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ABSTRACT The naive Bayesian classification method has received significant attention in the field of
supervised learning. This method has an unrealistic assumption in that it views all attributes as equally
important. Attribute weighting is one of the methods used to alleviate this assumption and consequently
improve the performance of the naive Bayes classification. This study, with a focus on nonlinear optimization
problems, proposes four attribute weighting methods by minimizing four different loss functions. The
proposed loss functions belong to a family of exponential functions that makes the optimization problems
more straightforward to solve, provides analytical properties of the trained classifier, and allows for the
simple modification of the loss function such that the naive Bayes classifier becomes robust to noisy
instances. This research begins with a typical exponential loss which is sensitive to noise and provides
a series of its modifications to make naive Bayes classifiers more robust to noisy instances. Based on
numerical experiments conducted using 28 datasets from the UCImachine learning repository, we confirmed
that the proposed scheme successfully determines optimal attribute weights and improves the classification
performance.

INDEX TERMS Attribute weighting, classification, exponential loss, naive bayes, nonlinear optimization.

I. INTRODUCTION
Based on the Bayesian decision theorem, a Bayesian classi-
fier predicts a test instance as a class that has the highest mem-
bership probability. This implies that learning a Bayesian
classifier involves estimating the prior and posterior distri-
butions from the training data. When training a Bayesian
classifier, to estimate the posterior distributions, knowledge
of the relationships among attributes is required. In particu-
lar, Bayesian network classifiers, also called Bayesian belief
networks [1], require background knowledge in the form
of a graph structure. Determining the optimal structure of
Bayesian networks is a well-known NP-hard problem.

Among Bayesian classifiers, the naive Bayesian classifier
has the simplest structure as it assumes that all attributes
in the training data are conditionally independent of each
other and equally important in determining the classes. These
assumptions prove advantageous for naive Bayes in that it is
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easy to implement and can be trained with a small dataset.
Although naive Bayes has strong assumptions on training
data, it has been the focus of many researchers and practi-
tioners because it often performs remarkably well in many
domains [2], such as rRNA sequence classification [3], anti-
spam filtering, identifying data correctness in wireless sensor
networks [4]–[6], document classification [7], and sentiment
classification in e-commerce product reviews [8].

Owing to its unrealistic assumptions, naive Bayes
sometimes exhibits poor performance. There are several
approaches for improving the classification accuracy of naive
Bayes [9]. One promising approach is the attribute weighting
technique, called weighted naive Bayes, which works by
assigning different weights to each attribute to alleviate the
assumption that all attributes are equally important. Let w(j)
be the weight of the jth attribute. If we restrictw(j) to be either
one or zero, then the attribute weighting becomes attribute
selection, where one indicates inclusion of the attribute, and
zero indicates exclusion of the attribute. Therefore, in the
approaches of attribute weighting, the value of w(j) is relaxed
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to a real number (usually a positive number for interpretation
purposes). In this study, we mainly discuss the weighting
approach, while still considering attribute selection by allow-
ing w(j) to take the zero value if necessary.

For the weighted naive Bayes to be effective, it is impor-
tant to assign appropriate weights to each attribute. This
has been widely studied by many researchers and practition-
ers with respect to attribute weighting methods, and they
are divided into three groups: filter, wrapper, and embed-
ded approaches [10]. Given a training dataset, the simplest
method to assign attribute weights is to measure the impor-
tance of each attribute using external criteria and apply
the measured importance directly to each attribute before
learning a naive Bayes classifier. Such methods are filter
approaches. In filter algorithms, calculating the attribute
importance or selecting significant attributes is performed as
a pre-processing step. Because it is separated from learn-
ing algorithms for classification or regression, it is rela-
tively faster than wrapper and embedded approaches. One
method to calculate the importance of an attribute is using
the Kullback-Leibler measure for the amount of informa-
tion [11]. A decision tree is often used to measure the impor-
tance of an attribute [12], in which the weight of the jth
attribute is calculated as 1/

√
dj, where dj is the depth at

which the jth attribute first appears in a fully grown tree.
The receiver operating characteristic (ROC) [13] can be a
good choice for weight values when training data have a class
imbalance problem [14]. Motivated by the fact that the area
under the ROC curve (AUC) can be interpreted as a class-
separating ability of each attribute, the study in [15] used
the AUC scores as attribute weights in the weighted naive
Bayes framework. The correlation-based feature selection
(CFS) [16] is a widely used method that composes a subset of
features based on their correlations. The main assumption to
employ CFS is that important features are highly correlated
with a class label but almost uncorrelated with other features.
The research employing CFS for the weighted naive Bayes
was proposed in that redundant features are removed with the
expectation that the conditional independence assumption of
the original naive Bayes can be relaxed [17]. Unlike other
weighted naive Bayes research, it imposes the weights when
estimating both prior and posterior probabilities. Another
correlation-based weighting approach, CFW (correlation-
based feature weighting), was proposed in [18]. Similar to
CFS, CFW assumes that highly predictive features would
be highly correlated with a class label (maximum mutual
relevance) but uncorrelated with other attributes (minimum
mutual redundancy) for naive Bayes. The mutual informa-
tion was used to measure each attribute-class correlation and
attribute-attribute correlations.

