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ABSTRACT Spectral-based subspace learning is a common data preprocessing step in many machine
learning pipelines. The main aim is to learn a meaningful low dimensional embedding of the data. However,
most subspace learning methods do not take into consideration possible measurement inaccuracies or
artifacts that can lead to data with high uncertainty. Thus, learning directly from raw data can be misleading
and can negatively impact the accuracy. In this paper, we propose to model artifacts in training data using
probability distributions; each data point is represented by a Gaussian distribution centered at the original
data point and having a variance modeling its uncertainty. We reformulate the Graph Embedding framework
to make it suitable for learning from distributions and we study as special cases the Linear Discriminant
Analysis and the Marginal Fisher Analysis techniques. Furthermore, we propose two schemes for modeling
data uncertainty based on pair-wise distances in an unsupervised and a supervised contexts.

INDEX TERMS Graph embedding, subspace learning, dimensionality reduction, uncertainty estimation,

spectral learning.

I. INTRODUCTION

With the advancement of data collection processes, high
dimensional data are available for applying machine learning
approaches. However, the impracticability of working in high
dimensional spaces due to the curse of dimensionality and the
realization that the data in many problems reside on mani-
folds with much lower dimensions than those of the original
space, has led to the development of spectral-based subspace
learning (SL) techniques. Spectral-based methods rely on the
eigenanalysis of Scatter matrices. SL aims at determining a
mapping of the original high-dimensional space into a lower-
dimensional space preserving properties of interest in the
input data. This mapping can be obtained using unsupervised
methods, such as Principal Component Analysis (PCA) [1],
[2], or supervised ones, such as Linear Discriminant Analysis
(LDA) [3] and Marginal Fisher Analysis (MFA) [4]. Despite
the different motivations of these spectral-based methods,
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a general formulation known as Graph Embedding was intro-
duced in [4] to unify them within a common framework.

For low-dimensional data, where dimensionality reduction
is not needed and classification algorithms can be applied
directly, many extensions modeling input data inaccuracies
have recently been proposed [5], [6]. In [6], data points are
replaced by probability distributions modeling the artifacts
and an SVM classifier was extended to operate on data dis-
tributions. However, for high dimensional data, dimension-
ality reduction is needed. If the provided data is exposed to
measurement inaccuracies or artifacts, learning directly from
it can lead to a biased or erroneous embedding of the high
dimensional data [5], [6]. Traditional methods, such as LDA
and MFA do not take this into consideration. Extensions of
some SL methods taking into account the presence of outliers
and noise in the data were proposed to tackle for this problem,
such as the methods in [9], [10] for LDA, and the method
in [11] for PCA.

In this paper, we propose a novel spectral-based subspace
learning framework, called Graph Embedding with Data
Uncertainty (GEU), in which input data uncertainties are
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taken into consideration. Instead of relying on the training
data directly, we model each data point by a multivariate
Gaussian distribution centered at the position of the origi-
nal measurement and having a covariance matrix accounting
for its uncertainty. To this end, we reformulate the Graph
Embedding framework to operate on distributions at indi-
vidual data point level allowing us to determine a mapping
from the input data space into a lower-dimensional space
via optimizing some properties of interest defined over these
distributions. The outcome is a more robust data embed-
ding scheme. As special cases of the proposed framework
formulations, we investigate extensions of LDA and MFA
techniques within the proposed GEU framework. We refer to
these as GEU-LDA and GEU-MFA, respectively. An example
of the decision boundaries obtained by using the original
MFA, MFA with augmented data, and GEU-MFA on 2-D
synthetic data forming two classes is illustrated in Figure 1.
The incorporation of data uncertainty shifts the decision
boundary of the original approach. We note that by using
more augmented data the decision boundary of MFA shifts
toward the GEU-MFA.

