered next. The receiver maintains
two pieces of information: rb that stores a Boolean value and
buf that stores the data received. One channel dc from the
sender to the receiver carries pairs of data and Boolean values,
while the other one ac from the receiver to the sender carries

VOLUME 10, 2022 24963

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

Boolean values. There are two actions done by the sender:
(sa1) the sender puts the pair (data, sb) into dc and (sa2) if ac
is not empty, the sender extracts the top Boolean value b from
ac and compares b with sb; if b 6= sb, data becomes the next
data and sb is complemented; otherwise nothing changes.
Actions (sa1) and (sa2) done by the sender are denoted d-snd
and a-rec, respectively. There are two actions done by the
receiver: (ra1) the receiver puts rb into ac and (ra2) if dc
is not empty, the sender extracts the top pair (d, b) from
dc and compares b with rb; if b = sb, d is stored in buf
and rb is complemented; otherwise nothing changes. Actions
(ra1) and (ra2) done by the receiver are denoted a-snd and
d-rec, respectively. There are four more actions to dc and ac
because the channels are unreliable. If dc is not empty, the top
element is dropped (d-drp) or duplicated (d-dup), and if ac is
not empty, the top element is dropped (a-drp) or duplicated
(a-dup). Fig. 6 shows a graphical representation of a state
of ABP.

Each state of ABP is formalized as a term {(sb : b1)
(data : d(n)) (rb : b2) (buf : dl) (dc : q1) (ac : q2)}, where
b1 and b2 are Boolean values, n is a natural number, dl is a
data list, q1 is a queue of pairs of data and Boolean values
and q2 is a queue of Boolean values. d(n) denotes data to be
delivered from the sender to the receiver. Initially, b1 is true,
b2 is true, n is 0, dl is the empty list, q1 is the empty queue,
and q2 is the empty queue. The state transitions that formalize
the actions are specified in rewrite rules as follows:

rl [d-snd] : {(sb: B)(data: D)(dc: Ps) OCs}
=> {(sb: B)(data: D)(dc:(Ps | < D,B >)) OCs}.
crl [a-rec1] : {(sb: B)(data: d(N))
(ac: (B’ | Bs)) OCs}

=> {(sb:(not B))(data: d(N + 1))(ac: Bs) OCs}
if B =/= B’ .
crl [a-rec2] : {(sb: B)(data: D)
(ac: (B’ | Bs)) OCs}

=> {(sb: B)(data: D)(ac: Bs) OCs} if B = B’.
rl [a-snd] : {(rb: B)(ac: Bs) OCs}
=> {(rb: B) (ac: (Bs | B)) OCs} .
crl [d-rec1] : {(rb: B)(buf: Ds)
(dc: (< D,B’ > | Ps)) OCs}

=> {(rb: (not B))(buf: (Ds | D))(dc: Ps) OCs}
if B = B’ .
crl [d-rec2] : {(rb: B)(buf: Ds)
(dc: (< D,B’ > | Ps)) OCs}

=> {(rb: B)(buf: Ds)(dc: Ps) OCs}
if B =/= B’ .
rl [d-drp] : {(dc: (Ps1 | P | Ps2)) OCs}
=> {(dc: (Ps1 | Ps2)) OCs} .
rl [d-dup] : {(dc: (Ps1 | P | Ps2)) OCs}
=> {(dc: (Ps1 | P | P | Ps2)) OCs} .
rl [a-drp] : {(ac: (Bs1 | B | Bs2)) OCs}
=> {(ac: (Bs1 | Bs2)) OCs} .
rl [a-dup] : {(ac: (Bs1 | B | Bs2)) OCs}
=> {(ac: (Bs1 | B | B | Bs2)) OCs} .

Words that start with a capital letter, such as B, D, Ps, and
OCs, are Maude variables. B, D, Ps, and OCs are variables
of Boolean values, data, queues of (Data,Bool)-pairs, and
observable component soups, respectively. The types (or
sorts) of the other variables can be understood fromwhat have
been described. The two rewrite rules a-rec1 and a-rec2
formalize action a-rec. What rewrite rules formalize what

FIGURE 6. A state of ABP.

actions can be understood fromwhat have been described. Let
SABP refer to the specification ofABP inMaude. A concurrent
program PABP is written in Java based on SABP, where one
thread performs two actions d-snd and a-rec, one thread
performs two actions a-snd and d-rec, one thread performs
two actions d-drp and a-drp, and one thread performs two
actions d-dup and a-dup. We intentionally insert one flaw in
PABP such that when the receiver gets the third data, it does
not put the third data into buf but puts the fourth data into buf .

2) EXPERIMENT
Algorithm 2 shows the pseudo-code for sender, receiver,
dropper, and duplicator actions that are executed simultane-
ously by multiple threads in the program. Actions d-send and
a-rec are implemented by the code fragments at line 6 and
lines 9 - 13, respectively. Actions a-send and d-rec are imple-
mented by the code fragments at line 20 and lines 23 - 27,
respectively. Actions a-drp and d-drp are implemented by
the code fragments at lines 32 and 35, respectively. Actions
a-dup and d-dup are implemented by the code fragments at
lines 40 and 43, respectively. lockdc and lockac are two locks
that are used to protect those atomic code fragments. Note
that lockdc may be the same as lockac when one lock is
actually used. We can see that one atomic fragment protected
by lockdc and another atomic fragment protected by lockac
can be executed in parallel. Hence, at most two atomic code
fragments may be executed by multiple threads in parallel
(or simultaneously), although each atomic action (or state
transition) in the formal specification is implemented by one
atomic code fragment in the program.

We suppose that the sender is to deliver four data to the
receiver, the depth of each layer is 100, and DEPTH is
unbounded. The simulation relation candidate from PABP to
SABP is essentially the identify function. We change each
channel size as follows: one, two, and three. We do not need
to fix the number of layers in advance, but the number of
layers can be determined by the tool on the fly. For each
experiment, however, the number of layers is larger than two.
Table 1 shows experimental data in which one lock is used in
the program, meaning that the maximum number of transition
steps is one, while Table 2 shows experimental data in which
two locks are used in the program,meaning that themaximum
number of transition steps is two.We can change Algorithm 2

24964 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

Algorithm 2: Sender, Receiver, Dropper, and Duplicator
in ABP Program
input : ABP – a concurrent program lockdc – a lock on

the data channel lockack – a lock on the ack
channel

1 dc← empty; ac← empty;
2 function Sender is
3 data← 0; sb← true;
4 while true do
5 request(lockdc);
6 dc.put(< data, sb >);
7 release(lockdc);
8 request(lockac);
9 if ac.size() > 0 then
10 b← ac.get();
11 if b 6= sb then
12 sb← ¬sb;
13 data← data+ 1;

14 release(lockac);

15 function Receiver is
16 buf ← 0;
17 rb← true;
18 while true do
19 request(lockac);
20 ac.put(rb);
21 release(lockac);
22 request(lockdc);
23 if dc.size() > 0 then
24 < d, b >← dc.get();
25 if b = rb then
26 buf .put(d);
27 rb← ¬rb;

28 release(lockdc);

29 function Dropper is
30 while true do
31 request(lockac);
32 ac.get();
33 release(lockac);
34 request(lockdc);
35 dc.get();
36 release(lockdc);

37 function Duplicator is
38 while true do
39 request(lockac);
40 ac.duptop();
41 release(lockac);
42 request(lockdc);
43 dc.duptop();
44 release(lockdc);

TABLE 1. Experimental data for ABP program in which one lock is used.

