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ABSTRACT Due to the increasing number of violence cases, there is a high demand for efficient monitoring
systems, however, these systems can be susceptible to failure. Therefore, this work proposes the analysis and
application of low-cost Convolutional Neural Networks (CNNs) techniques to automatically recognize and
classify suspicious events. Thus, it is possible to alert and assist the monitoring process with a reduced
deployment cost. For this purpose, a dataset with violence and non-violence actions in scenes of crowded
and non-crowded environments was assembled. The mobile CNNs architectures were adapted and obtained
a classification accuracy of up to 92.05%, with a low number of parameters. To demonstrate the models’
validity, a prototype was developed by using an embedded Raspberry Pi platform, able to execute a model
in real-time with 4 frames-per-second of speed. In addition, a warning system was developed to recognize
pre-fight behavior and anticipate violent acts, alerting security to potential situations.

INDEX TERMS Neural networks, artificial neural networks, image processing, image classification.

I. INTRODUCTION
There is a growing interest in intelligent surveillance systems
due to major concerns about global security and the need
for effective monitoring of public places, such as airports,
railway stations, malls, sports stadiums, tourist venues, etc.
Indeed, the number of cameras installed in urban areas is
increasing progressively to promote order and safety [1].

Currently, most public monitoring systems are performed
through security cameras, mainly in areas with a large flow of
people. In fact, monitoring systems are basically composed of
several cameras positioned at strategic locations. The prob-
lem with these systems consists of having only one human
agent responsible for tracking the video input from many
cameras simultaneously [2]. This can lead to errors when
identifying suspicious events, often caused by inattention or
fatigue. As such, monitoring systems are used as a storage
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system for possible lawsuits, rather than an incident preven-
tion system as it should be [3].

In an automatic surveillance system, computers continu-
ally process a video input and scrutinize each frame to find a
suspicious event, in which they can immediately report to the
supervisor for their attention [4]. For this reason, the use of
Computer Vision and Machine Learning techniques applied
to automatic recognition of violence can help monitor agents
significantly.

The research in Computer Vision, specifically in action
recognition, has mainly focused on detecting simple actions,
such as walking or sports activities. The detection and
recognition of fights or aggressive behavior, in general, has
been comparatively less studied [2]. In practice, the auto-
matic recognition of aggressive and irregular actions can
be extremely useful for various video surveillance scenarios
outside urban areas, such as in prisons, psychiatric hospitals,
and even in monitoring daily activities and detecting falls
of elderly people in homes [5]. Neural network models are
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increasingly being applied in embedded systems [6]–[10]
to improve the ability to analyze data from different equip-
ment [11]–[14].

Thus, this work proposes an automatic violence recogni-
tion system in real-time, able to distinguish between acts of
violence, such as fights, vandalism, shooting with firearms,
and non-violence actions, such as walking, running, hugging,
kissing, exercising, and celebrating. For this, several videos
were assembled from a diverse range of public datasets,
containing varied lighting conditions, scale, movement, num-
ber of people, and objects. Moreover, the study used and
compared different models of Mobile Convolutional Neu-
ral Networks. To avoid overfitting and improve the model
generalization, traditional data augmentation techniqueswere
applied. Then, the models were implemented and evaluated
on a Raspberry Pi 4 embedded platform.

To summarize, the contributions of this work are the
following:

• A quantitative and qualitative analysis of state-of-the-art
Mobile CNN architectures for the binary recognition of
violence actions;

• A dataset for the violence acts recognition was set up,
through a manual selection and combination of public
datasets. This dataset has several human actions and
activities divided into two classes: violence and non-
violence. In addition, contains scenes of violence in
crowded and non-crowded environments;

• It was possible to achieve an accuracy of up to 92.05%,
with models containing 2.26 million parameters;

• The trained models are able to recognize various actions
of violence, such as punching, kicking, fighting, attack-
ing, destroying, aiming and firing guns, wrestling, and
boxing.

• A prototype of a low-cost, intelligent monitoring system
was developed on a Raspberry Pi embedded platform,
able to run amobile CNNmodel with a processing speed
of up to 4 frames-per-second.

• A novel approach was created with the warning system,
which is able to recognize pre-fight behavior and alert
security to take appropriate action.