Although the aforementioned filter approaches provided
reasonable attribute weights and successful experimental
results, there is no guarantee of improvement on the classi-
fication accuracy of naive Bayes because attribute weighting
is performed independently of training a classifier. To obtain
weights that are optimal with respect to classification

performance, wrapper approaches have been proposed. They
assign attribute weights or select a subset of attributes
in a heuristic optimization manner by utilizing a learning
algorithm of interest in the training step with the learn-
ing objective of maximizing predictive power. In an earlier
study, the selective Bayesian classifier (SBC) [19], a step-
wise attribute selection technique, was combined with naive
Bayes. To maximize classification accuracy, the algorithm
repeatedly inserts important attributes or deletes irrelevant
ones. The selective naive Bayes (SNB) algorithm [20] was
proposed to overcome the heavy computational complexity
of SBC. It first calculates mutual information with the class
of each attribute and selects the attributes in descending order
of the mutual information. In another wrapper approach for
finding optimal attribute weights, the differential evolution-
ary algorithm was applied to determine the optimal weight
values [21].

Wrapper approaches usually require a large amount of
computational time because they repeatedly train and evalu-
ate a classifier. Another weakness is that they need to prepare
a validation set to evaluate a classifier within iterative proce-
dures, which could be a problem with a small amount of data.
Embedded approaches are designed to train a classifier and
simultaneously assign attribute weights (or select important
attributes). A well-known embedded approach is the decision
tree [22], [23], which is suitable for a small dataset because
the given dataset does not need to be divided into training and
validation sets. The main idea of the embedded approaches is
to formulate attribute weighting as an optimization problem,
in which the objective function is the performance of a clas-
sifier and the decision variables are the attribute weights. The
weighted naive Bayes based on the gradient-based L-BFGS-
M method [24] was proposed by introducing two objective
functions: conditional log-likelihood (CLL) and mean square
error (MSE) [25], which focus on maximizing the likelihood
of data from a probability perspective and minimizing pre-
dictive error from a classification perspective. This method
was extended by giving different attribute weights to different
class labels [26]. A matrix of weights which size is nc × m
(nc: the number of class,m: the number of attributes) must be
constructed to implement this idea. The superior performance
was shown by conducting benchmark tests with real-world
datasets. Another objective function, which maximizes the
difference between membership probabilities for correctly-
classified and misclassified instances, was introduced in [27]
for the weighted naive Bayes. This research also proposed
different weight vectors for different classes.

In the context of embedded approaches, we propose an
exponential loss minimization method to learn weighted
naive Bayes classifiers. We attempt to investigate the
intended characteristic of each loss function such as robust-
ness to noisy instances and linkage from our research to the
related studies. Beginning with a typical exponential loss of
the classification margin, this study sequentially introduces
four different loss functions, where each function has its own
analytical reasoning. Because the loss functions are evaluated
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within a linear formulation of weighted naive Bayes, this
study only considers binary classification.

The remainder of this paper is organized as follows.
Section II reviews the naive Bayesian classification and
mathematical formulation of the weighted naive Bayes.
In Section III, we propose four different loss functions
and their solutions for attribute weights. This section pro-
vides their analytical properties and empirical evidence from
illustrative experiments. To confirm the performance of the
proposed weighted naive Bayes classifiers, numerical exper-
iments are presented in Section IV. Section V concludes the
paper and discusses future research directions.

II. BACKGROUND
A. NAIVE BAYES CLASSIFIER
A Bayesian classifier predicts the class labels of unknown
instances with a corresponding maximum posterior
probability. Letm be the number of attributes and y ∈ {−1, 1}
be the class label. The predicted class ŷi of the ith unseen
instance xi = [xi1, xi2, . . . xim] is then determined as in (1).

ŷi = argmax
y
P(y)P(xi|y) (1)

Estimating the posterior probability P(xi|y) increases the
model complexity and requires a large amount of train-
ing data. Therefore, naive Bayes simply assumes that all
attributes are conditionally independent. With this assump-
tion, we use (2) instead of (1).

ŷi = argmax
y
P(y)

m∏
j=1

P(xij|y) (2)

When the jth attribute is numerical, there are several meth-
ods to compute P(xij|y), such as changing the jth attribute
to a discrete attribute by applying the histogram method or
interpreting it as some other probability distribution. The
empirical distribution can be estimated using the kernel den-
sity estimation [28]. In this study, we assume that the numer-
ical attribute follows a normal distribution. (3) is used as
an estimation of the posterior probability, where µ(j|y) and
σ(j|y) are the mean and standard deviations of the jth attribute,
respectively, given class label y.