TABLE 2. Experimental data for ABP program in which two locks are
used.

to make the program using only one lock easily by replacing
two locks lockdc and lockac with the same lock as mentioned.
When each channel size was one, one lock experiment

took about 5 hours 47 minutes, while two locks experiment
took about 8 hours 39 minutes to generate all state sequences
with four workers and check them with Maude on the fly.
The number of the state sequences generated is 47,505 and
64,854, respectively. Note that the number of state sequences
is the total number of sub-state sequences at each layer
without combining sub-state sequences. Maude detected that
some state sequences have adjacent states s and s′ such that
s cannot reach s′ by SABP in both experiments with one
and two state transitions, respectively. If that is the case,
a tool component [13] implemented in Maude shows us some
information as follows:

Result4Driver?: {seq: 31,msg: "Failure",
from: {sb: true data: d(2) rb: true buf:

(d(0) | d(1)) dc: < d(2),true > ac: nil},
to:{sb: true data: d(2) rb: false buf:

(d(0) | d(1) | d(3)) dc: nil ac: nil},
index: 3,bound: 2}

VOLUME 10, 2022 24965

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

This is because although the receiver must put the third data
d(2) into buf when d(2) is delivered to the receiver, the
receiver instead puts the fourth data d(3) into buf , which is
the flaw intentionally inserted into PABP. This demonstrates
that our tool can detect the flaw.

When each channel size was two, one lock experiment
took about 6 days, while two locks experiment took about
7 days 13 hours 21 minutes to generate all state sequences
with four workers and check them with Maude on the fly.
The number of the state sequences generated is 4,606,719
and 6,611,839, respectively. As is the case in which each
channel is one, Maude detected that some state sequences
have adjacent states s and s′ such that s cannot reach s′ by
SABP in both experiments with one and two state transitions,
respectively, due to the flaw intentionally inserted in PABP.

When each channel size was three, one lock experiment
took about 33 days 17 hours 26 minutes, while two locks
experiment took about 38 days 21 hours 34 minutes to gen-
erate all state sequences with four workers and check them
with Maude on the fly. The number of the state sequences
generated is 37,403,548 and 54,429,058, respectively. As is
the case in which each channel is one and two, Maude
detected that some state sequences have adjacent states s and
s′ such that s cannot reach s′ by SABP in both experiments
with one and two state transitions, respectively, due to the
flaw intentionally inserted in PABP.

The experimental data in Tables 1–2 show that the more
locks are used, the more time it takes to do testing pro-
grams. It is reasonable because the more locks used introduce
more synchronized points in programs fromwhich more state
sequences are generated. In addition, our experiments also
demonstrate that programmers are able to know themaximum
steps in programs for one atomic state transition in formal
specifications based on the number of locks used in programs.

If we did not use the proposed approach and simply used
JPF to generate state sequences with the same computer,
we encountered an out-of-memory error even when each
channel size was one [14]. It was reported [26] that when each
channel was three and the number of data delivered was three
(but not four), a straightforward use of JPF did not complete a
model checking experiment for ABP into which no flaw was
intentionally inserted, leading to an out-of-memory error after
it took about four days with almost the same computer used in
the experiments reported in the present paper. Therefore, the
proposed technique can alleviate the out-of-memory situation
due to the state space explosion.

We would like to demonstrate further the effectiveness of
our parallel specification-based testing for testing concurrent
programs by conducting more experiments for ABP case
study with our divide & conquer approach to testing con-
current programs with different numbers of workers shown
in Table 3. Even when the number of workers is one, our
tool successfully completes the experiment, meaning that it
alleviates the state space explosion, while the straightforward
use of JPF did not as above-mentioned. We use a MacPro
computer that carries a 2.5 GHzmicroprocessor with 28 cores

TABLE 3. Experimental data for ABP program with various numbers of
workers.

FIGURE 7. Verification time for ABP programs with various numbers of
workers.

and 1.5 TB memory to conduct the experiments because
we need to use many workers. For ABP whose number of
locks used is one, it takes 16 hours 40 minutes, 5 hours
4 minutes, 2 hours 50 minutes, and 2 hours 7 minutes to
complete generating state sequences and checking them with
Maude when the number of workers is one, four, eight, and
twelve, respectively. Meanwhile, for ABP whose number
of locks used is two, it takes 1 day 24 minutes, 7 hours
37 minutes, 4 hours 27 minutes, and 3 hours 13 minutes
to complete generating state sequences and checking them
with Maude when the number of workers is one, four, eight,
and twelve, respectively. We plot the experimental data in
Table 3 on the graph shown in Fig. 7. We can see that the
verification time improves quickly for ABP programs when
we increase the number of workers from one to four, which
demonstrates that parallelization is effective for our proposed
technique. The improvement for ABP with one and two
locks used is about 69.9% and 68.8%, respectively. When we
increase the number of workers from four to eight and eight
to twelve, the verification time improves as well, although
the improvement is slower. This is because the more workers
used, the busier the master and the Redis cache need to handle
and communicate with workers. Therefore, depending on the
power of the machine used to conduct experiments, we may
choose a reasonable number of workers when using our tool.
In conclusion, we have demonstrated the power of our parallel
specification-based testing for concurrent programs.

24966 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

FIGURE 8. Gotval transition.

FIGURE 9. Updated1 transition.

B. REVISED CLOUDSYNC
1) INTRODUCTION
Revised CloudSync is a simplified cloud synchronization
protocol in whichmany PCswould like to exchangemessages
with a Cloud in order. For simplicity, we use natural numbers
as messages. A PC may connect to the Cloud if and only if
both the PC and Cloud are in an idle state. After connected,
the PC can fetch the value from the Cloud and then update
either the value of Cloud or the value of the PC depending on
which value is larger. The following shows how the Revised
CloudSync protocol works in detail.

The Cloud maintains two pieces of information: statusc
and valc that are the status and value of the Cloud , respec-
tively. statusc is set to one of idlec and busy that are labels and
valc is set to a natural number. statusc and valc are initially
set to idlec and a natural number n, respectively. Meanwhile,
each PC maintains three pieces of information: statusp, valp,
and tmp that are the status, value, and temporary value of
the PC , respectively. statusp is set to one of idlep, gotval,
and updated that are also labels, and valp and tmp are set
to natural numbers. statusp, val, and tmp are initially set to
idlep, a natural number, such as new, l, andm, and the natural
number 0. Note that n, new, l, and m are arbitrary natural
numbers used. The protocol uses three transition rules.