Furthermore, we theoretically show that under the pro-
posed GEU framework, the rank of matrices involved in
the optimization problem, i.e., the scatter matrices, increases
compared to the original methods. As a result, methods for-
mulated under the proposed framework lead to an increased
number of projection directions. This is because the covari-
ances employed to model the uncertainty at the level of the
individual data point introduce a regularization term to both
scatter matrices. Thus, an indirect advantage of formulating
traditional SL. methods, such as LDA, under the proposed
framework is that it allows for addressing the small sample
size problem [12], even for problems formed by two classes.

Although the focus in this paper in on LDA and MFA,
the proposed GEU framework operating on generic graph
structures can directly be used to obtain robust solutions for
other SL methods formulated under the Graph Embedding
framework. The contributions of the paper are as follows:

o We propose a novel spectral-based subspace learning
framework which takes into consideration uncertainties
in the input data.

o We reformulate the Graph Embedding framework to
operate on distributions at individual data points. In this
way, we provide a generic approach for accounting
for data uncertainties in a multitude of SL methods
expressed under the Graph Embedding framework.

o We study as special cases of the proposed framework
GEU-LDA and GEU-MFA, and we theoretically show
that considering uncertainty leads to an increased num-
ber of projection directions.

o We propose two schemes to model uncertainty of each
sample based on pair-wise distances of data points in the
original space.

The remainder of the paper is organized as follows. Section II
provides a brief review of the related work. Section III
describes in detail the proposed GEU framework. Section IV
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provides the conducted experimental analysis, and Section V
concludes our work.

Il. RELATED WORK

A. GRAPH EMBEDDING

Graph Embedding [4], [13], [14] is a general framework
encapsulating several SL methods as special cases. Data
points are modeled as vertices of two graph structures,
namely an intrinsic graph expressing data relationships to be
emphasized and a penalty graph expressing data relationships
to be suppressed. Using such intrinsic and penalty graphs, the
optimization problems of SL. methods, such as LDA, PCA,
and MFA, can be formulated.

Given a set of data points followed by the corresponding
class labels {(x;, ci)}é\lzl,where x; e RPfori=1,...,N,the
goal in Graph Embedding is to determine a mapping which
maps X; to a lower dimensional representation y; € RY,
d < D. This is achieved by forming a weighted (intrinsic)
graph G = {X, W}, where X = [xq, ..., Xy] is the vertex
set and W € RV*N the graph weight matrix whose elements
encode the pair-wise relationships between the graph vertices
x;. Furthermore, a penalty graph G = ({X, W”} can be
defined on the same graph vertices, whose weight matrix
WP e RV*N expresses pair-wise relationships to be penal-
ized. For example, the goal can be to emphasize connections
of points within the same class, i.e., to have them close to each
other in the embedding space, and suppress the connections
of points from different classes, i.e., to have them distant in
the embedding space.

The graph preserving criterion is formulated as follows:

y* =argmin Y (v — y)* Wy, (1)
YiBy=m iz
where y = [y1,...,yw]1?, yi € Ris a 1-D mapping of x;,

m is a constant and B can be defined as a constraint matrix,
e.g., B = I'to enforce orthogonality constraints, or as a scatter
matrix based on the Laplacian of the penalty graph. The value
of m depends on the approach used. For example, it is set to
1 for LDA and MFA. For a linear data mapping, i.e.,y = X v,
where v € R” is a unitary projection vector mapping x; € R?
to y; € R, Eq. (1) can be rewritten as follows:

vIXLXy, )

v¥ = argmin

vIXBXTv=m
where L = D — W is the Laplacian matrix with D being the
diagonal degree matrix having elements D;; = Zj #i Wij» and
B = XLXT = X(D? — WP)XT'. In this case, the solution of
the optimization problem in Eq. (2) is given by solving the
generalized eigenvalue decomposition problem

(XLXT) v=A (XLPXT) v 3)

and keeping the eigenvector corresponding to the small-
est (positive) eigenvalue. To obtain more than one projection
direction, the corresponding projection matrix V € RP*4 s
formed by the eigenvectors corresponding to the d smallest
eigenvalues.
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FIGURE 1. The decision functions obtained by using MFA, GEU-MFA and MFA applied on augmented data by 100 samples, i.e., MFA-100 (left) and

1000 samples, i.e. MFA-1000 (right).

