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ABSTRACT Recently, automatic wild animal detection methods using deep learning for taken images
by camera traps have been reported. Energy consumption is important for edge devices that include deep
learning because such devices are required to use outside where commercial power is not supplied. In this
paper, we propose energy reduction methods for a wild animal detection device. The proposed methods are
sensitivity adjustment for the motion sensor, attachment of a hat, motion detection by a frame difference
method, and separation of functions on the device. The sensitivity adjustment for the motion sensor reduces
the number of taking images by the camera. The attachment of a hat reduces the number of sensings by
the motion sensor. The frame difference method reduces the number of inferences by deep learning. The
separation of functions on the device reduces the power consumption in both operation time and idle time.
In the experiments, we evaluate the effect of the proposed four methods by applying them to a wild animal
detection device which we proposed previously. We compare the energy reduction ratio when each method
is applied and all methods are combined. Compared to the device without the proposed methods, we can
reduce the energy consumption by more than half when we combined all methods.

INDEX TERMS Animal detection, energy reduction, deep learning.

I. INTRODUCTION
Recently, personal injuries and crop damages by wild animals
such as bears and boars have become a significant prob-
lem in Japan. According to a report by the Ministry of the
Environment, the number of personal injuries by Japanese
black bears (Ursus thibetanus japonicus) in 2020was 158 [1].
Similarly, the crop damages by Japanese wild boars (Sus
scrofa leucomystax) in 2019 was about 4.6 billion JPY [2].

In Japan, the traditional detection of wild animals was
based on sightings. However, it took a long time for the
notification to people. In fact, we have registered an email
service provided by Aizu-Wakamatsu city when wild animals
are detected. The time for notification is dozens of minutes to
hours. If someone is near wild animals and he/she is unaware
of the notification, he/she may encounter an accident by the
wild animals. To reduce such an accident, it is important to
detect wild animals safely and notify the detection informa-
tion immediately.

We have developed a wild animal detection system using
deep learning (DL) in [3] to detect wild animals automatically
and notify people of the detection immediately. The detection
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device takes a static image by a camera when a motion
sensor senses some movement. Then, the detection device
infers whether a target wild animal is in the image using DL
(i.e., edge computing). When a target wild animal is detected,
the detection device alerts the detection to people near the
device by generating a sound and a light. Also, the detection
device notifies the detection information to registered people
using an email via a server. The detection device is powered
by a solar panel and a battery so that it operates outside where
commercial power is not supplied. Similar detection devices
were proposed by other organizations [4]–[8].

Energy consumption is one of the important subjects in
detection devices. This is because it affects the size of the
battery and the solar panel. If a large solar panel and a
large battery are required, the location to place the devices
is restricted. Also, the cost of the devices is increased. The
problems of location and cost may reduce the chances to use
the devices. As a result, the accidents and the crop damages
by wild animals will not be reduced. Therefore, reducing the
energy consumption of the detection devices is one of the
important subjects.

On the other hand, detection devices that use a motion
sensor and a camera have useless operations which just waste
energy consumption. The detection devices take images
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regardless of the appearance of wild animals whenever the
motion sensor senses some movements. If we use DL in the
detection devices, DL is performed for such images although
no wild animals appear. To reduce the energy consumption of
the detection devices, it is required to reduce useless sensings,
taking images, and inferences.

In this paper, we propose energy reduction methods for
wild animal detection devices. The proposed methods consist
of sensitivity adjustment for the motion sensor, attachment
of a hat, motion detection by a frame difference method,
and separation of functions on the devices. The first method
reduces the energy consumption of the detection devices
by reducing the number of taking images by the camera.
The second method reduces the energy consumption of the
detection devices by reducing the number of sensings by the
motion sensor. The thirdmethod reduces energy consumption
by reducing the number of inferences by DL. The last method
reduces the energy consumption during operation time and
idle time separating the functions to a parent node and multi-
ple child nodes. In the experiments, we confirm the effect of
each method and the combinations of all methods.

The main contribution of this paper is:
• To reduce the energy consumption of wild animal detec-
tion devices which use a motion sensor and DL like
[3]–[8]

The reduction is achieved by reducing useless operations for
sensing, taking images, and inferences by the proposed meth-
ods. The reduction results in the reduction of the battery size
and the solar panel size required for the devices. It increases
the location to place the devices and reduces the device cost.
As we can place more devices, we may reduce accidents and
crop damages by wild animals.

The organization of this paper is as follows. In Section II,
we describe related work. In Section III, we describe the
overview of the wild animal detection device proposed in [3]
which is the target of the proposed methods. In Section IV,
we describe the proposed methods. In Section V, we describe
the experimental results. Finally, in Section VI, we describe
the conclusion and future work.

II. RELATED WORK
Camera traps which consist of a motion sensor and a camera
are well used to detect wild animals. When some movements
are sensed by the motion sensor, it triggers the camera to
take images. Analyzing taken images, we can specify species
and behaviors of wild animals [9], [10]. Trail cameras are
representative devices of camera traps. A wide variety of
commercial trail cameras with different functions is avail-
able [11]. In the trail cameras, we can change the battery
life by changing the sensitivity of motion sensors, the size
of taken images, and the frequency of communications.