This paper is structured as follows: Section 2 presents
the related work, with a brief description of existing auto-
matic violence recognition works and the methods used.
Section 3 corresponds to the development of the dataset,
the selected public datasets, the distribution of training and
testing set, and a video duration histogram. In Section 4 is
described the adapted versions of the mobile CNNs with the
prepossessing steps. Section 5 presents the experiments, with
a comparison of the developed models’ results, analyzing the
error, accuracy, and number of parameters. Section 6 details
the development, operation, and comparison of the prototype.
Section 7 presents a novel approach with the warning system.
The last section is devoted to the final discussion and conclu-
sions.

II. RELATED WORK
Recently, Deep Learning techniques, such as Convolutional
Neural Networks (CNN or ConvNet), have shown excellent
results in image and video classification [15]–[18]. In dif-
ferent challenges and datasets, these structures have been
performing much better than previous proposals [3]. In fact,
there are three main advantages of using CNN models in
intelligent monitoring systems. First, they are less affected by
noise in the data. Second, they achieve higher accuracy than
other methods, even sometimes greater than the human eye.
Lastly, they have the ability to classify people into different
orientations and postures. Moreover, they also do not require
a hand-crafted extractor for encoding features [19], as was
performed before the introduction of Deep Learning [20].

For example, [21] developed a violence detection system
in movie scene, in which applied various elements of Deep
Learning. First, a CNN was trained, then a two-stream CNN
was used to extract both static and optical flow motion fea-
tures. Finally, a Long Short-Term Memory (LSTM) [22] was
applied to extract the long-term temporal features [23]. Com-
plimentarymotion and audio informationwere also extracted.

Also, [24] presented a model using 3D Convolutional Neu-
ral Networks directly on raw input data that automatically
extracts the features. The 3DConvNets extracts static features
such as traditional CNN 2D, as well as adds the temporal
dimension, thus allowing the extraction of motion features.
Model evaluation is performed on the Hockey dataset [2].
Similarly, [20] proposed a Deep Learning model based on
3D CNN, adapting bottleneck units and the DenseNet archi-
tecture to promote efficient extraction of spatiotemporal fea-
tures. Currently, [25] proposes a method that extracts the
video spatiotemporal features through a convolutional neural
network and combines them with the trajectory features in
order to detect violence in video.

While the aforementioned works successfully recognize
and classify acts of violence with good accuracy, all require
significant processing power, as usually are employing
high-end systems with multiple GPUs or TPUs [26].

The application of Deep Neural Networks in embedded
systems or with limited computational capacity has been con-
siderably less studied. Applications such as face recognition,
gender detection [27], and emotion recognition [28] are some
of the real-time models developed implementing the Rasp-
berry Pi embedded platform. However, no applications or
models were found on the violence classification and recog-
nition by only utilizing the embedded system’s capabilities.

Although typically the training phase requires more pro-
cessing power than running the model [29], computationally
limited systems such as small computers and embedded sys-
tems still face major difficulties in reproducing such models
efficiently [30]. For this reason, this work conducts an exten-
sive evaluation of Deep Neural Networks recently developed
for embedded platforms and mobile applications, namely
mobile CNN architectures [31]. With this study, it was devel-
oped a low-cost intelligent monitoring system on a Raspberry
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FIGURE 1. Samples from the Violent-Flow dataset [33].

Pi embedded platform able to recognize pre-fight behavior
and alert security to take appropriate action.

III. DATASET
To successfully train any deep CNN model, many video
samples are needed [32]. However, there are only a few public
video datasets available, specifically for violence recognition.
In addition, they have an insufficient number of videos or are
not applicable for this work. For this reason, action recogni-
tion videos were gathered in public datasets, in which were
manually selected the classes and videos to be used.

The dataset developed is divided into training and testing
set with two classes: violence and nonviolence. The vio-
lence class contains violent actions, such as punching, kick-
ing, fighting, attacking, destroying, aiming, and firing guns,
wresting, and boxing. The nonviolence class contains typical
actions for target places, such as malls, airports, subways
and public parks, actions such as walking, jogging, running,
sitting, hugging, kissing, walking the dog, exercising, biking,
and celebrating. Thus, for this work, four public datasets were
selected and combined: Violent-Flow1 [33], UCF-1012 [34],
HMDB3 [35], and Moments in Time4 [36].
The Violent-Flow dataset [33] is the only selected dataset

exclusively for violence recognition. It is a real-world dataset,
that is, recorded videos are real acts of violence, mostly
in crowds, taken by surveillance cameras or smartphones.
The dataset contains 246 labeled training videos and 44 test
videos. Figure 1 shows some samples of violence and nonvi-
olence from the dataset. It is possible to see that, indeed, most
actions are from crowded places.