P(xij|y) ∼=
1

√
2πσ(j|y)

exp

[
−
{xij − µ(j|y)}

2

2σ 2
(j|y)

]
(3)

For a categorical attribute, the posterior probability is esti-
mated according to the proportion of the number of training
instances in class y that take a particular value xij, denoted
by n(xij|y), to the total number of instances in class y, n(y).
After applying Laplace’s correction, the estimated posterior
probability is shown in (4), where nj is the number of cate-
gories (cardinality) of the jth attribute.

P(xij|y) ∼=
n(xij|y)+ 1
n(y)+ nj

(4)

B. WEIGHTED NAIVE BAYES CLASSIFIER
Since the assumption of equally important attributes is rarely
satisfied in practice, several studies have attempted to relax
this assumption [9]. Attribute weighting is one of the most
frequently used relaxation methods. The underlying princi-
ple of weighted naive Bayesian classification is that some
attributes are more (or less) important than others in a classi-
fication task. This leads to the modification of (2), which is
given in (5).

ŷi = argmax
y
P(y)

m∏
j=1

Pw(j)(xij|y), (5)

where Pw(j)(xij|y) represents the weighted posterior probabil-
ity, which is usually defined in an exponential form as in (6).

Pw(j)(xij|y) := P(xij|y)w(j) (6)

Note that the weight of the jth attribute, w(j), representing
the significance of the attribute, can be any positive number.
If it is allowed to take either 0 or 1, (6) is reduced to an
attribute selection problem. In the binary class case, which
is the main focus of this study, (5) can be described by an
‘‘If . . . then . . . ’’ rule, as in (7).

If P(yi = 1)
m∏
j=i

Pw(j)(xij|yi = 1) >

P(yi = −1)
m∏
j=i

Pw(j)(xij|yi = −1), (7)

then xi is classified as ‘‘1’’ (otherwise, ‘‘−1’’).

Using (6) and taking the logarithm, the weighted naive Bayes
becomes a linear function of the weights, as shown in (8),
with the classification rule.

f̂ (xi) = P0 + wPxi,

xi is classified as

{
1, if f̂ (xi) > 0
−1, if f̂ (xi) ≤ 0,

(8)

where

P0 = log
P(y = 1)
P(y = −1)

,

Px =
[
log

P(xi1|yi = 1)
P(xi1|yi = −1)

, . . . , log
P(xim|yi = 1)
P(xim|yi = −1)

]
,

w = [w(1),w(2), . . . ,w(m)] .

III. PROPOSED METHOD
In this section, we propose an optimization approach for
learning weighted naive Bayes classifiers. The optimization
problem is formulated in that training a weighted naive
Bayes classifier involves finding optimal attribute weights
that maximize the overall accuracy of the classifier. To this
end, we first introduce a typical exponential loss of classi-
fication margin and then sequentially introduce three other
loss functions, namely, binomial deviance, modified binomial
deviance, and generalized binomial deviance loss functions.

22726 VOLUME 10, 2022



T. Kim, J.-S. Lee: Exponential Loss Minimization for Learning Weighted Naive Bayes Classifiers

With all the loss functions, the optimization problems can be
solved using gradient-based nonlinear optimization methods,
such as quasi-Newton methods [29].

A. EXPONENTIAL LOSS MINIMIZATION
To obtain the optimal weights thatmaximize the classification
accuracy, an exponential loss can be used. With the given ith
instance xi and its class label yi ∈ {−1, 1}, the exponential
loss Lexp(xi, yi) is defined as an exponential form of the
classification margin, as shown in (9).

Lexp(xi, yi) = exp {−yif (xi)} (9)

With a training set of n instances, the total exponential loss is
given as a summation of (9). One of the proposed weighting
methods, namely exponential naive Bayes (ENB), is defined
in (10), which is the solution for minimizing the total expo-
nential loss. Once we find the optimal weights, we can use
(8) to classify new instances.

wENB = argmin
w

n∑
i=1

exp {−yi(P0 + wPxi)} (10)

The validity of the ENB can be demonstrated as follows.
It is straightforward to show that (10) is equivalent to (11).

wENB = argmin
w

[TFNR + TFPR] (11)

because

TFNR =
∑

i|yi=+1

P(y = −1)
P(y = +1)

m∏
j=1

{
P(xij|yi = −1)
P(xij|yi = +1)

}w(j)
,

TFPR =
∑

i|yi=−1

P(y = +1)
P(y = −1)

m∏
j=1

{
P(xij|yi = +1)
P(xij|yi = −1)

}w(j)
.

It is obvious that both TFNR and TFPR are non-negative
and measure incorrect classification of instances. If a positive
instance is misclassified as a negative class, TFNR increases.
Likewise, if a negative instance is incorrectly predicted,
TFPR increases. Hence, the optimal attribute weights of wENB
simultaneously minimize the ‘‘false negative rate’’ and ‘‘false
positive rate’’ of a classifier.