Recently, various studies have addressed the detection of
wild animals using DL. Most of such studies aim to automate
the detection of wild animals because the manual analysis of
a huge amount of images taken by camera traps is very time-
consuming work. They can be classified into the development

of DL models for detection or classification of wild ani-
mals [12]–[18] and the development of a device to detect wild
animals [3]–[8], [19]. In this section, we address them and
describe the difference from the proposed methods.

Nguyen et al. used DL to filter and identify wild animals
in [12]. In filtering, DL was used to detect whether wild
animals exist or not in taken images. In identification, DLwas
used to classify wild animals into three or six different
species. A light AlexNet, VGG-16, and ResNnet-50 were
used as Convolutional Neural Network (CNN) models. In the
experiments, the accuracy of filtering and identification was
evaluated for the Wildlife Spotter dataset.

Gomez et al. proposed a wild animal identification method
for images taken by camera traps in [13]. In the exper-
iments, four data sets were prepared from the Snapshot
Serengeti dataset. Those data sets were an unbalanced num-
ber of images, a balanced number of images, objects in
the foreground of images, and segmented animal images
with twenty-six classes. Used CNN models were AlexNet,
VGGNet, GoogLeNet, and ResNet. In all CNN models,
the use of the segmented animal images reached the best
accuracy.

Noroussadeh et al. proposed not only animal identification
methods but also counting and behavior describing methods
using DL in [14]. CNN models for image classification were
used for all of the methods. In the experiments, the accu-
racy of identification (48 classes), counting (12 classes), and
behavior describing (6 classes) was evaluated using AlexNet,
NiN, VGG, GoogLeNet, and ResNet with the Snapshot
Serengeti dataset. The authors showed that the accuracy was
almost equivalent to the classification by experts.

Thangarasu et al. compared animal identification methods
by machine learning (ML) methods in [15]. The target ML
methods were DL, Support Vector Machine, and Random
Forest. In the experiments, the authors showed that DL with
Inception-v3 was the highest accuracy for twelve animal
classification for the KTH dataset.

Takagi and Hirano proposed a classification method for
agricultural work and wild animals using DL in [16]. For
images taken by camera traps, DL was performed at a server
located in the cloud. Images taken at daytime were classified
as agricultural work while images taken at nighttime were
classified as appearance or not of wild animals.

Yousif et al. proposed a computer vision tool that can
classify a large number of pictures taken from camera traps
into humans, animals, and backgrounds in [17]. To accelerate
the classification with high accuracy, the authors coupled
foreground object segmentation through background subtrac-
tion with deep learning classification. In the experiment, the
authors evaluated the CPU time with the accuracy of the
method.

Jamil et al. proposed a detection method for Himalayan
Bear, Marco Polo Sheep, and Snow Leopard in [18]. They
used Inception-v3 and k-Nearest Neighbour for classifica-
tion. They also evaluated the proposed method comparing
with other models such as ResNet-50.
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Compared to the methods in [12]–[15], [17], [18], this
paper focuses on a device to detect wild animals using DL.
Note that the method in [16] used a frame difference method
to classify agricultural work. Although the proposed methods
also use a frame difference method, the aim of the frame
difference method in the proposed methods is to reduce the
number of inferences by DL to reduce the energy consump-
tion of detection devices.

Elias et al. proposed an Internet-of-Things (IoT) system
to monitor wild animals in the UCSB Sedgwick Reserve [4].
The IoT system consists of cloud, edge servers, and sensings.
The edge servers perform DL for images taken by camera
traps which are a kind of sensings. The cloud is used to
generate trained DL models. The authors used a synthetic
training set for training which consists of composite images
of wild animals and empty (background) images taken at the
UCSB Sedgwick Reserve, reducing transfers of images to
prepare the training set. The authors showed that the high
accuracy was reached even such a synthetic training set was
used.

Monburinon et al. proposed a hierarchical edge computing-
based image recognition system in [5]. The system consists of
a cloud computing layer, edge computing layer, and physical
interaction layer. Images taken by a camera in the physical
interaction layer are sent to the edge computing layer. Then,
DL is performed for those images. Training to develop a DL
model is performed at the cloud computing layer. Raspberry
Pi was used for the edge computing layer to reduce the system
cost. As an application example, the authors evaluated the
recognition accuracy for wild animals.

Curtin and Matthews proposed a wild animal detection
device based on Raspberry Pi 3 Model B+ in [6]. Similar
to [5], the authors used Raspberry Pi to realize the device
at a low cost. In the experiments, the authors evaluated the
accuracy to identify snow leopards. The accuracy was 97 %
for images obtained by the Internet and 74% for images taken
by a camera.

Dihingia et al. proposed a wild animal detection device
based on Raspberry Pi 3 in [7]. MobileNet SSD was used as
the CNN model. However, compared to other literature, they
did not describe the accuracy of DL.

Zualkernan et al. proposed an IoT system that uses Rasp-
berry Pi to classify wild animals from images taken by camera
traps in [8]. Images taken by camera traps are sent to an edge
device which is based on Raspberry Pi. The edge device per-
forms DL for the images. When wild animals are identified,
the information is sent to the cloud so that users can check
the information from mobile devices. In the experiments, the
authors evaluated the accuracywhen various CNNmodels are
used.