The UCF-101 [34] is an action dataset for recognition
and classification collected from YouTube. In total, contains
101 classes of actions and activities, and more than 13,320
videos. For this work, the classes of videos selected were:
‘‘punch’’ for the violence set, ‘‘walking the dog’’ and ‘‘bik-

1https://www.openu.ac.il/home/hassner/data/violentflows/
2https://www.crcv.ucf.edu/data/UCF101/
3https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-

database/
4http://moments.csail.mit.edu/

FIGURE 2. Samples from the UCF-101 dataset [34].

ing’’ for the nonviolence set. Therefore, resulting in 417 train-
ing videos and 88 testing videos. Figure 2 presents some
examples from the extracted classes for this work.

The HMDB [35] is a large dataset to recognize actions
with 51 classes. Each contains at least 101 videos, for a total
of 6,766 videos extracted from digital movies and YouTube
videos. For this work were selected the classes ‘‘hit’’, ‘‘kick’’,
‘‘punch’’ and ‘‘gun’’ for the violence set; and ‘‘hug’’, ‘‘kiss’’,
‘‘run’’, ‘‘walk’’ and, ‘‘sit’’ for the nonviolence set. Thus,
resulting in 612 training videos and 107 testing videos. Fig-
ure 3 shows a few samples from the selected classes of the
dataset.

Lastly, the Moments in Time [36] is a research project ded-
icated to building a dataset for recognizing and understanding
video actions. Currently, the dataset includes a collection of
approximately one million 3-second videos, corresponding
to 339 different classes, involving people, animals, objects,
or natural phenomena.

For the violence set the classes used were ‘‘aiming’’,
‘‘attacking’’, ‘‘boxing’’, ‘‘destroying’’, ‘‘fighting’’, ‘‘hit-
ting’’, ‘‘kicking’’, ‘‘punching’’, ‘‘shooting’’, and ‘‘wrestling’’.
For nonviolence were used ‘‘bicycling’’, ‘‘celebrating’’,
‘‘exercising’’, ‘‘hugging’’, ‘‘jogging’’ and ‘‘running’’, ‘‘kiss-
ing’’, ‘‘siting’’, and ‘‘walking’’.

Due to the diversity of scenes in this dataset, even within
the same class, a careful manual selection of videos was nec-
essary, which resulted in 994 training videos and 162 testing
videos. In Figure 4 is displayed some frames from the dataset.

Table 1 shows the contribution of videos from each dataset
to the final combined dataset. The dataset, assembled for this
work, contains a total of 2670 videos, of which 2269 videos
belong to the training set and 401 to the testing set. From
these videos, the violence class has a total of 1193 videos,
of which 1014 are assigned to the training set and 179 to
the testing set. The nonviolence class contains 1477 videos
in which 1255 are assigned to the training set and 222 to the
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FIGURE 3. Samples from the HMDB dataset [35].

FIGURE 4. Samples from the Moments in Time dataset [36].

TABLE 1. Distribution of videos gathered from public datasets.

testing set. The difference between the number of train and
test videos is due to the greater number of nonviolence classes
in the action recognition datasets.

The total video length for the training set is 128 minutes,
and 22 minutes for the testing set. The average length of
videos is 3.35 seconds. The total duration length distribution
of videos is presented in Figure 5. It is possible to observe that
most of the videos have a duration lower than 3 seconds. This

FIGURE 5. Histogram of video duration.

is a common characteristic video of violence, in which the
actions happen very quickly. Instances higher than 4 seconds
usually correspond to the nonviolence set, with actions such
as walking and running.

Furthermore, the final dataset provides great diversity in
actions, with large variations in camera position, appearance
and pose of objects and people, scale, viewpoint, cluttered
backgrounds, different lighting conditions, wide variations in
motion, video quality, and occlusion. This allows the models
to learn and predict the most diverse actions and activities
characterized between violent and nonviolent.