Specific selections of W and W lead to different subspace
learning methods. For LDA, the within-class scatter and the
between-class scatter matrices are given by

c
1 .
Sy =X (I - Z ]Ve‘eCT> x7, 4

c=1"¢

where C is the number of classes, N, is the cardinality of
class ¢, e € RV is the vector with all elements equal to 1, and
e € RV is a vector with the elements corresponding to data
points of class ¢ equal to one and the rest equal to zero. Thus,
LDA can be formulated in the Graph Embedding framework
by using the graph weight matrices

1

—, ifci=cjandi #]j
W= 1N, e 7 (6)

0, otherwise

1 1 " dij

— = ¢ =cjandi #j
W=y "

—, otherwise

N

where N, is the cardinality of the class, which x; belongs to.
MFA is formulated by using the graph weight matrices

|1, ifieNf(G)orje N}
Wij = {O, otherwise ®)
1, if(i,)) € Pry(ci) or (i, )) € Pr,(c))
P o_ 23 2 (¢
Wif' - {0, otherwise ®)

where N,jl (j) is the set of the ki nearest neighbors of the
X; in the same class, and Py,(c) is the set the k» nearest
pairs among the set {(i, /), X; € ¢, X; & c}. Here, we should
note that several other methods which employ pair-wise sim-
ilarity/distance measures, e.g. [8], [13], [15]-[20], can be
formulated using the Graph Embedding framework.

B. LEARNING WITH UNCERTAINTY
Research in uncertainty has gained a lot of attention lately in
many branches of science [21], [22], since data can be subject
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to measurement inaccuracies and artifacts. Taking this into
consideration in the data modeling and learning process is
critical for building robust models. Exploiting uncertainty in
machine learning has been studied from many different view-
points. Methods dealing with uncertainty can be grouped into
two different categories: sample-wise uncertainty modeling
and feature-wise uncertainty modeling.

In sample-wise uncertainty, the noise is modeled at the
sample level. The main assumption in such methods is that
few training data points are outliers and thus they need to be
suppressed or partially suppressed to not affect the solution of
the subsequent processing steps. Various robust extensions of
SL methods have been proposed to reduce the sensitivity of a
classifier to outliers [7], [9]-[11], [23]-[26]. In [23] and [24]
for example, robust extensions of LDA were proposed by
reducing the sensitivity of the model to outliers.

In feature-wise uncertainty, the noise is modeled at the data
dimension level. The main assumption in such methods is that
certain data dimensions are corrupted by noise. This type of
noise modeling was employed to extend SVM in [6]. For SL,
feature-wise uncertainty is used in [9], where a robust exten-
sion of LDA is proposed. Instead of using point estimates of
speech data, a probabilistic description based on Gaussian
distributions at the individual data point level are used as
inputs to LDA. In our work, we use a similar uncertainty
modeling. However, we note two key differences: (i) The
approach in [9] is restricted to the LDA method, whereas our
work is based on the Graph Embedding framework formu-
lation of SL and, thus, it is more general and can be used
in several approaches, e.g., LDA, PCA, and MFA. ii) The
uncertainty estimation approach in [9] is restricted to speech
data and in [6] is restricted to image data, whereas we propose
two schemes to model the uncertainty of each sample based
on pair-wise distances of data points in the original space.
Thus, our approach of modeling uncertainty can be used for
any type of data.