Kamesaka and Hoshino proposed an IoT system to check
whether a group of Japanese monkeys (Macaca fuscata) is
entered into a cage in [19]. The system consists of sensors,
cameras, and Raspberry Pi. When something is detected by
a motion sensor, Raspberry Pi is launched to take images in
the cage. When a group of Japanese monkeys is detected, the

information is sent to users. The users check the Japanese
monkeys through a browser and push a button to close the
door of the cage.

In [5], [6], the authors evaluated the power consumption of
the developed devices. In [19], the authors addressed reducing
the power consumption of Raspberry Pi by launching only
when sensors operate. Other literature did not address power
consumption.

Compared to [4]–[8], [19], the main contribution of this
paper is to reduce the energy consumption of wild animal
detection devices. As an example, we use our developed
detection device described in [3]. Note that our previous
work [3] did not include the proposed methods described
in this paper. Also, this paper includes small modifica-
tions of the detection device to reduce the execution time
(see Section IV.A).

III. OVERVIEW OF WILD ANIMAL DETECTION DEVICE
In this section, we briefly explain the wild animal detection
device used in this paper. We call the device as detection
device in the rest of the paper. Please refer to [3] in detail.

A. STRUCTURE AND PROCESSING FLOW
Figure 1 shows the structure of the detection device. The
center of the detection device is the Raspberry Pi 3 Model
B. A Passive Infrared Ray (PIR) motion sensor is used to
trigger the device. A light sensor is used to judge daytime
or nighttime. An infrared projector is used to take images at
nighttime. Therefore, according to the value of the light sen-
sor, a relay module cuts off the power supply to the infrared
projector. A wireless module is used to communicate with
a server. A light emitting device and a speaker are used for
alerting people near wild animals while driving away the wild
animals. The power supply of the detection device consists of
a solar panel, a lead-acid battery, and a battery controller to
use the detection device outside where a commercial power
supply is unavailable.

FIGURE 1. The structure of the detection device proposed in [3] (this
figure is modified one of Fig. 3 in [3]).
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Figure 2 shows the processing flow of the detection device.
The detection device starts the processing when the motion
sensor senses something. The light sensor measures the
brightness in front of the detection device. The detection
device turns on the infrared projector through the relay mod-
ule when the value of the light sensor is less than the assigned
threshold value. We use the light sensor to distinguish day-
time and nighttime. Then, the detection device takes an image
using the camera. For the taken image, the detection device
infers the existence of target animals such as Japanese black
bears in the taken image. A pre-trained Inception-v3 [20]
using ImageNet [21] is used as the trained model. When a
target animal is detected, the detection device alerts people
near the detection device generating a sound and a light.
Also, the detection device notifies the detection information
to authorized people using email through a server.

FIGURE 2. The processing flow of the detection dvice in [3] (this figure is
also modified one of Fig. 2 in [3]).

B. ABOUT POWER AND ENERGY CONSUMPTION
Power reductionmethodswere applied to the detection device
in [3]. First, the detection device does not start the process-
ing until something is detected by the motion sensor like
trail cameras. Second, the power is supplied to the infrared
projector at nighttime only, by the use of the light sen-
sor and the relay module. As a result, the average power
consumption during the processing time and the idle time
without the speaker and the light emitting device was 3.5 W
and 2.5 W.

The operating power consumption of the detection device
except for the speaker and the light emitting device was the
largest in the order of the infrared projector, communication
module, DL, and camera and sensor. As the infrared projector
requires DC 12 V, the power consumption was the largest.
On the other hand, when the speaker and the light emitting
device are used, their power consumption will be the largest.
This is because the alert time will be longer than the taking

time by the camera while requiring DC 12 V for the speaker
and the light emitting device as same as the infrared projector.

Although the power consumption of each component is
important, the actual energy consumption depends on the
operation frequency. Compared to the sensor, camera, and
DL, the operating frequency of the speaker and the light emit-
ting device is very low. This is because the speaker and the
light emitting device are operated only when target animals
such as Japanese black bears are detected by DL after the
motion sensor senses. In fact, there were many days in field
tests when the speaker and the light emitting device never
worked. On the other hand, the operating frequency of the
sensor and the camera is very high. In particular, as themotion
sensor is operated by light reflection and wind-induced fluc-
tuations in trees, there are many useless operations. Also,
DL is performed when the motion sensor senses something.
Inference for images without animals is also meaningless.
It just wastes energy consumption.

From the above observations, it is important to reduce
the number of sensings and inferences to reduce the energy
consumption of the detection device. As the motion sensor
triggers the detection device, the reduction of the number of
sensings results in the reduction of the energy consumption
directly. Reducing the power consumption of the communi-
cation module and the power consumption of the detection
device in idle time are also important.

IV. PROPOSED METHOD
In this paper, we propose four energy optimization methods
for the wild animal detection device reported in [3]. Sensitiv-
ity adjustment for the motion sensor reduces the number of
taking images by the camera. Attachment of a hat reduces the
number of sensings by the motion sensor. A frame difference
method is used to reduce the number of inferences by DL.
Separation of functions reduces the energy consumption of
the detection device in both processing time and idle time.