IV. PROPOSED METHOD
CNNs have become ubiquitous in Computer Vision since the
popularization of the AlexNet architecture [37]. The general
trend has been to develop deeper and more complex networks
to achieve greater accuracy. However, these improvements do
not necessarily make architectures more efficient in terms of
number of parameters, model size and processing speed [38].
In many applications, such as robotics, autonomous cars,
augmented reality, and security. The recognition task needs
to be employed at a specific time on a restricted computing
platform, due to time constraints or space allocation.

Recently, there are attempts to develop CNN architectures
for recognition and detection tasks focused on application
in devices with limited computational power, such as smart-
phones and embedded systems. In this work, it was adapted
the most popular of these architectures to the binary classifi-
cation for violence recognition.

In the following subsections, a description of the used
mobile CNN architectures is presented, with a brief introduc-
tion about the main method used by them. It is also shown
the preprocessing steps, the network hyperparameters, and
the final number of parameters for each architecture.

A. PREPROCESSING & NETWORK HYPERPARAMETERS
The videos applied on the mobile CNNs were converted
into a series of images, with dimensions 227 × 227 × 3 or
224 × 224 × 3, depending on the CNN architecture. These
dimensions are considered ideal for features representation
and extraction during training, as large images require high
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FIGURE 6. Types of neural network connections.

FIGURE 7. The inception module [43].

computational power, and in small images, the CNN may
not be able to extract significant information. In addition, in-
place/on-the-fly data augmentation techniques were used to
better generalize the dataset [39]. Thus, each image in a batch
is transformed by a series of random operations in real-time
during the training process, among them:
• Mirroring;
• Approximation (up to 20%);
• Rotation (up to 20%);
• Width and height offset (up to 20%).
In addition, this work used the Adam optimization algo-

rithm instead of the traditional SGD optimizer, responsible
for minimizing the objective function [40], [41]. Adam’s
algorithm uses adaptive learning methods to find individ-
ual learning rates for each parameter and enable ANNs to
train faster. The learning rate lr , which represents the weight
update step, has been set at lr = 1 · 10−5. Due to memory
capabilities, the batch size was set in 32 samples per iteration.

B. MOBILE ARCHITECTURES
A strategy to reduce parameters and operations of mobile
CNN architectures is to adapt deep sparse convolutional
structures with small filter sizes. That is, instead of the
traditional method of adding layer after layer in sequential
order, these architectures add layers in sequential and parallel
combination, normally structured in modules [42].

The final architecture is composed of merging these mod-
ules. This method is presented in Figure 6 and an example
of a sparsely connected module seen in the popular Inception
architecture [43] is shown in Figure 7.
The Inception module introduces a combination of layers,

with 1×1, 3×3, and 5×5 convolution layers andmax-pooling

FIGURE 8. The squeezed module [50].

layer sparsely connected. The output from these layers are
concatenated into a single output vector, forming an input
for the next step [44]. This technique was then expanded in
the mobile architectures, mainly because it permits a CNN
to capture more details and features in diverse scales, with a
reduced number of parameters (compared to a sequentially
connected network) [45].

1) SQUEEZENET
SqueezeNet [46] is a architecture that achieves AlexNet accu-
racy level [47], yet with fewer parameters. This architecture
uses a combination of modules with the idea of squeezing
and expanding layers. In the squeeze layer, there are only
1× 1 convolutional filters, whereas in the expand layer there
is a combination of 1 × 1 and 3 × 3 filters. This high use of
1 × 1 convolutional filters reduces considerably the number
of parameters. After all, 1 × 1 filters use significantly fewer
parameters than larger convolutional filters. For example, a
1× 1 filter has 9 times fewer parameters than a 3× 3 convo-
lution filter.

Adapted for this work, the SqueezeNetmodel presents only
735.94 thousand parameters, which is a number far lower
than theAlexNet original architecture, which has 62.3million
parameters [48]. Figure 8 shows the SqueezeNet module,
with the squeeze and expand layers. Also, the architecture
uses the ReLU activation function [49].

2) MOBILENET-V1 & MOBILENET-V2
The MobileNet architecture [51] is primarily based on depth-
wise separable convolution, in which factors a traditional
convolution into a depthwise convolution followed by a point-
wise convolution. In other words, a spatial convolution is
performed independently for each channel, then by a 1 ×
1 convolution across all channels. This approach was found
to be easier than the normal 3D convolution [52]. Thus, the
MobileNet model adapted for this work has a total number of
3.23 million parameters.