The first transition rule is gotval depicted in Fig. 8. A PC
wants to connect to the Cloud if and only if the statusc of
the Cloud is idlec and the statusp of the PC is idlep. If that
is the case, the PC fetches the current valc of the Cloud and
updates the tmp of the PC to the value fetched; the statusp
of the PC is also updated to gotval, while the statusc of the
Cloud is changed to busy.
The second transition rule is updated . If the tmp of

the PC involved is equal or greater than the valp of

the PC , updated conducts update1 depicted in Fig. 9.
Otherwise, it conducts update2 depicted in Fig. 10. Both
update1 and update2 change the statusp of thePC to updated .
update1 changes the valp of the PC to n, which is the same
as the tmp of the PC and the valc of the Cloud , and leaves the
other values unchanged, while update2 changes both the valc
of theCloud and the tmp of thePC to new and leaves the other
values unchanged. Basically, the updated rule guarantees that
the valp of the PC and the valc of the Cloud maintain the
same largest number between two of them after the rule has
been applied.
The last transition rule is gotoidle depicted in Fig. 11. After

the updated rule has been just carried out by a PC and the
Cloud , the statusc of the Cloud is busy, the statusp of the PC
is updated and the valc of the Cloud and the valp and tmp of
the PC have a same value, say new. If so, the gotoidle rule
updates the statusc of the Cloud back to idlec, the statusp of
the PC back to idlep and the tmp of the PC back to 0. The
last transition rule makes the Cloud as well as the PC free.
From now on, the Cloud can freely connect to any PC for
exchanging messages subsequently.

The three transition rules are specified in rewrite rules as
follows:

rl [getval] : {(cloud: < idlec,CVal >)
(pc[P]: < idlep,PVal,OldCVal >) OCs}

=> {(cloud: < busy,CVal >)
(pc[P]: < gotval,PVal,CVal >) OCs} .

crl [update1] : {(cloud: < busy,CVal >)
(pc[P]: < gotval,PVal,GotCVal >) OCs}

=> {(cloud: < busy,CVal >)
(pc[P]: < updated,GotCVal,GotCVal >) OCs}
if GotCVal >= PVal .

crl [update2] : {(cloud: < busy,CVal >)
(pc[P]: < gotval,PVal,GotCVal >) OCs}

=> {(cloud: < busy,PVal >)
(pc[P]: < updated,PVal,PVal >) OCs}

VOLUME 10, 2022 24967

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

FIGURE 10. Updated2 transition.

FIGURE 11. Gotoidle transition.

if GotCVal < PVal .
rl [gotoidle] : {(cloud: < busy,CVal >)

(pc[P]: < updated,PVal,OldCVal >) OCs}
=> {(cloud: < idlec,CVal >)

(pc[P]: < idlep,PVal,0 >) OCs} .

Words starting with a capital letter, such as P, PVal,GotCVal,
CVal, OldCVal, RandVal, and OCs are Maude variables. P
and OCs are variables of Pid sort and observable compo-
nent soups, respectively. PVal, GotCVal, CVal, OldCVal, and
RandVal are variables of Nat sort. idlec and busy are
the constants of LabelC sort that denote the possible status
values of theCloud . idlep, gotval, and updated are the
constants of LabelP sort that denote the possible status values
of a PC . How to implement CloudSync in Java is described
in a document publicly available at Footnote 1, which resides
under the documents folder.

2) EXPERIMENT
In the Revised CloudSync protocol experiment, three PCs and
one Cloud are involved. Because the reachable state space is
huge, we need to specify a depth bound to make sure that
the experiments terminate. We conducted two experiments:
(1) only one worker was used, DEPTH was 400 and the
reachable state was not divided, and (2) four workers were
used, the reachable state space was divided into two layers
and each layer depth was 200 (namely that the globalDEPTH
was 400). The experimental data are shown in Table 4.
In these experiments, we did not intend to insert any bugs

into the program. All state sequences generated by JPF work-
ers were checked with Maude on the fly when the maximum
number of transition steps was one and no bug was detected.
For the experiment (1), it took 1 day 23 hours and 22 minutes
to generate all state sequences and check them with Maude.

TABLE 4. Experimental data for revised CloudSync.

The number of the state sequences generated is 4,449. For the
experiment (2), it took 1 hour 36 minutes to generate all state
sequences and check them with Maude. The number of the
state sequences generated is 3,118. The experimental results
show that (2) outperforms (1) and is 29 times faster than (1).

C. NSLPK
1) INTRODUCTION
Needham-Schroeder Public-Key authentication protocol
(NSPK) can be described as three message exchanges:

Challenge: A→ B : {Na,A}Kb
Response: B→ A : {Na,Nb}Ka
Confirmation: A→ B : {Nb}Kb

where A and B are principals called an initiator and a respon-
der, respectively, Kp is the public key owned by a principal
p, Np is a nonce generated by p, and mKp is the ciphertext
obtained by encrypting a message m with Kp. Note that mKp
can only be decrypted by a principal who owns the private
key that corresponds to Kp. Lowe found an attack to NSPK
and corrected it [27]. The corrected version is called NSLPK
that can be described as follows:

24968 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

Challenge: A→ B : {Na,A}Kb
Response: B→ A : {Na,Nb,B}Ka
Confirmation: A→ B : {Nb}Kb

The difference between NSPK and NSLPK is that the
sender principal ID B is used to construct the Response
message. The ciphertext obtained by encrypting Na, Nb and
B with the A’s public key Ka. Let us describe the formal
specification of NSLPK in Maude. We use the following
operators as the constructors of observable components:

op nw:_ : Soup{Msg} -> OCom [ctor] .
op~rands:_ : Soup{Rand} -> OCom [ctor] .
op~nonces:_ : Soup{Nonce} -> OCom [ctor] .
op~prins:_ : Soup{Prin} -> OCom [ctor] .

where Soup{Msg}, Soup{Rand}, Soup{Nonce}, and
Soup{Prin} are the sorts for soups of messages, ran-
dom numbers, nonces, and principals, respectively. The nw
observable component stores all messages sent by principals.
The rands observable component stores the random num-
bers available. The nonces observable component stores
the nonces gleaned by the intruder. The prins observable
component stores the principals participating in the proto-
col. The nw observable component formalizes the network.
We suppose that the network is initially empty and then the
nw observable component is initially the empty soup denoted
emp. We also suppose that there are two random numbers
initially available, three principals (two trustable ones and
one intruder), the rands observable component is initially
r1 r2, and the prins observable component is initially p q
intrdr , where p and q denote the two trustable principals and
intrdr denotes the intruder. Because nothing has been initially
gleaned by the intruder, the nonces observable component
is initially emp. The initial state denoted init is as follows:
op init : -> Config .
eq~init = {(nw: emp) (rands: (r1 r2))

(nonces: emp) (prins: (p q intrdr))} .