The main contribution of this paper is to clarify the effect
of the energy reduction for each method. The sensitivity
adjustment for the motion sensor is general for trail cameras.
Frame difference methods are well used in image processing
to detect some motion from images. Although they are gen-
eral, to the best of our knowledge, none of the literature does
describe the effect on the energy consumption of wild animal
detection devices. Also, we clarify the combination effect
of the proposed methods. Note that the proposed methods
are applicable to other detection devices if they use motion
sensors, DL, or Wi-Fi.

A. PREPARATION OF A BASELINE DEVICE
To confirm the effect of the proposed methods, we prepare a
baseline device. The baseline device is a modified version of
the detection device in [3]. The modifications are as follows.
Figures 3 and 4 represent the structure and the processing
flow of the baseline device.
• Taking multiple images
• Use of a lightweight CNN model
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FIGURE 3. The structure of the baseline device.

FIGURE 4. The processing flow of the baseline device.

• Loading of a trained model on Raspberry Pi in advance
• Use of relay modules to control power supply to the
speaker and the light emitting device

• Use of a temperature and humidity sensor
• Execution of communication and sound and light gener-
ation by multi-threading

• Repeated processing from DL to alerting
The baseline device takes multiple images by the cam-

era when sensed. The original device in [3] just takes an
image when sensed. However, there may be no animals in the
image depending on their movement (e.g., running). There-
fore, by taking images multiple times assigned by users, we
improve the possibility that wild animals are in taken images.
Note that any comparison among images to detect a motion
is not performed in the baseline device.

To reduce the inference time, a lightweight CNN model is
used in the baseline device. The original device in [3] takes
a few seconds for the inference using Inception-v3. As the
power consumption of DL is higher than that of the motion
sensor and the camera, the energy consumption becomes
large when the inference time is long. To solve this problem,

we use MobileNet-v2 [22] in the baseline device. For a pre-
trained model of MobileNet-v2 with ImageNet, we generate
a trained model using transfer learning with animal images
collected by ourselves. Note that we discuss the dataset for
training and the accuracy of the trained model in Section V.

We reduce the inference time by loading the trained model
on Raspberry Pi in advance. In the original device, loading
of the trained model is performed for each inference [3].
As the loading time dominates the inference time (about 20 s),
we reduce the loading time so that the trained model is loaded
when the power supply for Raspberry Pi is turned on.

The speaker and the light emitting device consume more
power compared to other components. On the other hand,
they are used only when target animals such as Japanese black
bears are detected. We use relay modules to supply power for
the speaker and the light emitting device when target animals
are detected.

The measurement of temperature and humidity is to record
which condition wild animals appear in. Reducing the wait-
ing time until some of them are completed, communication,
sound generation, and light generation are performed by
multi-threading. Repeated processing from DL to alerting
is to drive away wild animals. When a particular sound is
used, wild animals may get used to the sound. To solve this
problem, the baseline device generates a different sound ran-
domly. Currently, fourteen sounds are installed in the baseline
device. On the other hand, the baseline device repeats from
DL to alerting forever if wild animals are used to all sounds.
To avoid such a case, repeated processing fromDL to alerting
is terminated by assigning the repeat number.

The baseline device takes 3 s from sensing to inference
when three images are taken and inferred, because of the
above modifications. The inference time per image is about
0.35 s. Compared to the original detection device which took
about 26.5 s from sensing to inference, a large portion of
the processing time is reduced in the baseline device. This
contributes to the reduction of energy consumption because
energy consumption depends on not only power consumption
but also execution time.

B. SENSITIVITY ADJUSTMENT FOR THE MOTION SENSOR
The detection device starts the processing when something is
sensed by the motion sensor. As the used motion sensor is a
PIR sensor, it senses a thermal reaction in front of the sensor.
Therefore, it senses not only the target wild animals but also
people, cars, light reflection, or grass or tree fluctuation by
the wind. As sensing except for wild animals just wastes
the energy consumption of the detection device, this method
reduces the energy consumption by reducing the number of
taking images by the camera while filtering useless sensings.

The sensitivity adjustment for the motion sensor is based
on the setting of num which represents the number of con-
tinuous sensings. In other words, the detection device takes
images and starts inference when the motion sensor senses
num times. Adjustment by the number of continuous sensings
is reasonable because it can be used for various PIR sensors
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under various conditions. Some PIR sensors allow users to
set the sensing range or the holding time while some of them
do not. On the other hand, the motion sensor may sense just
once when the detection device is placed on an animal trail,
because wild animals may walk through the place. On the
other hand, the motion sensor may sense multiple times when
the detection device is placed in livestock sheds or vegetable
fields because wild animals eat something there.

We need to decide the value of num from the PIR sensor’s
specification or the placed location. In general, the PIR sensor
stores the sensing value during the holding time and has
a waiting time for the next sensing. Therefore, we need to
consider the holding time and the waiting time. Note that the
energy consumption of the detection device will be decreased
when a large value is assigned to num. This is because it
restricts taking images by the camera. However, it may reduce
the possibility that wild animals are in taken images.

C. ATTACHEMENT OF A HAT
The attachment of a hat reduces the number of sensings.
It reduces the energy consumption of the detection device.