Ill. GRAPH EMBEDDING WITH DATA UNCERTAINTY

Let us denote by {Xi}fy: | a set of the random Gaussian vari-
ables expressing the low-dimensional representations of the
inputdatax;, i = 1,..., N. We express the graph preserving
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criterion using y; as follows:

y* = argmin Z E ((Xl - Xj)z)wg/, (10)

B By)=m iz

where [E(-) denotes the expectation operator. For a Gaussian
uncertainty, i.e., y, ~ N (i, ol-z), the pair-wise distances
% between Y; and y. are also random variables following a
Gaussian distribution

2 =Y, Y, ~ Nwi = . of + 7). (1)

Thus, the expectation term in Eq. (10) can then be rewritten
as follows:

E((y;, — )% = E(z) = E(z)* + Var(zy)
= (i — )’ + (6} + o). (12)
By substituting Eq. (12) to Eq. (10), we get

X* = argmin Z E ((zi - Xj)2>wij
EQ By)=m iz

= argmin Z ((,u,- — W)+ (o + sz))Wij (13)
]E(XTBX)=m i#j

The first term of the summation is equivalent to the original
Graph Embedding and depends on E(y), i.e., the expectation
of y:

> (i — 1) Wiy = 2E(y)" LE(y). (14)
i#j
By defining

the second term in the summation can be expressed as
follows:

Y (67 + 0/ )W;; =20 Do. (15)
i#]
Thus, using Eq. (14) and Eq. (15), our new graph preserving
criterion is given as follows:

y* = argmin E(y)'LE(y) + ¢’ Do. (16)
- E(y"By)=m

For a linear data mapping y = X’ v and modeling each
data point in the input space using a Gaussian distribution,
ie, x; ~ N(uj.‘, ), y, = VTgi corresponds to a linear
projection of a Gaussian, which is a Gaussian distribution
yi ~ N, (0)?) with u} = v p? and (07)* = v/ Ziv.
Thus, the second term in Eq. (16) can be written as follows:

o'Do =v' (Z Di,-):j.‘> V. (17)

i
The equality in Eq. (17) follows from: o¢'Ds =
Zi (o] Zj(Di/Q/)' Since D is diagonal, Zj(D,'jO'j) = D,','O’,'.
Thus, 6'Do = }";07D;;. In addition, 0 = v! XTv, thus

o'Do = v (3, DiiZ])v.
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Based on the above, the final form of Eq. (16) is

v = argmin v’ <E(X)TL EX) + Z Dii2?> V.
EVTXBXTv)=m i

(18)

Following a derivation similar to the above, we note that a
similar graph preserving criterion can be formulated with the
constraint:

B = (E(X)TL” E(X) + ZDZ):;‘) . (19)

1

The solution of the optimization problem in Eq. (18) is
given by solving the following eigenvalue decomposition
problem

(]E(X)TL E(X)+ Y Diizf) v = ABv (20)

and keeping the eigenvector corresponding to the small-
est (positive) eigenvalue. To obtain more than one projection
directions, the corresponding projection matrix V € RP*4 is
formed by the eigenvectors corresponding to the d smallest
eigenvalues.

From Eq. (18), we can observe that when uncertainty is
not used, i.e., by having Ef equal to zero, the Gaussian
distributions x; become equivalent to Dirac function. Hence,
in that case, Eq. (18) becomes equivalent to Eq. (2) and the
solution of the proposed approach is equivalent to that of
the original Graph Embedding framework. It should be noted
that, as explained above, the projected data y;* obtained for
each data point x; is also a random variable characterised by
the mean E(y;) = v’ u and variance o; = v’ u}v. One can
use this additional information for the projected data or only
employ the first order approximation, i.e., the mean E(y;),
as the final projection of the original sample x;. In this paper,

we use the latter in the classification step.