As an ideal case, if infinite training instances are given, it is
known that the minimization of exponential loss is equivalent
to the minimization of binomial deviance loss [30], which is
given in (12).

Ldev(xi, yi) = log
[
1+ exp {−2yif (xi)}

]
(12)

However, with a finite training dataset, the optimization result
of binomial deviance loss minimization must be different
to that of exponential loss minimization in terms of scale.
As yif (xi) → −∞, the value of (9) increases exponentially,
whereas that of (12) increases almost linearly. Therefore,
we can expect that Ldev is less sensitive than Lexp to noisy
instances, examples of which are instances that are difficult
to classify. In (13), our second proposed model, namely
deviance naive Bayes (DNB), is depicted. We can train

a weighted naive Bayes classifier by minimizing the total
binomial deviance loss.

wDNB=argmin
w

n∑
i=1

log
[
1+ exp {−2yi(P0 + wPxi)}

]
(13)

Observing that the loss increase of Ldev is slower than that of
Lexp as the classification margin increases, we additionally
propose to remove the constant ‘2’ from the classification
margin yi(P0 + wPxi) in (13) to further reduce the loss
increase. We believe that this modification would make the
trained weighted naive Bayes classifier less sensitive to noisy
instances. We name it the log-likelihood naive Bayes (LNB),
which is shown in (14).

wLNB=argmin
w

n∑
i=1

log
[
1+ exp {−yi(P0 + wPxi)}

]
(14)

This simple modification explains why the solution to the
optimization problem in (14) is reasonable, as shown in the
following theorem.
Theorem 1: wLNB is the maximum likelihood estimator of

the attribute weights.
Proof: By converting (14) into a maximization problem

and removing the logarithm, we obtain (15).

wLNB = argmax
w

n∏
i=1

1
1+ exp {−yi(P0 + wPxi)}

(15)

(15) can be rewritten as

wLNB = argmax
w

∏
i|yi=1

f̂ (xi)

1+ exp f̂ (xi)

∏
i|yi=−1

1

1+ exp f̂ (xi)
,

(16)

resulting in the product of two groups of terms, where each
group of terms corresponds to one of the classes.

By expanding (16), we obtain

wLNB = argmax
w

∏
i|yi=1

P(xi, yi = 1)
P(xi, yi = 1)+ P(xi, yi = −1)

×

∏
i|yi=−1

P(xi, yi = −1)
P(xi, yi = 1)+ P(xi, yi = −1)

= argmax
w

∏
i|yi=1

P(yi = 1|xi)
∏

i|yi=−1

P(yi = −1|xi)

= argmax
w

n∏
i=1

P(yi|xi). (17)

The last term in (17) contains a product of the posterior
probabilities for all of the training instances. Therefore,
wLNB is the maximum likelihood estimator of the attribute
weights. �

By Theorem 1, we could deduce that the LNB is eventually
equivalent to the CLL in [25].

Further, we focus on the multiplier of the classification
margin yi(P0 + wPxi) in (13). Because we change the mul-
tiplier of the margin from −2 to −1 for the robustness of
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a classifier to noisy instances, we can apply a generalized
multiplier, namely −α, and let the nonlinear optimization
routine find its best value according to a given training set.
Thus, it is reasonable to interpret the multiplier as a tuning
parameter for the noise level in the data. By introducing −α,
the generalized DNB (GDNB) is given in (18).

wGDNB = argmin
w

n∑
i=1

log
[
1+ exp {−αyi(P0 + wPxi)}

]
(18)

By defining GDNB, DNB and LNB can be seen as the special
cases of GDNB with α = 2 and α = 1, respectively. α is
a tuning parameter that controls the penalty of misclassified
instances when evaluating the loss function, which means
that if α is high, it is likely to focus more on outliers or
noisy instances. Because the noise level would be different
for different data, its optimal value should be determined
such that it maximizes the classification performance of a
trained classifier. To find the optimal attribute weights and
optimal tuning parameter α simultaneously, (18) is reformu-
lated as (19).

wGDNB= argmin
α,w

n∑
i=1

log
[
1+ exp {−αyi(P0 + wPxi)}

]
= arg min

w0,w′

n∑
i=1

log
[
1+ exp

{
−yi(w0P0 + w′Pxi)

}]
(19)

From the right-most side of (19), we observe that finding α
is equivalent to assigning weights to not only posterior prob-
abilities, P(xij|y), but also prior probability, P(y). According
to the context in which attribute weights indicate the degree
of importance of the attributes, w0 can be defined as the
confidence of prior information. With GDNB, we need to
modify the classification rule in (8), as shown below.

f̂ (xi) = w0P0 + wPxi,

xi is classified as

{
1, if f̂ (xi) > 0
−1, if f̂ (xi) ≤ 0

(20)

In addition to the above loss functions, we introduce non-
negative constraints, which are shown in (21), for all four sets
of attributes. The constraints are intended to provide inter-
pretation ability to the proposed methods because a negative
weight cannot be interpreted in terms of importance.

w0 ≥ 0, w ≥ 0 (21)

By minimizing the proposed loss functions with respect to
(10), (13), (14), and (19) with the constraints in (21), the
proposed methods, namely, ENB, DNB, LNB, and GDNB,
are trained.