The number of sensings differs according to the shape
of the hat. Also, as the targets of our detection device are
Japanese black bears or Japanese wild boars, the detection
device would like to sense near the ground. This is because
those animals move while walking. Therefore, we prepare
two shapes for the hat: arch type and knife type as shown
in Fig. 5(a) and (b). The arch type can sense from the side or
below. The knife type restricts sensing even the side or below.
The knife typemay reducemore energy consumption because
it restricts the number of sensings compared to the arch type.
The hat is made of a rigid polyvinyl chloride tube.

FIGURE 5. Attachement of a hat to the motion sensor: (a) the arch type
and (b) the knife type.

D. USE OF A FRAME DIFFERENCE METHOD
In this paper, we use a frame difference method to detect
the movement of wild animals. We restrict inference by the
magnitude of movement. It reduces the energy consumption
of the detection device by reducing the number of inferences.

We adopt a general method for the frame difference
which is implemented by OpenCV. First, the detection device
obtains the difference images from pairs of images as shown
in the center of Fig. 6. Next, the detection device calcu-
lates the product of the difference images and performs the
binarization to the product to obtain the region of the mov-
ing object (bottom of Fig.6). The detection device performs

inference by DL when the sum of the binarized values in the
region is more than threshold . Otherwise, it skips inference
and waits for the next sensing.

FIGURE 6. Calculation of frame differences to identify the movement of
objects.

The value of threshold affects the detection of wild ani-
mals. A smaller value allows the detection device to infer
slight movement. As a result, the detection device may con-
sume more power. On the other hand, a larger value restricts
inference by the detection device. It may reduce the energy
consumption of the detection device. However, it may lose the
detection of wild animals when the size of them on images is
small.

We separate the value of threshold in daytime and night-
time. This is because the information such as color in night-
time images is less compared to the information in daytime
images. Therefore, a smaller value is assigned to threshold
for nighttime.

Note that as the difference is almost none, DL is not
performed when wild animals are standing in front of the
detection device. In such a case, the detection device cannot
detect the wild animals until they move.

E. SEPARATION OF FUNCTIONS
This method reduces the power consumption of the detection
device by separating the functions. In the detection device,
the processing is performed when something is sensed by
the motion sensor. Therefore, the power consumption of idle
time dominates the battery life when sensing is little. The
power consumption of the idle time also depends on the
communication module because the communication module
is always on to notify and alert the detection information
immediately.

This method realizes the separation of the functions intro-
ducing a sensor network. The sensor network consists of one
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parent node and multiple child nodes as shown in Fig. 7.
As Wi-Fi is available for Raspberry Pi 3 Model B, the par-
ent node and the child nodes are connected using Wi-Fi.
Although the area of Wi-Fi is quite narrow compared to Low
Power Wide Area (LPWA), there are two merits of using
Wi-Fi. First, it does not require any additional cost. Second,
we can transfer images in the sensor network. Therefore,
we use Wi-Fi. To extend the Wi-Fi area slightly, we use
external antennas.

FIGURE 7. Separation of functions into a parent device and multiple child
devices.

The parent node consists of a micro-computer board,
a communication module, and a battery controller as shown
in Fig. 8(a). Figure 8(b) represents the processing flow. The
parent node just forwards the detection information that came
from the child nodes to a server using a wireless module
such as 3G or 4G. As the processing of the parent node is
very limited, we use a low-end micro-computer board for the
parent node to reduce the power consumption of idle time.

FIGURE 8. Parent device: (a) structure and (b) processing flow.

Figures 9 (a) and (b) represent the structure and the pro-
cessing flow of the child nodes. The child nodes do not use
a wireless module for a public line. The child nodes perform
animal detection and alerting. The detection information is
transferred to the parent node using Wi-Fi. Because of the
absence of the wireless module, we can reduce the power
consumption of the child nodes.

V. EXPERIMENTS
We evaluate the effect of the proposed four methods. In the
sensitivity adjustment for the motion sensor, we evaluate the

FIGURE 9. Child device: (a) structure and (b) processing flow.

number of taking images by the camera. In the attachment of
a hat, we evaluate the number of sensings. In the frame dif-
ference method, we evaluate the number of inferences. In the
separation of functions, we evaluate the reduction of energy
consumption. Also, we calculate the energy consumption of
the detection device when each method is applied and all
methods are combined to confirm the usefulness of the pro-
posed methods for the reduction of the energy consumption.
For the combination, we assume four practical cases.

Before the evaluation, we prepared the baseline device
as described in Section IV.A. Table 1 shows the used
components.

For the CNN model, we used a pre-trained model of
MobileNet-v2 with ImageNet. We generated two trained
models using transfer learning with images which were col-
lected by ourselves from the Internet and our previous field
tests. We also used images provided by citizens and local
governments. The first model which consists of seven classes
(bear, boar, background, craw, monkey, raccoon, and other)
was for daytime. The second model which consists of six
classes (bearnight, boarnight, backgroundnight, abnormal,
raccoonnight, and othernight) was for nighttime. bear and
bearnight include Japanese black bear images in daytime and
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TABLE 1. Used components in the experiments.

nighttime, respectively. For training, we prepared 75 images
and 25 images for each class as training data and validation
data. In total, 525 images and 175 images were used for
training and validation in the first model while 450 images
and 150 images were used in the second model.