The message exchanges exactly obeying the protocol are
specified in rewrite rules as follows:

rl [Challenge] : {(nw: NW) (nonces: Ns)
(rands: (R Rs)) (prins: (P Q Ps))}

=> {(nw: (m1(P,P,Q,c1(Q,n(P,Q,R),P)) NW))
(nonces: (if Q == intrdr then (n(P,Q,R) Ns)
else Ns fi))

(rands: Rs) (prins: (P Q Ps))} .
rl [Response] :
{(nw: (m1(P’,P,Q,c1(Q,N,P)) NW))
(rands: (R Rs)) (nonces: Ns) OCs}

=> {(nw: (m2(Q,Q,P,c2(P,N,n(Q,P,R),Q))
m1(P’,P,Q,c1(Q,N,P)) NW)) (rands: Rs)
(nonces: (if P == intrdr then
(N n(Q,P,R) Ns) else Ns fi)) OCs} .

rl [Confirmation] :
{(nw: (m2(Q’,Q,P,c2(P,N,N’,Q))
m1(P,P,Q,c1(Q,N,P)) NW)) (nonces: Ns) OCs}

=> {(nw: (m3(P,P,Q,c3(Q,N’))
m2(Q’,Q,P,c2(P,N,N’,Q))
m1(P,P,Q,c1(Q,N,P)) NW))
(nonces: (if Q == intrdr then (N’ Ns)
else Ns fi)) OCs} .

Messages are formalized in the form mi(P′,P,Q,C) for
i = 1, 2, 3, where P′ is the actual sender, P is the seeming

sender, Q is the receiver, and C is a ciphertext. P′ cannot be
seen by principals. If P′ is different from P, then P′ must be
intrdr and the message has been forged by the intruder. For
example, rewrite rule Response says that if there exists a
Challengemessagem1(P′,P,Q, c1(Q,N ,P)) in the network,
where c(Q,N ,P) denotes the ciphertext obtained by encrypt-
ing N and P with the Q’s public key, and a random number
R is available, then Q replies to the message by putting
m2(Q,Q,P, c2(P,N , n(Q,P,R),Q)) into the network and
the nonce n(Q,P,R) made by Q is gleaned by the intruder if
P is the intruder. Note that messages are never deleted from
the network. Faking messages by the intruder based on the
nonces gleaned and the messages in the network are specified
in rewrite rules as follows:

rl [fake11] : {(nw: NW) (nonces: (N Ns))
(prins: (P Q Ps)) OCs}

=> {(nw: (m1(intrdr,P,Q,c1(Q,N,P)) NW))
(nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake12] : {(nw: (m1(P’,P’’,Q’’,C1)
NW)) (prins: (P Q Ps)) OCs}

=> {(nw: (m1(intrdr,P,Q,C1) m1(P’,P’’,Q’’,C1)
NW)) (prins: (P Q Ps)) OCs} .

rl [fake21] : {(nw: NW) (nonces: (N N’ Ns))
(prins: (P Q Ps)) OCs}

=> {(nw: (m2(intrdr,Q,P,c2(P,N,N’,Q)) NW))
(nonces: (N N’ Ns)) (prins: (P Q Ps)) OCs} .

rl [fake22] : {(nw: (m2(Q’,Q’’,P’’,C2) NW))
(prins: (P Q Ps)) OCs}

=> {(nw: (m2(intrdr,Q,P,C2) m2(Q’,Q’’,P’’,C2)
NW)) (prins: (P Q Ps)) OCs} .

rl [fake31] : {(nw: NW) (nonces: (N Ns))
(prins: (P Q Ps)) OCs}

=> {(nw: (m3(intrdr,P,Q,c3(Q,N)) NW))
(nonces: (N Ns)) (prins: (P Q Ps)) OCs} .

rl [fake32] : {(nw: (m3(P’,P’’,Q’’,C3) NW))
(prins: (P Q Ps)) OCs}

=> {(nw: (m3(intrdr,P,Q,C3) m3(P’,P’’,Q’’,C3)
NW)) (prins: (P Q Ps)) OCs} .

For example, rewrite rule fake21 says that if there are two
nonces N and N ′ gleaned by the intruder, the intruder fakes
m2(intrdr,Q,P, c2(P,N ,N ′,Q)); rewrite rule fake22 says
that if there ism2(Q′,Q′′,P′′,C2) in the network, the intruder
fakesm2(intrdr,Q,P,C2), whereP andQ are principals cho-
sen randomly. How to implement NSLPK in Java is described
in a document publicly available at Footnote 1, which resides
under the documents folder.

2) EXPERIMENT
In the experiments, we suppose that there are two non-
intruder principals, one intruder, and two random numbers.
Because the state space is huge, a bounded depth is used to
generate state sequences to make sure that the experiments
terminate. We conduct two experiments: (1) only one worker
was used, DEPTH was 200 and the reachable state was not
divided, and (2) four workers were used, the reachable state
space was divided into two layers and each layer depth was
100 (namely that the global DEPTH was 200). The experi-
mental data are shown in Table 5.

In these experiments, we did not intend to insert any
bugs into the program. All state sequences generated by JPF
were checked with Maude on the fly when the maximum

VOLUME 10, 2022 24969

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

TABLE 5. Experimental data for NSLPK.

number of transition steps was one and no bug was detected.
For the experiment (1), it took over 8 days to generate all
state sequences and check them with Maude. The num-
ber of the state sequences generated is 1,117,537. For the
experiment (2), it took about 14 hours to generate all state
sequences and check them with Maude. The number of
the state sequences generated is 109,933. The experimental
results show that (2) outperforms (1) and is about 14 times
faster than (1).

We conduct one more experiment for NSLPK with the
same configuration as the experiment (2) above, however,
a bug is intentionally inserted into the program in which the
sender information is not included in the Response messages
from principals. Our tool can quickly detect the bug just in
some seconds and show a warning message as follows:

warning ({nw: emp rand: (r1 r2) nonces: emp
prins: (p q intrdr)} |

{nw: (m1(p,p,q,c1(q,n(p,q,r1),p))) rand: (r2)
nonces: emp prins: (p q intrdr)} |

{nw: (m1(p,p,q,c1(q,n(p,q,r1),p))
m2(q,q,p,c2(p,n(p,q,r1),n(q,p,r2))))
rand: emp nonces: emp prins: (p q intrdr)}
| nil)

This is because the message m2, a Response message, in the
network nw does not consist of the sender information in the
ciphertext c2. Hence, Maude cannot parse the message and
show the warning message. This demonstrates that our tool
can detect the flaw.

D. ORIGINAL CLOUDSYNC
1) INTRODUCTION
Original CloudSync is the original version of CloudSync
protocol that is the same as Revised CloudSync except for
some points, which then are described in this sub-section.
For convenience, Original CloudSync is called as CloudSync.
As described above, Revised CloudSync uses three transition
rules that are gotval, updated , and gotoidle. CloudSync uses
the same three transition rules described above and one more
transition rule: modval that is depicted in Fig. 12.

The modval transition rule does not care about the initial
valp of PCs. Before exchanging messages between the Cloud
and a PC , the statusc of the Cloud is idlec and the statusp
of the PC is idlep. The modval rule updates the valp of the
PC to a random natural number, say new, meaning that the
PC is willing to be connected to the Cloud . For simplicity,
the new value is the current value of valp plus one in our

TABLE 6. Experimental data for original CloudSync.

specification. The modval transition rule is specified in the
following rewrite rule:

rl [modvalue] :
{(pc[P]: <idlep,PVal,OldCVal>) OCs} =>
{(pc[P]: < idlep,s(PVal),OldCVal >) OCs} .

where s(PVal) denotes PVal+ 1. How to implement Orig-
inal CloudSync in Java is described in a document publicly
available at Footnote 1, which resides under the documents
folder.