In the second version of the MobileNet architecture [53],
an inverted residual sparse structure was introduced, consist-
ing of 1 × 1 convolution, depthwise separable convolution,
and the use of a linear function. Adapted for this work, the
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FIGURE 9. The MobileNet-v2 modules [55].

MobileNet-v2 model has 2.26 million parameters, a consid-
erably lower number of parameters than its first version.

Figure 9 shows the MobileNet-v2 module. The module
presents a residual cell (has a residual/identity connection
introduced by [54]) with stride of 1, and a resizing cell with
a stride of 2. From Figure 9, ‘‘conv’’ is a normal convolution,
’’dwese’’ is a depthwise separable convolution, ‘‘Relu6’’ is
a ReLu activation function with a magnitude limitation, and
‘‘Linear’’ is the use of the linear function.

3) NASNET MOBILE
The NASNet [56] architecture searches the best combina-
tions of convolution layers, first in a smaller dataset, then
expanded the configuration to a larger one. The architecture
is composed of a number of sparsely connected convolutions
layers, normal and separable, with different filters sizes (1×1,
3× 3, 5× 5, and 7× 7). The authors also developed a mobile
version, which was adapted for this work and has 4.27million
parameters.

Figure 10 presents the NASNet module used. The NASNet
architecture is composed of normal cells and reduction cells.
Normal cells are convolution layers that return feature maps,
and reduction cells resize the features maps by a factor. From
Figure 10 ‘‘sep’’ means depthwise separable convolutions,
‘‘identity’’ are the residual/identity connections, ‘‘avg’’ are
layers of average pooling, and ‘‘max’’ are layers of max
pooling.

V. EXPERIMENTS
In this section, computational performance and results are
compared and analyzed for each developed model. The error,
accuracy and number of parameters were compared, as well
as a diagram to verify the effectiveness of the models.

The Figure 11 displays the accuracy and error per epoch for
the training set. The graph shows that the accuracy increases
progressively while the error decreases. The MobileNets and
NASNet have similar outputs, and the SqueezeNet is slightly
less effective. In addition, Figure 12 shows the accuracy and

FIGURE 10. The NASNet modules [56].

error per epoch for the testing set. Again, the accuracy and
the error of the MobileNets and NASNet models are similar,
with slightly worse results from SqueezeNet.

It is also noticeable the presence of overfitting soon after
the fifth epoch in the error graph from Figure 12. The errors
increase as the models have already learned all patterns from
the training set, including noise and outliers, and can no
longer generalize new samples from the testing set. This
graph also shows how quickly the models can learn all pat-
terns from the dataset and correctly predict new samples.

Therefore, from Figure 12, it is possible to identify in
which epoch the best result is obtained, that is, the epoch with
the highest accuracy and lowest error. For the SqueezeNet
and MobileNet-v1 architectures this happened in the fourth
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FIGURE 11. Accuracy (left) and error (right) for the training set.

FIGURE 12. Accuracy (left) and error (right) for the testing set.

epoch. SqueezeNet achieved an accuracy of 0.8702 and an
error of 0.3486, and MobileNet-v1 achieved an accuracy of
0.9048 and an error of 0.2888. For the Mobile NASNet it
occurred in the fifth epoch, with an accuracy of 0.9001 and
an error of 0.2813.

Lastly, for the MobileNet-v2 it happened in the twelfth
epoch, with an accuracy of 0.9163 and an error of 0.2997.
Thus, the best error result belongs to the MobileNet-v1
with an error of 0.2888 and the best accuracy belongs to
the MobileNet-v2 with an accuracy of 0.9163. Although,
as observed earlier, MobileNet-v1, MobileNet-v2 and NAS-
Net show very close results, SqueezeNet performed slightly
worse.

Figure 13 shows the total number of parameters from each
adapted architecture for this work. It is possible to observe
that the model with the lowest number of parameters belongs
to the SqueezeNet with only 735.94 thousand parameters,
three times lower than the second model with the low-
est number of parameters, MobileNet-v2 with 2.26 million
parameters. The MobileNet-v1 and NASNet have 3.23 and
4.27 million parameters, respectively.

FIGURE 13. Comparative total number of parameters for each
architecture.

Lastly, Figure 14 shows the accuracy versus the total
number of parameters for each adapted architecture. The
SqueezeNet has the lowest number of parameters from all the
models, however have a lower accuracy rate. TheMobileNet-
v1, MobileNet-v2, and NASNet show high accuracy but
demand more processing power. Therefore, analyzing the
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FIGURE 14. Scatter plot of accuracy vs. number of parameters.