For the model development, we used Google Colaboratory,
TensorFlow, and Keras. We used MobileNet-v2 with Ima-
geNet specified by Keras [23] for both models. As we used
the transfer learning, the architecture of MobileNet-v2 except
for the fully connected layer and the output layer was the same
as the one provided in [23]. The image size was 224 x 224, the
used optimizer was Adam, the learning rate was 0.0001, the
batch size was 15, and the epoch size was 100. The width
multiplier and the depth multiplier of MobileNet-v2 were
both 1. The training was performed on a Linux machine with
Intel Core-i7 and NVIDIA RTX 2080 Ti. During the training,
training data were extended by the function of Keras.We used
rescale, shear, zoom, and horizontal flip. We did not perform
quantization during training.

After training, we tested the generated models to eval-
uate the accuracy of the generated models. For the test,
we prepared 25 images for each class. In total, 175 images
and 150 images were used for testing the first model and
the second model. Table 2 represents the performance of the
generated models. In this research, as the target animals are
Japanese black bears and Japanese wild boars, we evaluated
’’accuracy’’, ’’precision’’, ’’recall’’, and ’’f-value’’ for the
target animals in the generated models. The performance for
Japanese black bears was better in the first model while the
performance for Japanese wild boars was better in the second
model. Note that as the target of this paper is to reduce the
energy consumption of the detection device, we are going to
improve the accuracy of the generated models in our future
work. Finally, we converted the trainedmodels to TensorFlow
Lite models because we implemented the TensorFlow Lite
environment on Raspberry Pi.

To evaluate the energy consumption of the baseline device
with the evaluation of the execution time and power con-
sumption, we performed the following trial multiple times.
Initially, we held an image of a Japanese black bear in front of
the baseline device. When the baseline device sensed, it took
three images by the camera. For each image, the baseline
device performs DL. If the Japanese black bear was detected,

the baseline device immediately alert the detection skipping
DL for the rest of the images. After alerting, the baseline
device again took three images and perform DL for each.
However, we did not hold the image of the Japanese black
bear in front of the baseline device. Therefore, the baseline
device returned to the initial statement (i.e., waiting for the
next sensing).

Table 3 shows the average execution time (T), average
power consumption (P), and average energy consumption (E)
of the baseline device in daytime and nighttime. We classify
the process into ’’sensing’’, ’’taking images’’, ’’inference’’,
and ’’alerting and communication’’. To obtain the execution
time, we inserted perf_counter functions of time module to
the program of the baseline device implemented in Python 3.
Note that the time complexity of the program is O(nm)
where n represents the number of inferences andm represents
the number of repeated processings from DL to alerting to
drive away wild animals in the worst case. To obtain the
power consumption, we measured the average current and
voltage of the baseline device by inserting IndoorCorgi ESP-
PowerMonitor [24] to the power line. Note that the power
consumption in the idle time was 2.5 W.

The energy consumption of ’’alerting and communication’’
was the largest because the alerting time was the longest
and the speaker and the light emitting device consume the
largest power. In the nighttime, both execution time and
power consumption were increased due to the use of the
infrared projector.

As we could not prepare to check outside, we evaluated the
sensitivity adjustment for the motion sensor using movies for
Japanese black bears and Japanese wild boars taken by trail
cameras. The number of movies was 77. Those movies were
collected from trail cameras located at 9 places.

We made the relationship between num and movies as
follows. The average holding time and the waiting time to
the next sensing by the used PIR motion sensor were about
2.3 s and 1.2 s, respectively. As the sensing range and the
holding time of the used PIR sensor could not be arranged
from outside. We measured the average holding time and
the waiting time. We assumed that the time from sensing
to sensing was 3.5 s. According to the time that Japanese
black bears and Japanese wild boars were taken in themovies,
we related the number of continuous sensings (i.e., num). num
is 1, 2, 3, or 4 when the taken time of those animals was
0.1 - 3.5 s, 3.6 - 7.0 s, 7.1 - 10.5 s, or more than 10.6 s,
respectively. For example, if a Japanese black bear was
taken 9 s in a movie, we regarded that the motion sensor
senses 3 times continuously.

Table 4 shows the number of movies assuming the number
of continuous sensings by the motion sensor. Also, it shows
the ratio, Rsense, of the number of movies for ’’num=1’’. The
number of movies implies the number of taking images by
the camera.

According to the increase of num, the number of corre-
spondingmovies is reduced. It implies that the number of tak-
ing images by the camera is reduced when num is increased.

24156 VOLUME 10, 2022



R. Sato et al.: Energy Reduction Methods for Wild Animal Detection Devices

TABLE 2. Performance of the trained models.

TABLE 3. The execution time, power consumption, and energy
consumption of the baseline device.

TABLE 4. The number of movies assuming the number of continuous
sensings by the motion sensor.