The proposed learning algorithm is briefly described in
Algorithm 1. Most of the computational time of the pro-
posed method depends on the L-BFGS-B because training
an original naive Bayesian classifier is done only once and

Algorithm 1 Attribute Weighting via Loss Minimization
Require: D = {xi, yi}1≤i≤N
P0,Px = NaiveBayes(D) F train an original naive Bayes.
OptFun = Choose among {ENB, DNB, LNB, GDNB}
if OptFun = GDNB then

w = Initialize weights vector as 1{1×(m+1)}
LB = 0{1×(m+1)}

else
w = Initialize weights vector as 1(1×m)
LB = 0(1×m)

end if
w∗OptFun = L-BFGS-B(w, P0,Px,D, OptFun, LB)
return w∗OptFun

thus is a relatively small burden. The computational cost of
one iteration of the L-BFGS-B update is O(p2m) in the worst
case [24], where p is the control parameter for memory allo-
cation. In this study, we set p = 5 as recommended in [24].
The proposed loss functions defined by the summation over
training instances should be evaluated in each iteration of the
L-BFGS-B update. Therefore, the computational complexity
of one iteration in the proposed algorithm becomes O(p2mn).

B. COMPARISON OF LOSS FUNCTIONS
This subsection compares and interprets the loss functions
using an illustrative example. Figure 1 depicts three loss func-
tions, namely, exponential, binomial deviance, and modified
binomial deviance loss functions, at varying classification
margins yf , which monotonically decrease and have non-
negative values. The exponential loss is always greater than
the other loss functions and increases exponentially in the
negative margin, whereas the others increase less rapidly.
This means that when noisy instances, which are difficult to
classify, are included in a training set, it is expected that a
classifier trained by minimizing the exponential loss would
be more affected by those instances. Therefore, an overfitting
problem could possibly occur because their losses account
for a large part of the total loss that an employed nonlinear
optimizer attempts to reduce.

The value of the binomial deviance is higher and lower than
that of the modified binomial deviance at the negative and
positive margins, respectively. This implies that the modified
binomial deviance is less sensitive to misclassified instances
than others, while it assigns a larger amount of loss to
misclassified instances than to correctly classified instances;
therefore, the less-steep losses are expected to be more robust
to noisy data, as intended.

To show the difference among the loss functions, we gen-
erated an illustrative 2D example consisting of two classes
that are easily separable but have few opposite class instances
(marked 1 to 5 in Figure 2(a)) in each of the class regions.
Hence, we intentionally generated instances that would be
incorrectly classified to observe their losses. We then trained
four naive Bayes classifiers (NB, ENB, DNB, and LNB) from

22728 VOLUME 10, 2022



T. Kim, J.-S. Lee: Exponential Loss Minimization for Learning Weighted Naive Bayes Classifiers

FIGURE 1. Exponential, binomial deviance, and modified binomial
deviance loss functions.

the synthetic dataset. We did not include GDNB because
its result would be similar to that of DNB or LNB for this
small and simple example. Figure 2(a) depicts the decision
boundaries for which the standard NB is distinct from the
others. The instances marked 1 to 5 were misclassified by all
the decision boundaries. Although the classification results
are the same, the loss values of the instances varied across
methods. More specifically, ENB showed a significantly dif-
ferent distribution of instance losses in comparison with DNB
and LNB. Figure 2(b) shows the loss values of each training
instance, whichwere normalized by the total loss such that the
sum of the normalized losses became 1, for an effective com-
parison. Themisclassified instances were marked from 1 to 5.
Note that the loss values are the results after the optimization
procedure, which implies that they are the already-minimized
values. As can be seen from the figure, the misclassified
instances of LNB and DNB account for more than 70% of
the total loss, whereas ENB has less than 60%. This implies
that ENB is more focused on instances 1 to 5 than DNB and
LNB because, to minimize the total loss, it was beneficial to
reduce the losses of the noisy instances more than those of
other well-classified instances. This example shows that our
reasoning regarding the robustness to noise in sequentially
introducing the loss functions is valid. We provide more
empirical evidence for the robustness in Section IV-C.