TABLE 2. Development environment of raspberry Pi 4 and desktop.

graphic, it is possible to observe that the MobileNet-v2
presents the best cost-benefit as it has a high accuracy while
keeping a low number of parameters. However, limited sys-
tems will still be able to run the SqueezeNet model more
effectively, due to its reduced number of parameters.

VI. PROTOTYPE
SqueezeNet, MobileNet-v1, MobileNet-v2, and NASNet
Mobile are architectures specially developed focused on
mobile and embedded applications. Therefore, to prove if
they are truly able to run a mobile application for com-
plex tasks, such as violent recognition, the Raspberry Pi
4 embedded platform was selected as a prototype. Table 2
presents the development environment. The framework used
for both Laptop with GPU and Raspberry Pi 4 was Tensor-
Flow 2.6.0. Moreover, for the Laptop with GPU, was used
CUDA 11.4 and cuDNN 8.2.4.

This section presents the operation process of the pro-
totype, with experiments on the average runtime and the
FPS (frames-per-second) that the prototype can reach while
running the models. Comparative tables of the same models
running on a more complex platform are also presented.

The prototype for this work can run a CNN model, read,
and transform a video signal from a file or a USB webcam to
an input signal, which allows the prediction to be made by the
model. The result of this prediction is then displayed over the
screen along with the respective label. The transformations
necessary to feed the CNN model consist of transforming the
video signal into a series of images, resizing, and normalizing

FIGURE 15. The prototype operation process.

FIGURE 16. The prototype running a model.

TABLE 3. Comparative number of parameters, average runtime and FPS
on raspberry Pi 4.

the images. Figure 15 presents an example of the prototype
operation process and the Figure 16 shows the prototype
running a model.

After the attempt to run the developed mobile models,
Table 3 shows the adapted architecture, with its total number
of parameters, the average runtime, and the average FPS
rate. These values are obtained based on the average value
to predict 30 seconds of lifestreaming with 10 repetitions.

From Table 3, it is possible to observe that the SqueezeNet
architecture has the shortest average runtime. This result is
expected, as the SqueezeNet architecture has the smallest
number of parameters and makes high use of small convo-
lutional filters as a technique for a lower computational cost.

However, the MobileNet-v1 and MobileNet-v2 architec-
tures have a close average runtime, even though they have
a higher number of parameters (compared to non-mobile
CNNs). Nevertheless, the MobileNet architectures are much
deeper, with many normal and depth-separable convolution
layers, capable of extracting more features and information,
and presenting superior accuracy.
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TABLE 4. Comparative number of parameters, average runtime and FPS
on desktop.

The Raspberry Pi 4 platform was not efficient to run the
NASNet Mobile architecture. This is due to NASNet is an
extremely complex architecture, with several layers sparsely
connected and various filter sizes, which makes it difficult to
run even on more complex platforms.

To compare the influence of a more powerful setting, the
samemodels were executed on a laptop with a dedicated GPU
with the following specifications: Core i7 7700HQ processor,
16GB RAM, NVIDIA GTX 1050Ti GPU. The results are
presented in Table 4.

According to Table 4, the influence of a more powerful
setting with a dedicated GPU is clear. Models running on
the laptop perform on average 98% better than those running
on the Raspberry Pi platform. The use of GPUs improves
performance due to parallel operations, where the multiple
cores available in GPUs allow running multiple operations at
the same time.

VII. WARNING SYSTEM
The work of violence recognition is typically a binary clas-
sification problem, that is, it has only two classes: violence
and nonviolence. In these cases, the function for calculating
the probability of belonging to a class is performed by the
sigmoid function. The output values can only assume values
between 0 and 1. Therefore, a threshold is established to
define to which class an input belongs. For comparison pur-
poses, Table 5 presents the classification results using differ-
ent algorithms. In this case, the runtime is the average time to
predict 1024 images with batch size of 32 and 10 repetitions.

In this application it can be observed that the results of
accuracy and F1-score make the application possible, high-
lighting MobileNet-v2 that obtained a result of 92% accuracy
and F1-score of 0.92 for the classification of situations of vio-
lence. Table 6 presents a benchmarking with well-established
models based on deep neural networks. As can be seen,
the use of models that require greater computational effort
does not significantly improve the accuracy results in this
application. In presenting the comparison between the mod-
els in Table 5 and Table 6 the time considered is the total
time, which comprises the sum of the training time plus the
execution time on the embedded system.