In cases when num is one, the motion sensor may sense not
only wild animals but also other objects or light reflections.
The latter just wastes the energy consumption of the detection
device. On the other hand, if we set up num more or equal
to two, we may filter useless sensings because it requires
movement more than 3.6 s. In particular, wild animals may
stay a long time at vegetable fields and livestock sheds for eat-
ing. Therefore, by increasing num, we focus on sensing wild
animals. In other words, we reduce the energy consumption
of the detection device by filtering useless sensings.

In the attachment of a hat, we evaluated the number of
sensings during four days when the arch or knife type hat
was attached to the motion sensor. As shown in Fig. 10,
we prepared two detection devices. One was without a hat
and the other was with a hat. The difference between motion
sensors in the detection devices was 2 cm in height and 30 cm
in width. Note that in the first four days we used the arch type
hat while in the second four days we used the knife type hat.

Table 5 represents the number of sensings in daytime and
nighttime with and without a hat when the hat type was
changed. It also shows the ratio of the hat, Rhat , for without
hat.

In both daytime and nighttime, the number of sensings
was reduced by the use of the hat. Although the comparison
between arch type hat and knife type hat is unfair because
the data were taken on different days, we guess that the knife
type hat can reduce the number of sensings more than the
arch type. This is because sensing from the side and below is
restricted.

FIGURE 10. Evaluation on the effect of a hat for sensings.

TABLE 5. The number of sensings with and without hats.

For the evaluation of the frame difference method, we used
two detection devices (device 1 and device 2) located at
different places. We evaluated 206 images for device 1 and
362 images for device 2. All of them were taken in the
daytime. Note that no Japanese black bear and Japanese wild
boar were included in the images.

We evaluated the number of inferenceswhen threshold was
changed to 50, 100, 150, or 200. Table 6 shows the value of
threshold , the number of images, the number of inferences,
and the ratio of inference for images, Rframe.

TABLE 6. The number of inferences when the threshold value for frame
differences is changed.

We could reduce the number of inferences when we
increase threshold . It results in the reduction of the energy
consumption in the detection device. On the other hand,
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the evaluation shows the importance to assign threshold
properly considering the placed location. The reduction in
device 1 was 40.8 % (100 - 59.2) when the value of threshold
was 100 while the reduction in device 2 was 51.7 % although
threshold was 50.
In the separation of functions, we used Raspberry Pi Zero

for the parent node. This is because the parent node just for-
wards the detection information to a server. Due to the use of
Raspberry Pi Zero, we could reduce the power consumption
of the parent node. Table 7 represents the execution time (T),
power consumption (P), and energy consumption (E) per
forwarding. The power consumption of the idle time
was 1.4 W.

TABLE 7. The execution time, power consumption, and energy
consumption of the parent device.

The power consumption per forwarding was larger than
that of ’’sensing’’ in the baseline device. The increase was
caused by the processing of the wireless module. Also, the
execution time became longer than that of the baseline device.
The reason came that the computation power of Raspberry Pi
Zero is smaller than that of Raspberry Pi 3. On the other hand,
the power consumption of the idle timewas decreased. There-
fore, the use of Raspberry Pi Zero contributes to the reduction
of the energy consumption if the idle time dominates the total
time.

For the child nodes, we removed the wireless module. The
other settings are the same as the ones of the baseline device.
Table 8 represents the execution time (T), power consump-
tion (P), and energy consumption (E) of ’’sensing’’, ’’taking
images’’, ’’inference’’, and ’’alerting and communication’’ in
the child nodes for both daytime and nighttime. Also, Table 8
represents the reduction ratio of the energy consumption for
the baseline device. The power consumption of the idle time
was 1.4Wwhichwas the same as the parent node. This comes
from the absence of the wireless module.

By the separation of functions, the power and energy con-
sumption of the child nodes were reduced compared to the
baseline device. Although we just removed the wireless mod-
ule from the child nodes, it contributed to a large reduction in
the power consumption.

Next, we evaluate the energy consumption of the detection
device for each proposed method. We calculate the energy
consumption when the detection device operates at full oper-
ation for one hour (= 3,600 s) of daytime using the formu-
las (1) to (6). The formulas (1) to (6) represent the total
energy consumption Etotal , the energy consumption of the
idle time Eidle, the idle time Tidle, the energy consumption
when the detection device operates from sensing to DL, Es2dl ,
the energy consumption when the detection device operates
from sensing to frame difference, Es2i, and the energy con-
sumption when the detection device operates from sensing

TABLE 8. The execution time, power consumption, and energy
consumption of the child device.

only, respectively. Note that Tidle is obtained by multiplying
1 - Rhat (the ratio that the motion sensor does not sense due
to the hat) to 3,600. Tsense, Psense, Timage, Pimage, Tdl , and
Pdl in the formulas (4) to (6) represents the execution time
(T) and the power consumption (P) of ’’sensing’’, ’’taking
images’’, and ’’inference’’ in Tables 3 and 8. Ns2dl , Ns2i, and
Ns represent the numbers of operations from sensing to DL,
sensing to frame difference, and sensing only.

Etotal = Es2dl + Es2i + Es + Eidle (1)

Eidle = TidlePidle (2)

Tidle = 3, 600(1− Rhat ) (3)

Es2dl = Ns2dl(TsensePsense + TimagePimage + TdlPdl) (4)

Es2i = Ns2i(TsensePsense + TimagePimage) (5)

Es = Ns(TsensePsense) (6)

Ns2dl , Ns2i, and Ns are calculated by using the formulas
(7) to (13). They are calculated from the ratios, Rsense and
Rframe, obtained from each proposed method and the weights
from the execution time of the processing for the time that
the detection device is operated within one hour (i.e., the time
corresponds to 3,600 - Tidle).