IV. NUMERICAL EXPERIMENTS
A. EXPERIMENTAL SETTING
To confirm the performance of the proposed weighted
naive Bayes, numerical experiments were conducted based
on 28 real datasets from the University of California,
Irvine (UCI) machine learning repository [31]. The datasets
are listed in Table 1. They were collected to evaluate classi-
fiers in various circumstances in terms of the percentage of
minority class instances, total number of instances, and total
number of attributes. The datasets are sorted in ascending

FIGURE 2. Effects of three loss functions: ENB, DNB, and LNB.

order of minority ratio; the dataset ‘‘Nursery’’ is the most
imbalanced case (2.53%), whereas the dataset ‘‘Breast Can-
cer’’ has the most balanced class distribution (37.26%).
Each dataset contains different numbers of instances ranging
from 151 to 28,056 and different numbers of attributes, rang-
ing from 4 to 64. Most datasets consist of either numerical or
categorical attributes. Some datasets, such as ‘‘Chess,’’ have
both. To focus on binary classification, the datasets with more
than two classes were converted into binary class cases by
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assigning one class as a minority class and integrating the
other classes into a majority class.

Based on the real-world datasets, we conducted compara-
tive experiments with eleven naive Bayes methods, namely
the standard naive Bayes (NB), selective Bayesian classifier
(SBC) [19], Kullback-Leibler NB (KLNB) [11], weighted
naive Bayes with tree induction (TreeNB) [12], deep fea-
ture weighting NB (DFWNB) [17], correlation based filter
weighting NB (CBFWNB) [18], weighted naive Bayes with
mean squared error loss (MSE) [25], and our proposed meth-
ods (ENB, DNB, LNB, and GDNB).

B. GENERAL PERFORMANCE
The experimental results are summarized in Table 2, which
records the accuracy and relative improvement rates for
each combination of a classifier and a dataset. The rel-
ative improvement rate (RI) in parentheses is calculated
as (Accuracy(·) − Accuracy(NB))/Accuracy(NB) × 100(%),
where Accuracy(·) is the accuracy of each method and
Accuracy(NB) is the accuracy of the standard NB, to deter-
mine how much improvement can be achieved by the
weighted NB methods over the standard NB. The average
RIs are shown in the last row of the table. Every experiment
involved 10-fold cross-validation; thus, the accuracy reported
in the table is the average of 10 accuracy values. The under-
lined numbers indicate the best (boldface) or worst (italic)
accuracy for each dataset.

In three datasets (‘‘Steel Plate Faults,’’ ‘‘Image Segmen-
tation,’’ and ‘‘Wholesale Customers’’), there was a signif-
icant improvement in the attribute weighting methods. For
example, while NB correctly classified 66.66% of instances
in the ‘‘Steel Plate Faults’’ dataset, the proposedDNB showed
an accuracy of 93.6%, resulting in a 40.43% improvement.
The correlation heatmaps of the three datasets are shown in
Figures 4, 5, and 6. It is clear that the attributes in those
datasets are highly correlated, which implies that some of the
attributes are redundant for classification. From this exam-
ple, we can see that the proposed method can improve the
classification performance by attribute weighting for highly
correlated data. In fact, compared with NB, one of the pro-
posed methods showed better accuracy for all datasets except
for ‘‘Wall-Following Robot Navigation Data (4L).’’ All other
attribute weighting methods also performed worse than NB
for this dataset. Considering that this dataset has the small-
est number of attributes, it may be unnecessary to apply
attribute weighting to the dataset. For the proposed methods,
the attribute selection rate was additionally computed by the
number of attributes with non-zero weights over total number
of attributes in each dataset. As can be seen from Table 3, the
selection rates are similar across the methods but different
across the datasets. The dropped attributes by zero weights
appeared in the most cases, while there was no attribute
selection in four datasets (No. 1, 2, 16, and 24). Especially,
we observed that only about 20% of attributes contributed
to the classification task for the ‘‘Multiple Attribute (mfeat-
zer)’’ dataset (No. 11).

From Table 2, we can observe that the attribute weight-
ing methods generally outperformed the standard NB. Next,
we compare the weighted naive Bayes by only considering
the RI values. As can be seen from the last row of the table, the
proposedmethods showed the largest improvement compared
with the standard NB by 10.65% on average. The average
RI for the proposed methods was computed by taking the
largest RI value from each row in the last four columns (ENB,
DNB, LNB, and GDNB) and averaging them because this
study provides four options to perform attribute weighting.
The proposed methods were followed by MSE (10.26%),
CBFWNB (9.83%), SBC (8.82%), DFWNB (8.29%), KLNB
(6.18%), and TreeNB (5.99%) in sequence of performance.
Note that KLNB, TreeNB, DFWNB and CBFWNB are filter-
based methods, SBC is a wrapper method, and MSE is one of
the embedded methods, as are the proposed methods. These
performance results are consistent with previous works show-
ing that it is more desirable to find the attribute weights with
simultaneous consideration of classification performance,
as discussed in the introduction section.