2) EXPERIMENT
In the CloudSync case study, three PCs and one Cloud are
involved. A depth bound is used to make sure that the exper-
iments terminate while generating state sequences due to
the huge state space. We conduct two experiments: (1) only
one worker was used, DEPTH was 400 and the reachable
state was not divided, and (2) four workers were used, the
reachable state space was divided into two layers and each
layer depth was 200 (namely that the global DEPTH was
400). The experimental data are shown in Table 6.

In these experiments, we did not intend to insert any bugs
into the program. All state sequences generated by JPF were
checked with Maude on the fly when the maximum number
of transition steps was one and no bug was detected. our
approach. For the experiment (1), it took 1 day 18 hours
and 49 minutes to generate all state sequences and check
such state sequences with Maude. The number of the state
sequences was 16,185. For the experiment (2), it took more
than 8 days 17 hours to generate all state sequences and check
the state sequences with Maude. The number of the state
sequences was 433,611. The experimental results show that
(1) outperforms (2), meaning that the straightforward use of
JPF works effectively than our tool in this case study.

In CloudSync, whenever modval is used, the valp of a PC
being to be connected with the Cloud is increased by one
before the PC and the Cloud are connected. Therefore, the
reachable state space of CloundSync becomes bigger than
that of Revised CloudSync because themodval rule produces
many different states. It implies that there may be many states
located at the bottom of each layer. Furthermore, each PC has
an equal chance to connect with the Cloud and only one PC
can connect with the Cloud at one time. Therefore, the incre-
ment of valp makes the values of PCs turn over and so there
may be some cross transitions between states in different sub-
state spaces in a layer or even some backward transitions from

24970 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

FIGURE 12. Modval transition.

FIGURE 13. Backward and cross transitions.

some states in sub-state spaces in a layer to some states in sub-
state spaces in previous layers (see Fig. 13). We suppose that
there are two states located in two different sub-state spaces
in a layer such that there is a cross transition between them as
shown in Fig. 13. The two sets ((a) and (b) shown in Fig. 13)
of states located at the bottom of the layer reachable from the
two states are different because the depths of the states are
different. We only store states located at each layer in a big
cache to remove duplicate states, but do not store all states
in the reachable state space due to the state space explosion
problem. Therefore, there are many states being collected at
the layer although there are many states shared by many sub-
state spaces that start from those collected states. Because of
this situation, it makes our environment inefficient when the
workers need to exploremany states shared bymany sub-state
spaces.

It is necessary to make each sub-state space much smaller
than the original reachable state space so as to use our tool
effectively. If a system under testing has some long lasso
loops, there may have many states shared by sub-state spaces
at each layer, making many duplicated works for workers.
Thus, we should avoid any long lasso loops under a system
under test. In general, it would not be straightforward to get
rid of all long lasso loops from a system under test. Thus,
we need to come up with a technique that can handle such
long loops, which is one piece of our future work.

FIGURE 14. A state sequence in a layer l .

E. THREATS TO BUG DETECTION
As described, we divide the reachable state space from each
initial state to multiple layers, generating multiple sub-state
spaces. For each layer l, given a state s0, JPF instance needs to
explore the sub-state space reachable from s0 up to the layer
depth d(l) to generate its sub-state sequences. We suppose
that there is a state sequence represented in JPF in the layer
l that starts from s0 as shown in Fig. 14. As described above,
whenever JPF visits a state, we need to extract the values
of observable components from the program under test by
looking inside the heap of JPF, and then construct a state
representation in the form of state expressions used in a
specification. Because the execution units in a program are
much finer than those in a specification, and therefore there
are some consecutive states in a state sequence represented
in JPF that have the same observable component values and
so we construct the same state represented in a specification.
For example, from s0 to si, they have the same observable
component values, and so s′0 is constructed (see Fig. 14).
Similarly, from sm to sm+j, they have the same observable
component values and so s′n is constructed. We finally obtain
the state sequence s′0 . . . s

′
n such that two consecutive states

are different. The state sequence is much shorter than the
state sequence s0 . . . sm+j represented in JPF and can be
checked with Maude. If the last state s′n does not exist in
a cache of states, it is sent to RabbitMQ master (1) to dis-
tribute to a worker subsequently. Given s′n, we may generate
sm+j, . . . , sm+j+k or sm, . . . , sm+j, . . . , sm+j+l or something
else represented in JPF, where l < k , and then this may affect
the size of state sequences to be checked by our tool, where
the size may be less than DEPTH . Therefore, if a bug locates
nearly at the boundary of the bounded depth, there may be
a case in which our tool may overlook the bug. One possible
way to mitigate this problem is that we can increase the depth
of the final layer so that the bug can be covered and detected.

VOLUME 10, 2022 24971

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

VIII. RELATED WORK
The state space explosion is the main challenge to concurrent
program verification due to inherent thread interleavings.
Several techniques have recently been studied to overcome
this problem, such as bounded model checking and abstrac-
tion refinement. Nevertheless, these existing techniques can-
not overcome the problem reasonably well, especially for
large concurrent program verification. To take full advantage
of multiprocessor architectures, parallel processing is a main
stream to deal with this problem.

Bounded model checking (BMC) is an efficient technique
for sequential program analysis that uses a symbolic repre-
sentation to formalize the program verification problem into
an equisatisfiable conjunctive normal form (CNF) formula
that can be analyzed by a SAT/SMT solver. A CNF formula is
a conjunction of one or more clauses in which each clause is
a disjunction of literals, where a literal is an atomic formula
or its negation. Among existing studies for BMC, CBMC
is a famous bounded model checker to verify sequential
C programs [18]. Based on CBMC, a SAT-based bounded
verification technique is then proposed to support multi-
threaded C programs, called TCBMC [28]. For Java pro-
grams, JBMC is a bounded model checking tool for verifying
Java bytecode [19], which is also based on CBMC. However,
JBMC only supports sequential Java programs. They are cur-
rently extending JBMC to support multi-threaded Java pro-
grams. Another extension of SAT/SMT-based BMC to model
check concurrent programs is Lazy Sequentialization (Lazy-
CSeq) [29], [30]. Given a concurrent program P together
with two parameters u and r that are the loop unwinding
bound and the number of round-robin schedules, respectively,
they first generate an intermediate bounded program Pu by
unwinding all loops and inlining all function calls in P with
u as a bound except for those used for creating threads.
Pu then is transformed into a sequential program Qu,r that
simulates all behaviors of Pu within r round-robin schedules.
Qu,r is then transformed into a propositional formula that
can be analyzed by a SAT/SMT solver. To take advantage of
parallelization, they then propose a method [31] to decom-
pose the set of execution traces of concurrent programs into
symbolic subsets that can be separately explored by multiple
instances of a SAT solver in parallel. Given a number of
threads and a number of execution contexts, their approach
needs to calculate symbolic partitioning in which a single
formula is divided into multiple propositional sub-formulas.
After that threads are spawned to check such sub-formulas
by using SAT in parallel. They build a prototype tool that can
be deployed on a single machine as well as in a distributed
environment.