Ns2dl =
3, 600RhatRs2i

(1− Rsense)Tsense + (Rsense − Rs2i)Ts2i + Rs2iTs2dl
(7)

Ns2i = Ntotal(Rsense − Rs2i) (8)

Ns = Ntotal(1− Rsense) (9)

Ntotal = Ns2dl/Rs2i (10)

Rs2i = RsenseRframe (11)

Ts2i = Tsense + Timage (12)

Ts2dl = Tsense + Timage + Tdl (13)

Table 9 represents the energy consumption of the detection
device by each proposed method per hour. ’’separation of
function’’ was the best to reduce energy consumption. 45.2 %
of the energy consumption was reduced for the baseline
device. Next was the ’’sensitivity adjustment for the motion
sensor’’. It could reduce about 20 % to 26 % of the energy
consumption for the baseline device. The knife type hat
reduced 13.3 % of the energy consumption for the baseline
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TABLE 9. Energy consumption of each method per hour when full operations are assumed.

TABLE 10. Energy consumption when all methods are combined.

device. The last was ’’frame difference’’. It could reduce
0.7 % to 11.5 % for the baseline device.

Finally, we calculate the energy reduction of the child
nodes by the combination of the proposed methods.
We assume device 1 and device 2 for the estimation. In the
combination, we consider four practical cases (case 1, case 2,
case 3, and case 4). In case 1 where num and threshold
are 1 and 50, we assume that the movement of wild animals
is fast or the size of the wild animals in taken images is small.
In case 4 where num and threshold are 4 and 200, we assume
that the movement of them is slow or the size of the wild
animals in taken images is large. Cases 2 and 3 are assumed
in between cases 1 and 4 where num and threshold are 2 and
100 in case 2 and 3 and 150 in case 3. The targets of the
estimation are sensing and inference in the daytime. As the
number of alerting and communication is very few compared
to sensing, we exclude alerting and communication. Simi-
larly, as the number of sensings in the nighttime is very few
compared to the daytime, we also exclude the estimation in
the nighttime. We also assume that the hat type is the knife
type.

Table 10 represents the energy consumption for cases 1
to 4 per hour. Similar to Table 9, we obtained these values
using the formulas (1) to (13). By combining all methods,
we could reduce more energy consumption for the child node
(separation (child)). It was 52.4 % to 60.6 % for the baseline

device. We also know that the energy consumption was
reduced in proportion to the value of ’’num’’ and ’’threshold’’.
As the energy consumption of the detection device when all
methods are combined closes to 5,040 [J] that is the energy
consumption when no operation during one hour (separation
(child, idle)), we could confirm the effectiveness to combine
all methods.

We can expect that the size of the solar panel and battery
can be reduced by the proposed methods. The size of the
solar panel and battery will be decided by the values of
num and threshold , the alerting time by the speaker and the
light emitting device, and the power generation efficiency of
the solar panel. For num and threshold , we need to decide
considering the placed location of the detection device and
the situation of wild animals photographed. For example,
the settings of case 1 or case 2 will be useful when the
detection device is placed to animal trails while the settings
of case 3 or case 4 will be useful when it is placed to
livestock sheds or vegetable fields. We are going to clarify
the relationship between the value of num and threshold
and the size of the solar panel and battery in our future
work.

Although we focus on the reduction of useless sensings
and inferences, the energy consumption of ’’alerting and
communication’’ may not be ignored according to the placed
location. Wild animals may appear frequently if they obsess
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with crops or get used to sound and light to drive away.
In those situations, the detection device just wastes energy
consumption, because wild animals may not pay attention to
the detection device. It may require the detection device to
strengthen the function of driving away wild animals. Also,
placing the detection device or the parent node at a location
where the radio wave of the public line is weak may waste
energy consumption. The wireless module consumes more
power to connect to the public line. We need to pay attention
for the location to place the detection device.

VI. CONCLUSION
In this paper, we proposed energy reduction methods for a
wild animal detection device. The proposed method consists
of the sensitivity adjustment for the motion sensor, the attach-
ment of a hat, the frame difference method, and the sepa-
ration of functions. In the experiments, we confirmed the
reduction of the number of taking images by the sensitivity
adjustment for the motion sensor, the number of sensings
by the attachment of a hat, the reduction of the number of
inferences by the frame difference method, and the reduction
of the energy consumption by the separation of functions.
Also, we evaluated the energy reduction when each proposed
method is applied and all methods are combined. Combining
the proposed methods, we could reduce more than half of
the energy consumption from sensing to inference of the
detection device.

In our future work, we are going to clarify the required
battery and solar panel size through a field test. Also, we are
going to compress the CNN model size to reduce the energy
consumption during inference. Compression of the CNN
model may lose the accuracy. Therefore, we are going to
check the effect of compression using the ablation study.
Evaluation of the accuracy for the generated models will be
also performed during the field test.
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