Other observations from the experiments were as follows:
In the severely class-imbalanced datasets (‘‘Nursery,’’ ‘‘Car
Evaluation,’’ and ‘‘Letter Recognition’’), the filter and wrap-
per methods (KLNB, TreeNB, and SBC) showed even worse
performances than the standard NB. Among the proposed
methods, DNB, LNB, and GDNB showed similar perfor-
mances, and ENB performed worse. This implies that it
would be preferable to perform a logarithm in a loss function
instead of using a pure exponential loss, and our logical
derivation from ENB to GDNB is reasonable. It is notable
that MSE recorded the highest accuracy in 8 datasets, which
means that minimizing the squared error is still a promising
method to train a weighted naive Bayes classifier.

We conducted the Wilcoxon signed-ranks test [32] on the
experimental results to convince the generalization perfor-
mance of the proposed methods, and the test results are
summarized in Table 4. Each cell contains the p-value for
the hypothesis that the classification performance of a row
classifier is different from that of a column classifier. The
p-values below the chosen significance level 0.05 are under-
lined. The boldface means that a row classifier outperformed
a column classifier while the italic implies the opposite.
Table 4 shows that the GDNB outperformed every benchmark
classifier except for CBFWNB, MSE, and LNB.

C. ROBUSTNESS TEST
This subsection evaluates the robustness of the proposed
methods. From one point of view, a robust classifier refers
to a classifier that is minimally influenced by outliers in the
training data. In this experiment, noise data were intentionally
added to a training set to observe the degradation of the
classification performance. If the degradation is small, we can
consider the classifier to be robust.

As in the previous experiments, 10-fold cross-validation
was employed. After extracting p% (noise rate) random
instances from the folded training set, they were converted
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TABLE 1. Description of datasets.

TABLE 2. Experimental results (accuracy and relative improvement).

into noisy instances by changing their class labels. This
means that we generated class noise. After learning a clas-
sifier with the noisy training set, the classification accu-
racy was measured using the remaining fold, which is a
noise-free test set. This process was repeated 10 times per
fold to reduce the uncertainty caused by random sampling.
We considered the noise rates (p) from 0% to 40% with a
1% increment.

The results are shown in Figure 7. Each graph in the figure
represents the change in the average accuracy at varying noise
rates. NB was used as a baseline, and the four proposed

methods were included in the comparison. As the noise
level increases, the predictive accuracy of all classifiers tends
to decrease. In general, LNB and GDNB showed the best
performance and the least degradation in performance with
increasing noise rate, whereas the standard NB performed the
worst and showed a rapid decrease in accuracy as more noisy
instances were included. Among the proposed methods, ENB
appeared to be the most sensitive to noise. In the cases of (b),
(c), and (e), although the proposed methods showed similar
performances at the zero noise rate, the prediction accuracy
of ENB remarkably decreased with a slight increase in noise.
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FIGURE 3. Experimental results (the average RI).

TABLE 3. The attribute selection rates (%).

These results support our concept of classifier robustness
when introducing DNB, LNB, and GDNB in Section III.

We conducted another simulation study for the robustness
to the dimensionality of data. It beganwith a two-dimensional
separable dataset where one attribute (XA1) was generated
from N (0, 22) and the other attribute (XB1) was generated
from XB1|Y = 1 ∼ N (−1.5, 0.52) and XB1|Y = −1 ∼
N (1.5, 0.52)). It is clear that not XA1 but XB1 solely con-
tributes to the classification of two classes. In order to
increase the dimension of a dataset while preserving the
separability, we generated the ith set of attributes from XA,i ∼
N (XA,i−1, 0.12) and XB,i ∼ N (XB,i−1, 0.12) and concatenated
it to the previously generated sets (1st to (i−1)th). Notice that

FIGURE 4. Correlation heatmap of ‘‘Wholesale customers’’.

FIGURE 5. Correlation heatmap of ‘‘Image segmentation’’.

the group of ‘A’ attributes {XA,i}di=1 does not contribute to the
classification, whereas the group of ‘B’ attributes {XB,i}di=1
evidently does. We examined the dimensions from d = 2 to
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TABLE 4. Wilcoxon signed-ranks test results (row versus column).

FIGURE 6. Correlation heatmap of ‘‘Steel plate faults’’.

d = 200with the increament of 2. Each training set contained
100 instances and each test set consisted of 1,000 instances,
where the class distribution is balanced. After training the
classifiers by the proposed ENB, DNB, LNB, and GDNB,
we computed the weight ratio by

∑
w(B, i)/(

∑
w(A, i) +∑

w(B, i)) for each classifier. Knowing that {XA,i}di=1 is irrel-
evant but {XB,i}di=1 is important to the classification, if the
ratio is at least greater than 0.5 or ideally close to 1, we can
confirm that the proposed methods are robust to the dimen-
sionality of data. Figure 8 shows the results verifying the
robustness. For each of the proposed methods, we reported
the test accuracy (black solid line) and the weight ratio (red
dashed line). As can be seen from the figure, the test accuracy
was very close to 1 and the weight ratio ranged from 0.99 to 1
across all dimensions. It means that the attribute weights of
{XA,i}di=1 were extremely small and the classification perfor-
mance was almost perfect while the dimensionality increases.