A. EXPLOITING DATA UNCERTAINTY AS A FORM

OF REGULARIZATION

By observing the eigenanalysis problem in Eq. (3), we can see
that the number of projection directions which can be defined
by the Graph Embedding framework depends on the underly-
ing structure of the intrinsic and penalty graphs. That is, the
maximal number of projection directions is upper bounded by
the smallest rank of matrices XLX” and XL”X” . For exam-
ple, when expressing LDA through Graph Embedding , the
maximal number of projection directions is equal to the rank
of Sp = XLPX7 , i.e., min(D, C — 1), where C is the number
of classes. This restricts the number of meaningful projection
directions that can be defined, leading to the extreme case of
only one projection direction for binary problems. In order
to solve the generalized eigenanalysis problem in Eg. (3),
a regularized version S, = XL”X” + €I with ¢ > 0 is used,
because the original S, is singular. However, this regulariza-
tion procedure simply shifts the eigen-spectrum of S from
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Ai to X,- =XAi+€>0,i=1,...,D)and has no data-driven
intuition.

From Eq. (20) we can see that both matrices involved in the
generalized eigenanalysis problem of the proposed approach
are strictly positive definite. That is, the additional terms
>;DiiXY and Y, DVEY introduced to the scatter matrices
defined over the intrinsic and penalty graphs act as regular-
ization terms leading to full-rank matrices. This is due to
that the Gaussian distribution covariance matrix, Ef, is a
strictly positive-definite matrix. Hence, the introduction of
the proposed approach to model uncertainty at the individual
data point level results in an intuitive regularization proce-
dure, increasing the number of projection directions. This
allows avoiding the small sample size problem of LDA [12],
i.e., in standard LDA the number of projection direction
is theoretically limited by the number of classes. Our
approach solves this problem and provides more projection
directions.

B. UNCERTAINTY ESTIMATION
In the proposed GEU framework, we encode the uncertainty
of each individual data point by a Gaussian distribution cen-
tered at the position of the data point and having a vari-
ance which needs to be appropriately determined to reflect
the properties of the problem at hand. However, data is
commonly available without such uncertainty information.
We propose two schemes for defining such a variance esti-
mate based on pair-wise distance between data points in the
unsupervised and the supervised settings.

Each sample x; is defined by its mean E(x;) = x; for both
techniques and its covariance ¥; defined as follows:

Yi=0 diag(xi — x,-*)z, (21)

where o is a constant, diag(-) is the diagonal operator, and
x;+ 1s the closest data point to x; in the admissible set. For
the unsupervised case, the admissible set is composed of all
the training data except X; and for the supervised case the
admissible set is composed of all the training data except X;
and having the same class as x;. This makes our approach
generic and suitable for all learning scenarios, i.e., supervised
training in the presence of label information or unsupervised
in the absence.

In Figure 2, we illustrate how x;+ in Eq. 21 is selected in
both variants. We consider a binary case example. For first
class, we have three samples, x1, x2, and x3. For the second
class, we have two samples x4 and xs5. For example, for xp,
the closest point to it is x5 but the closest point within the
same class is xp. Thus, for x1, x;+ in the unsupervised case
is x5 and in the supervised case is x,. For x3, x;+ in both the
unsupervised and supervised cases is x> as that it is the closest
point to it and it belongs to same class 1. Similarly, we can
deduce the neighbor for each of the remaining points in both
cases.
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G2)

FIGURE 2. 2D illustrative example on how the closest samples
considered in our uncertainty estimation can be different in the
supervised and unsupervised variants. Samples x;, x,, and x5 belong to
class 1, x; and x5 belong to the second class. The closest sample to x; is
x5 in the unsupervised case, but x, in the supervised case.
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FIGURE 3. Performance evaluation of MFA and GEU-MFA on Breast
Cancer Wisconsin dataset for different combination of d, the dimension
of reduced space, and k used in k-NN.