To use much larger compute and memory resources than
those of one single ordinary computer, distributed bounded
model checking is one promising way to make verification
scalable. Prantik et al. [32] then propose an algorithm that
dynamically unfolds the call graph of a program and fre-
quently splits it into sub-tasks that can be solved by many

instances of an SMT solver in parallel. In detail, the technique
splits the set of program paths into disjoins subsets that are
searched independently. The splitting is done by picking a
control node (splitting node) and considering (1) the set of
paths that go through the node, and (2) the set of paths that
do not. They create multiple processes, each of which has
access to the input program and are deployed in a distributed
environment. One process is designated as the server while
the rest are called clients. The search starts sequentially on
one of the clients. A client chooses a splitting node from
which two partitions are created. The client continues veri-
fication on one of the partitions and sends the other partition
to the server. The server is in charge of collecting, prioritizing
partitions from the clients, and distributing them to the clients
subsequently. Note that clients can split multiple times. This
process continues until a client reports a counterexample or
there is no partition left in the server and all clients are idle.
Their architecture is basically a master-worker model that is
similar to the architecture used in our tool. However, the way
they partition the reachable state space is different from our
approach that splits the reachable state space into multiple
smaller sub-state spaces based on depth information. In recent
years, exploiting the power of GPU in parallel computation
with a huge number of cores, some researchers have used
GPU to speed up the model checking verification [33]–[35],
which may be one of our interesting future directions to
improve our approach.

About abstraction refinement, the scheduling constraint
based abstraction refinement (SCAR) is an effective method
for concurrent program verification [36]. SCAR is built on
top of CBMC that is a bounded model checker for C and
C++ programs. However, instead of using the scheduling
constraint [37], SCAR ignores the scheduling constraint and
uses a scheduling constraint based abstraction refinement
method that makes the constraints in the initial abstraction
to be reduced significantly. From the initial abstraction, they
use graph-based algorithms over an event order graph (EOG)
for counterexample validation. Given that abstraction, a coun-
terexample π is produced, which is a set of assignments to
the variables in the abstraction. To validate the feasibility of
π , they validate its corresponding EOG, which captures all
the order requirements among the events of π . Some order
requirements deducible from the EOG are called derived
orders of the EOG. The derived orders are produced based
on three rules by looping and they try to apply each rule to
the EOG in sequence until this process reaches a fixpoint
where no derived order can be produced any more. From
obtained derived orders, if there exists a cycle, then the EOG
is infeasible. Otherwise, it is not sure whether the EOG is
feasible or not. If the EOG is feasible, it is truly a counterex-
ample. Whenever counterexample validation is determined
to be infeasible, the abstraction is refined by a refinement
generation method that obtains a set of constraints and then
can be encoded into simple constraints and reduce a large
amount of space.

24972 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

To take advantage of the SCAR method, a parallel refine-
ment is proposed in which multiple engines are used to refine
the abstraction simultaneously [38]. Their parallel technique
performs on the whole abstraction search space instead of
dividing the search space into small ones. Each engine does
three steps that iteratively select a counterexample from the
abstraction, validate the counterexample (CE), and analyze
the refinement constraint (RC). Because they perform on the
whole reachable search space, to select a counterexample and
avoid duplication, they use a random search strategy. Besides,
all engines share the learnt clause lib that can be updated
and checked whether a counterexample is verified or not by
engines. All engines also use the same RC lib, whenever
an engine generates a refinement constraint. The constraint
is added to the RC lib that is simplified to avoid redundant
constraints. By sharing RC lib, each engine can obtain mul-
tiple refinement constraints in each iteration that makes the
number of required iterations for each engine reduced. For
each iteration, if one engine returns UNSAT, then the property
is proven safe, and finishes verification. Otherwise, in the
case of SAT, a counterexample is returned to validate the
feasibility. If the counterexample is feasible, all engines will
terminate andUnsafe is returned. Otherwise, the engine keeps
on doing to analyze RC. Their approach is similar to our
approach when they use the shared RC lib to avoid redundant
constraint, while we use a shared cache to avoid redundant
states and state sequences. However, our approach does not
deal with the whole search space by each worker and so we
do not need to consider the random search strategy and each
worker conducts its sub-state spaces independently.

The existing parallel techniques mentioned above, where
SAT/SMT solvers play the main role, are different from our
approach. The advantage of their approach is that it is fully
automatic to verify concurrent programs, while our approach
starts from a specification and then implements a concurrent
program based on the specification. Our technique can be
used to verify not only a concurrent Java program [39],
but also check the concurrent program that conforms to the
specification, which can be used to complement the very
last step in correct-by-constructions software development.
We do not compare our tool with existing tools based on BMC
and SCAR mentioned above because they are dedicated to
verifying C and C++ programs. Besides, JBMC is used to
model check sequential Java programs, but not concurrent
Java programs. JPF is one of the most mature model checkers
for Java programs that is why it is used to evaluate and
compare with JBMC [19] in terms of correctness and running
performance. Therefore, it is worth comparing our tool with
JPF as well as improving the running performance of JPF.

In correct-by-construction system or software develop-
ment, Ge et al., [10] propose a High-Level Language (HLL)
for Event-B that can be used between Event-B models
and C code. Event-B models are translated to respective
HLL models, where Event-B invariants are proved using a
SAT-based model checker, from which C code is automati-
cally generated. Although the authors claim that they propose

a technique that makes it possible to conduct conformance
proofs between HLL models and the C code generated from
the models, they do not describe how they do so in detail. Our
paper describes how to check the conformance of programs
with specifications in detail that can be regarded as a com-
plement to the very last step in the correct-by-construction
technique.

Dalvandi et al. [2] propose a way to generate executable
code in Dafny [40] from scheduled Event-B models. Sched-
uled Event-B is an augmented version of Even-B such that a
scheduling language is used to make the control flow in an
Event-B model explicit and facilitate derivation of algorith-
mic structure in Event-B refinement. Generated executable
code can be verified with a static program verifier, such as
Z3, because code is written in Dafny. Generated executable
code is dedicated to sequential programs, while our tool can
test concurrent programs.

Rivera et al. [3] propose a way to generate JML-annotated
Java programs from Even-B models. They build a tool called
EventB2Java to support the proposed program generation
technique. Two case studies are conducted with EventB2Java
to demonstrate the usefulness of the proposed technique and
the support tool. Both sequential and concurrent programs
can be generated with EventB2Java. Note that there is a sen-
tence ‘‘. . . JML [. . .] is designed to specify arbitrary sequen-
tial Java programs . . . ,’’ though, in the paper [4]. Because
generated programs are annotated with JML [41], Java pro-
grams generated by EventB2Java can be verified. However,
the paper [3] does not describe how to formally verify gen-
erated Java programs. To the best of our knowledge, JML
focuses on the sequential behavior of Java programs, while
extending JML to support concurrency is in progress [42].
Hence, checking, verifying or testing JML-annotated Java
concurrent programs is still not matured.