D. MULTI-CLASS PROBLEMS
We have shown the generalization performance of the pro-
posed method for the binary classification problems. We now
attempt to apply the proposed method to several multi-class
datasets because many real-world problems require the sepa-
ration of more than three classes. As mentioned in Section I,
our method was designed mainly for binary class cases owing
to the underlying principle of the linear formulation for the
weighted naive Bayes. Nonetheless, it can be easily gen-
eralized to multi-class classifiers using the decomposition
strategies [33].

We can decompose a multi-class problem into multiple
binary sub-problems. The decomposition strategy has two
approaches, the one-against-all (OAA) and the one-against-
one (OAO) approaches. The OAA trains k classifiers (k is
the number of classes), where one of those discriminates a
specific class from the other classes. This approach has the
advantage over the OAO that fewer classifiers are trained.
However, the class imbalance problem, which causes the
accuracy degradation, is inevitable. In the OAO approach,
a classifier is trained only for a pair of classes (i and j, i 6= j).
It therefore decomposes a multi-class problem into kC2 sub-
problems. Compared to the OAA, this approach trains more
classifiers and the number of classifiers rapidly increases
as the number of classes increases. A small size of train-
ing set for each classifier is another problem. In this study,
we employed the OAO approach because its disadvantages
are less likely to appear owing to the simple structure of naive
Bayes.

The OAO approach uses the majority voting scheme to
classify a test example [34]. The classification scheme with
k classes is described below. Let

pij(x) = Pij(y = ci|x) =
exp f̂ij(x)

1+ exp f̂ij(x)
(22)

where f̂ij is the classifier learned from a dataset containing
only the classes ci and cj (1 ≤ i, j ≤ k) by the proposed
method. pij(x), namely a sub-classifier, returns the probability
that a test example x belongs to the class ci. For a test example
xl , the set of sub-classifiers, P, is defined by

P(xl) =


0 p12(xl) . . . p1k (xl)

p21(xl) 0 . . . p2k (xl)
...

...
. . .

...

pk1(xl) pk2(xl) . . . 0

 . (23)

Notice that pij = 1−pji and P consists of kC2 sub-classifiers.
The diagonal elements of P are all zeros. The classification
rule is shown below.

ŷl = cargmaxi{pi·|1≤i≤k}, (24)

where pi· =
∑k

j=1 pij.
The experimental results are summarized in Table 5 in the

same manner of Table 2. The table also shows the number of
classes in each dataset. The datasets were chosen fromTable 1
with the intention of testing with three classes at least and ten
classes at most.

Similar to the binary classification results, all proposed
methods outperformed the original naive Bayes. We found
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FIGURE 7. Classification performance at varying noise levels.
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FIGURE 8. Accuracy and weight ratio at increasing dimension.

TABLE 5. Experimental results for multi-class problems (accuracy and relative improvement).

the minimum 17% and the maximum 20% RI improvements
by the proposed methods. The RI of DNB was higher than
that of LNB, and GDNB was slightly better than DNB. This
performance ranking is different from that of the experiments
for the binary classification. In the multi-class scenario with
the OAO scheme, the GDNB is proven to be a good attribute
weighting scheme by finding the optimal attribute weights
and the α values simultaneously.

V. CONCLUSION
In this study, new attribute weighting methods for improv-
ing naive Bayesian classification have been proposed. The
proposed methods consider learning a weighted naive Bayes
classifier as a nonlinear optimization problem. Different
weights are assigned to attributes byminimizing the proposed
loss functions, namely, ENB, DNB, LNB, and GDNB. The
validity of each method was confirmed both analytically and
empirically. The first method (ENB) is a training-error min-
imizer. Next, DNB was proposed to extend ENB to an ideal
case with an infinite number of training instances. Because
DNB is not a maximum likelihood estimator, LNB was pro-
posed by modifying DNB. Finally, GDNB was proposed to
automatically find the multiplier of the classification margin
according to the noise level of a given training set. The
attribute weights determined by the proposed weighted naive
Bayes can be seen as a quantitative importancemeasure of the
attributes, that is, the equal attribute importance assumption
of the standard NB is relaxed. Because the proposed methods
train a classifier and measure its attribute importance simulta-
neously, one can adjust the complexity of a trained classifier
according to the resulting attribute weights. Based on numer-
ical experiments using 28 real-world datasets, we confirmed

that the proposed scheme was successful in terms of accuracy
and robustness.

This study has a limitation that we considered the binary
classification case only due to the linear formulation of the
weighted naive Bayes. Although we showed the successful
results in Section IV-D by simply generalizing the proposed
methods to multi-class problems with the OAO approach,
it is still inefficient as kC2 classifiers must be trained. In our
ongoing work, we plan to investigate ways to build more
elaborate optimization formulations for multi-class weighted
naive Bayes.
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