IV. EXPERIMENTS AND ANALYSIS

In this section, we study as special cases of the proposed
framework the traditional subspace learning techniques LDA
and MFA using our learning paradigm. For all testing scenar-
ios, we rely on Nearest Neighbor for the classification. For
the evaluation, we use three different datasets:

o Breast Cancer Wisconsin dataset [27]: It is a binary
classification dataset composed of 569 samples with
32 features. An explicit uncertainty estimate is proposed
in [6]. We use a random 5-fold split for the evaluation
of different approaches. We keep the folds fixed for the
different methods.

o Cifar2: We use two classes, “cat” and “dog”, from the
original Cifar10 [28]. We randomly sample 900 images
per class for the training. For the testing, we use the
original test set of Cifarl0 for both classes. To reduce
the computational complexity, we first apply Bag of
Visual Words (BoVW) using the SIFT descriptors to get
a 400-dimensional representations of the original data.

« Extended Yale B Face Database [29]: It contains 38 sub-
jects and each subject provides 64 face images with
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FIGURE 4. Average accuracy and variances of MFA, RMFA, GEU-MFA-U,
and GEU-MFA-S on Cifar2 for different training set sizes.
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FIGURE 5. Average accuracy and variances of LDA, RLDA, GEU-LDA-U, and
GEU-LDA-S on Cifar2 for different training set sizes.

different illumination conditions. Similar to [23],
we crop each image and convert it to a 32 by 32 gray
image. Then, PCA is used to extract a 148 feature vector
per sample.

For all experiments, we cross-validate for the value of o from
{0.001, 0.1,0.2,0.4,0.8, 1, 2} and for the projection space
dimension d from {1, 2, 4, 8}. We denote the supervised and
unsupervised variants of uncertainty estimation with S and U,
respectively.

A. MFA

MFA is a SL technique which characterizes the intraclass
compactness in the intrinsic graph and the interclass sep-
arability in the penalty graph. It can be formulated using
the Graph Embedding framework as explained in Section II.
Thus, it can be extended using our framework to incorporate
the data uncertainty using Eq. (18)-(20).

Figure 3 illustrates the performance of the original MFA
and its uncertainty extension, i.e., GEU-MFA, for different
combinations of reduced dimension d and k used in k-Nearest
Neighbors (k-NN). We note that for small values of k and d,
GEU-MFA performs better than the original method. For the
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TABLE 1. Classification accuracy of MFA [4], RMFA [4], GEU-MFA-U, and
GEU-MFA-S in the different datasets.

noise | MFA | RMFA | GEU-MFA-U | GEU-MFA-S
0% | 0.858 | 0.851 0.866 0.894
Cancer 10% | 0.833 | 0.870 0.884 0.890
20% | 0.806 | 0.825 0.835 0.849
0% | 0.505 | 0.511 0.512 0.520
Cifar2 10% | 0.500 | 0.507 0.511 0.513
20% | 0.504 | 0.503 0.506 0.506
0% | 0910 | 0.913 0.922 0.921
Yale B face | 10% | 0.901 | 0.902 0.905 0.910
20% | 0.892 | 0.896 0.901 0.902

extreme case (k = 1,d = 1), MFA has 52.8% accuracy
compared to 77.1% for GEU-MFA. For higher values of
(d, k), the performance of both approaches increase and they
tend to perform similarly.

In Figure 4, we show the performance of MFA, Regular-
ized MFA (RMFA) and our variants of MFA as a function of
the number of training samples on Cifar2. We note that incor-
porating uncertainty consistently yields a performance boost
for both variants of uncertainty techniques compared to the
original MFA. For smaller training data sizes, the supervised
variant usually leads to slightly better results (less than 1%)
than the unsupervised variant. When a higher number of
training data is available, the unsupervised technique usually
achieves the best accuracy.

In Table 1, we show the robustness of the standard
MFA [4], Regularized MFA (RMFA) [4], and our pro-
posed approach with both variants of uncertainty estimation,
i.e., our MFA variant with unsupervised uncertainty vari-
ant (GEU-MFA-U) and our MFA variant with supervised
uncertainty variant (GEU-MFA-S), on the three datasets with
different additional noise levels. We repeat each experiment
ten times and report the average accuracy achieved by each
method. We note that the proposed methods outperform the
original MFA for all noise levels. We also note that the
accuracies of all the methods drop clearly when the noise
level is higher. The supervised technique for estimating the
uncertainty achieves the top performance except for Yale B
Face dataset with no additional noise, where the best perfor-
mance is achieved by GEU-MFA-U.