Tran-Jørgensen et al. [4] propose a way to automatically
generate JML-annotated Java programs from VDM models.
They address the semantic differences between the contract-
based elements of VDM-SL and JML and describe how to
use dynamic JML assertion checks to ensure the consistency
of VDM’s subtypes. It looks like that JML-annotated Java
programs generated from VDM models are only sequential.

IX. CONCLUSION
We have proposed a new testing technique for concurrent
programs in a stratified way. The proposed technique could
be processed naturally in parallel, which has been utilized by
the tool supporting the technique. The experiments reported
in the paper demonstrate that the proposed technique can mit-
igate the state space explosion problem and largely improve
the timing performance for testing for all cases except for
one, which cannot be achieved with the straightforward use
of only one JPF instance. The tool supporting the technique
is dedicated to Java programs. However, our technique can
be applied to other programming languages provided that we
have a model checker for the language concerned and can
interact with the model checker as we have done with JPF.

VOLUME 10, 2022 24973

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

The experiments reported in the present paper demonstrate
that concurrent programs in which there are no long lasso
loops can be effectively tackled with the proposed technique,
while those in which there exist long lasso loops cannot.
The present paper reported on totally four case studies. The
three programs can be tackled well with our tool, while
one cannot. Accordingly, a non-small number of concurrent
programs would be likely to belong to the first group if not
all. However, we need to conduct some more case studies in
which some other concurrent programs will be tackled with
our tool in order to make sure that the proposed technique and
our tool supporting it can mitigate the state space explosion
reasonably well.

Regarding bugs that can be found by our technique/tool,
we want to address invariant properties [43] that hold in the
whole reachable state spaces of programs. Currently, we only
consider finite state sequences generated from programs,
so we cannot detect any liveness property flaws. As one
piece of our future work, we will use some semantics of
temporal logics defined over finite state sequences [44], [45]
and extend the technique/tool so that some liveness properties
can be tested.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers
who carefully read an earlier version of the paper and gave
them valuable comments without which they were not able
to complete the present paper.

REFERENCES
[1] V. Arora, R. Bhatia, and M. Singh, ‘‘A systematic review of approaches

for testing concurrent programs,’’ Concurrency Comput., Pract. Exper.,
vol. 28, no. 5, pp. 1572–1611, Apr. 2016.

[2] M. Dalvandi, J. M. Butler, A. Rezazadeh, and A. S. Fathabadi, ‘‘Verifi-
able code generation from scheduled event-B models,’’ in Abstract State
Machines, Alloy, B, TLA, VDM, and Z (Lecture Notes in Computer Sci-
ence), vol. 10817, M. J. Butler, A. Raschke, T. S. Hoang, and K. Reichl,
Eds. Southampton, U.K.: Springer, Jun. 2018, pp. 234–248.

[3] V. Rivera, N. Cataño, T. Wahls, and C. Rueda, ‘‘Code generation for event-
B,’’ Int. J. Softw. Tools Technol. Transf., vol. 19, no. 1, pp. 31–52, 2017.

[4] P. W. V. Tran-Jørgensen, P. G. Larsen, and G. T. Leavens, ‘‘Automated
translation of VDM to JML-annotated Java,’’ Int. J. Softw. Tools Technol.
Transf., vol. 20, no. 2, pp. 211–235, Apr. 2018.

[5] C. Jones, Systematic Software Development Using VDM. Upper Saddle
River, NJ, USA: Prentice-Hall, Jan. 1990.

[6] J.Woodcock and J. Davies,Using Z—Specification, Refinement, and Proof
(Prentice Hall International Series in Computer Science). Upper Saddle
River, NJ, USA: Prentice-Hall, 1996.

[7] E. Börger, ‘‘The ASM refinement method,’’ Formal Aspects Comput.,
vol. 15, nos. 2–3, pp. 237–257, Nov. 2003.

[8] J.-R. Abrial, The B-Book—Assigning Programs to Meanings. Cambridge,
U.K.: Cambridge Univ. Press, Jan. 2005.

[9] J.-R. Abrial,M. Butler, S. Hallerstede, T. S. Hoang, F.Mehta, and L. Voisin,
‘‘Rodin: An open toolset for modelling and reasoning in event-B,’’ Int. J.
Softw. Tools Technol. Transf., vol. 12, no. 6, pp. 447–466, Nov. 2010.

[10] N. Ge, A. Dieumegard, E. Jenn, and L. Voisin, ‘‘Correct-by-construction
specification to verified code,’’ J. Softw., Evol. Process, vol. 30, no. 10,
p. e1959, Oct. 2018.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer,
and C. Talcott, All About Maude (Lecture Notes in Computer Science),
vol. 4350. Berlin, Germany: Springer, 2007.

[12] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, ‘‘Model checking
programs,’’ Autom. Softw. Eng., vol. 10, no. 2, pp. 203–232, 2003.

[13] C. M. Do and K. Ogata, ‘‘Specification-based testing with simulation rela-
tions,’’ in Proc. 31st Int. Conf. Softw. Eng. Knowl. Eng. (SEKE), Jul. 2019,
pp. 107–112.

[14] C. M. Do and K. Ogata, ‘‘A divide & conquer approach to testing concur-
rent Java programs with JPF and Maude,’’ in Structured Object-Oriented
Formal Language andMethod, H. Miao, C. Tian, S. Liu, and Z. Duan, Eds.
Cham, Switzerland: Springer, 2020, pp. 42–58.

[15] K. Ogata and K. Futatsugi, ‘‘Simulation-based verification for invariant
properties in the OTS/CafeOBJ method,’’ Electron. Notes Theor. Comput.
Sci., vol. 201, pp. 127–154, Mar. 2008.

[16] T. Kurita, M. Chiba, and Y. Nakatsugawa, ‘‘Application of a formal
specification language in the development of the ‘mobile FeliCa’ IC
chip firmware for embedding in mobile phone,’’ in Proc. FM, in Lecture
Notes in Computer Science, vol. 5014. Berlin, Germany: Springer, 2008,
pp. 425–429.

[17] E. Clarke, A. Biere, R. Raimi, andY. Zhu, ‘‘Boundedmodel checking using
satisfiability solving,’’ Formal Methods Syst. Des., vol. 19, no. 1, pp. 7–34,
Jan. 2001.

[18] D. Kroening and M. Tautschnig, ‘‘CBMC—C bounded model checker,’’
in Tools and Algorithms for the Construction and Analysis of Systems,
E. Ábrahám and K. Havelund, Eds. Berlin, Germany: Springer, 2014,
pp. 389–391.

[19] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, andM. Trtik, ‘‘JBMC:
A bounded model checking tool for verifying Java bytecode,’’ in Com-
puter Aided Verification, H. Chockler and G. Weissenbacher, Eds. Cham,
Switzerland: Springer, 2018, pp. 183–190.

[20] M. Musuvathi and S. Qadeer, ‘‘Iterative context bounding for systematic
testing of multithreaded programs,’’ACMSIGPLANNotices, vol. 42, no. 6,
pp. 446–455, Jun. 2007.