After training the model, the outputs generated by the
sigmoid function was carefully analyzed frame by frame. It
was observed that the outputs close to the threshold corre-
spond to cases in which actions and activities have common
characteristics, such as the position of the bodies or the
arms around someone. For example, nonviolence scenes that

TABLE 5. Comparison of algorithms.

TABLE 6. Convolutional neural network benchmark.

FIGURE 17. Warning system limits for the sigmoid function.

feature actions of ‘‘hugging’’ and ‘‘kissing’’ showmany char-
acteristics in common to violence scenes that feature actions
of ‘‘fighting’’, ‘‘attacking’’, and ‘‘beating’’. Precisely, it is
in these cases that the algorithm can perform the prediction
incorrectly.

To reduce this problem, a ‘‘third class’’ was created in the
sigmoid function, that is, instead of using only a threshold,
a zone of uncertainty was delimited. Thus, in cases where
the algorithm is unable to correctly classify an input, the
vigilant operator is alerted that the scene may or may not
contain violence. The uncertainty zone was defined between
the limits [0.35− 0.65] as presented in Figure 17.
Another important observation is that, in some cases, the

frames right before acts of violence, usually with quick and
expressive actions and fast movement gestures, the algorithm
tends to generate a prediction in the uncertainty zone. Thus,
in cases where there is a gradual evolution of violence in the
behavior of those involved, such as sudden movements and
accusations to finally acts of physical attacks, the algorithm
is able to draw the attention of the vigilant operator to be
aware of a possible occurrence and take appropriate preven-
tive action.

Figure 18 shows the output generated by the SqueezeNet
model, executed on the Raspberry Pi embedded platform,
where the label and the prediction result is displayed on
the screen. It is possible to observe that nonviolence actions
have a prediction result close to zero, violent actions have
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FIGURE 18. Model output.

FIGURE 19. Model output of violence in non-crowded environments.

FIGURE 20. Model output of violence in crowded environments.

a prediction result close to one and cases of pre-fights,
with quick movements expressing violence, have a prediction
result around 0.5.

Moreover, Figure 19 and Figure 20 display the model
output applied in crowded and non-crowded environments.
The image samples were taken from the testing set and show
that the trained models are able to successfully recognize
violence in both environments with diverse backgrounds.

VIII. CONCLUSION
This work evaluated how mobile CNNs can perform the
task of automatic violence recognition in a new dataset of
2670 videos containing scenes of violence in crowded and
non-crowded environments, collected from various public
datasets. The experiments have shown that high classification
accuracy can be achieved using mobile architectures with a
lower number of parameters and, it was able to achieve up to
92.05% of accuracy.

A low-cost prototype of an intelligent monitoring system
was presented on a Raspberry Pi embedded platform and used
to compare the performance of different developed mobile
CNN models, which was able to run a real-time model on
up to 4.19 FPS. Experimental results demonstrated that it
is possible to achieve with mobile CNN models even on
platforms with limited processing power, proving a higher
efficiency of the models without high deployment costs.

After careful analysis of the models’ output, it was noticed
that the incorrect prediction of the models occurs when
actions present similarities between the two classes of vio-
lence and non-violence. For example, hugging can havemany
characteristics in common with violent actions when the
video is analyzed frame by frame. To try to minimize this
behavior, a third class was developed on the response of
models with warning function or safety monitors in cases
where the algorithm is not able to predict correctly. Through
this system, in some cases prior to acts of violence, usually
with actions and gestures of fast and expressive movements,
the algorithm is used to generate a response in this attention
zone. Thus, when there is a gradual evolution of violence
in the behavior of those involved, the algorithm is able to
call the attention of monitoring agents in order to prevent
occurrences.

As future work, we can focus on a study of the impact of
using mobile CNN architectures on more powerful embed-
ded platforms. Moreover, we aim to improve the dataset,
with videos of actions of violence and nonviolence, above
all in public places such as malls, airports, subways, parks,
and sports stadiums, in order to improve the applicabil-
ity and accuracy of the models. Another possibility is
the detection and location of the violent occurrences in
the videos. This could be accomplished by using BoVW
(Bag of Visual Words) or by more advanced segmentation
techniques.
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