B. LDA

In Figure 5, we evaluate the performance of LDA, Regu-
larized LDA (RLDA), our LDA variant with unsupervised
uncertainty variant (GEU-LDA-U) and our LDA variant with
supervised uncertainty variant GEU-LDA-S as a function of
the number of training samples on Cifar2. We repeat each
experiment ten times and report the mean and the variance
of accuracies for all the training sizes. Similar to MFA, incor-
porating uncertainty yields a performance boost for both vari-
ants of uncertainty techniques compared to the original LDA.
We also note that for higher number of training samples, the
performance gap decreases. Both variants of uncertainty esti-
mations achieve a similar performance for different training
sizes.
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TABLE 2. Classification accuracy of LDA [30], RLDA [4], RSLDA [23],
ULDA [9], GEU-LDA-U, and GEU-LDA-S in the different datasets.

noise | LDA | RLDA | RSLDA | ULDA | GEU-LDA-U | GEU-LDA-S
0% (0.523 | 0.541 | 0.511 | 0.505 0.544 0.535
Cifar2 | 10%|0.497 | 0.538 | 0.516 | 0.501 0.542 0.547
20%|0.523| 0.545 | 0.510 | 0.498 0.541 0.546
0% (0.9320.958| 0.882 | 0.528 0.951 0.950
Cancer| 10%|0.896 (0.919| 0.858 | 0.541 0.917 0.918
20% | 0.895|0.909 | 0.829 | 0.505 0.904 0.901
0% (0.856 | 0.869 | 0.851 | 0.871 0.872 0.871
Yale B | 10%|0.849 |0.864 | 0.827 | 0.859 0.863 0.862
20% | 0.838 | 0.853 | 0.839 | 0.852 0.856 0.855

We report the performance of LDA [30], regularized
LDA [4], Robust Sparse Linear Discriminant Analysis
(RSLDA) [23], Uncertain Linear Discriminant Analysis
(ULDA) [9], GEU-LDA-U, and GEU-LDA-S on the three
datasets for different noise levels in Table 2. We repeat
each experiment ten times and report the average accuracy
achieved by each approach. For the clean Cifar2 dataset,
the best accuracy is achieved by GEU-LDA-U, while for
the noisy Cifar2, GEU-LDA-S achieves the best results. The
regularized LDA yields the best accuracy for Cancer and Yale
B (noise=10%) datasets. One plausible explanation of this
is that Cancer dataset is linearly separable dataset and using
uncertainty might have made the problem harder. However,
for the other two variants of Yale B dataset, the highest accu-
racy is achieved by GEU-LDA-U. Compared to the original
LDA, the LDA variants obtained via the proposed framework
are more robust to the presence of noise and yield higher
accuracies.

V. CONCLUSION

In this work, we introduced a novel spectral-based dimen-
sionality reduction framework called Graph Embedding
with Data Uncertainty (GEU) that reformulates the Graph
Embedding to consider input data uncertainties and artifacts.
We model the uncertainty around each data point by a mul-
tivariate Gaussian distribution centered around the original
sample and a covariance matrix characterizing the uncertainty
of the corresponding sample along each feature dimension.
Two techniques to generate the distribution of each data
point were proposed based on the pair-wise distances between
samples. Uncertainty introduces a regularization term that
expands the rank of the scatter matrices and increases the
number of available projection directions compared to the
original subspace learning methods. We studied as special
cases of the proposed framework the traditional subspace
learning techniques LDA and MFA. The proposed framework
was extensively evaluated over three datasets and it led to
performance improvement compared to the original methods
as well competing methods that consider uncertainty.
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