[21] M. F. Atig, A. Bouajjani, and S. Qadeer, ‘‘Contextbounded analysis for
concurrent programs with dynamic creation of threads,’’ in Tools and
Algorithms for the Construction and Analysis of Systems, S. Kowalewski
and A. Philippou, Eds. Berlin, Germany: Springer, 2009, pp. 107–123.

[22] Open Source. (2009). Redis. Accessed: Feb. 7, 2022. [Online]. Available:
https://redis.io/

[23] Open Source. (2007). RabbitMQ. Accessed: Feb. 7, 2022. [Online]. Avail-
able: https://www.rabbitmq.com/

[24] Open Source. (2001). Apache Commons Lang. Accessed: Feb. 7, 2022.
[Online]. Available: https://commons.apache.org/proper/commons-lang/

[25] Open Source. (1995).MySQL. Accessed: Feb. 7, 2022. [Online]. Available:
https://www.mysql.com/

[26] K. Ogata, ‘‘Model checking designs with CafeOBJ—A contrast
with a software model checker,’’ in Proc. Workshop Formal Method
Internet Mobile Things, Shanghai, China, 2014. [Online]. Available:
http://www.jaist.ac.jp/~ogata/slides/ECNU2014Nov27-28.pdf

[27] G. Lowe, ‘‘An attack on theNeedham–Schroeder public-key authentication
protocol,’’ Inf. Process. Lett., vol. 56, no. 3, pp. 131–133, Nov. 1995.

[28] I. Rabinovitz and O. Grumberg, ‘‘Bounded model checking of con-
current programs,’’ in Computer Aided Verification, K. Etessami and
S. K. Rajamani, Eds. Berlin, Germany: Springer, 2005, pp. 82–97.

[29] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, ‘‘Bounded
model checking of multi-threaded C programs via lazy sequentialization,’’
in Proc. 26th Int. Conf. Comput. Aided Verification, in Lecture Notes
in Computer Science, vol. 8559, A. Biere and R. Bloem, Eds. Vienna,
Austria: Springer, Jul. 2014, pp. 585–602.

[30] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, ‘‘Bounded
verification of multi-threaded programs via lazy sequentialization,’’ ACM
Trans. Program. Lang. Syst., vol. 44, no. 1, pp. 1–50, Mar. 2022.

[31] O. Inverso and C. Trubiani, ‘‘Parallel and distributed bounded model
checking of multi-threaded programs,’’ in Proc. 25th ACM SIGPLAN
Symp. Princ. Pract. Parallel Program. (PPoPP). New York, NY, USA:
Association for Computing Machinery, Feb. 2020, pp. 202–216.

[32] P. Chatterjee, S. Roy, B. P. Diep, and A. Lal, ‘‘Distributed bounded model
checking,’’ Formal Methods Syst. Des., Jan. 2022.

[33] T. Neele, A. Wijs, D. Bošnački, and J. V. D. Pol, ‘‘Partial-order reduc-
tion for GPU model checking,’’ in Automated Technology for Verifi-
cation and Analysis, C. Artho, A. Legay, and D. Peled, Eds. Cham,
Switzerland: Springer, 2016, pp. 357–374.

[34] A. Wijs, T. Neele, and D. Bosnacki, ‘‘GPUexplore 2.0: Unleashing GPU
explicit-state model checking,’’ in Proc. Int. Symp. Formal Methods,
vol. 9995, Nov. 2016, pp. 694–701.

[35] R. DeFrancisco, S. Cho, M. Ferdman, and A. S. Smolka, ‘‘Swarm
model checking on the GPU,’’ in Model Checking Software, F. Biondi,
T. Given-Wilson, and A. Legay, Eds. Cham, Switzerland: Springer, 2019,
pp. 94–113.

24974 VOLUME 10, 2022

C. M. Do, K. Ogata: Parallel Specification-Based Testing for Concurrent Programs

[36] L. Yin, W. Dong, W. Liu, and J. Wang, ‘‘Scheduling constraint based
abstraction refinement for multi-threaded program verification,’’ 2017,
arXiv:1708.08323.

[37] J. Alglave, D. Kroening, and M. Tautschnig, ‘‘Partial orders for efficient
bounded model checking of concurrent software,’’ in Computer Aided
Verification, N. Sharygina and H. Veith, Eds. Berlin, Germany: Springer,
2013, pp. 141–157.

[38] L. Yin, W. Dong, W. Liu, and J. Wang, ‘‘Parallel refinement for multi-
threaded program verification,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw.
Eng. (ICSE), May 2019, pp. 643–653.

[39] C. M. Do and K. Ogata, ‘‘A divide & conquer approach to testing concur-
rent programs with JPF*,’’ in Proc. 27th Asia–Pacific Softw. Eng. Conf.
(APSEC), Dec. 2020, pp. 356–364.

[40] K. Rustan and M. Leino, ‘‘Developing verified programs with Dafny,’’ in
Proc. 35th Int. Conf. Softw. Eng. (ICSE), D. Notkin, B. H. C. Cheng, and
K. Pohl, Eds., San Francisco, CA, USA, May 2013, pp. 1488–1490.

[41] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens,
K. R. M. Leino, and E. Poll, ‘‘An overview of JML tools and applications,’’
Int. J. Softw. Tools Technol. Transf., vol. 7, no. 3, pp. 212–232, Jun. 2005.

[42] E. Rodríguez, M. Dwyer, C. Flanagan, J. Hatcliff, G. T. Leavens, and
Robby, ‘‘Extending JML for modular specification and verification of
multi-threaded programs,’’ in Object-Oriented Programming, A. P. Black,
Ed. Berlin, Germany: Springer, 2005, pp. 551–576.

[43] K. Ogata and K. Futatsugi, ‘‘Simulation-based verification for invariant
properties in the OTS/CafeOBJ method,’’ Electron. Notes Theor. Comput.
Sci., vol. 201, pp. 127–154, Mar. 2008.

[44] A. Bauer, M. Leucker, and C. Schallhart, ‘‘Comparing LTL semantics
for runtime verification,’’ J. Log. Comput., vol. 20, no. 3, pp. 651–674,
Jun. 2010.

[45] G. D. Giacomo andY.M.Vardi, ‘‘Linear temporal logic and linear dynamic
logic on finite traces,’’ in Proc. 23rd Int. Joint Conf. Artif. Intell. (IJCAI),
2013, pp. 854–860.

CANH MINH DO received the B.S. degree in
information technology from the National Eco-
nomics University, in 2013, and the M.S. degree
in information science from the Japan Advanced
Institute of Science and Technology (JAIST),
in 2019, where he is currently pursuing the Ph.D.
degree.

He has been working on how to efficiently test
large concurrent programs as his Ph.D. research.

KAZUHIRO OGATA received the B.S., M.S., and
Ph.D. degrees in engineering from Keio Univer-
sity, in 1990, 1992, and 1995, respectively.

He is currently a Professor with the Japan
Advanced Institute of Science and Technology
(JAIST). His research interests include applica-
tions of formal methods to systems, such as dis-
tributed systems and security protocols.

VOLUME 10, 2022 24975

