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ABSTRACT In mobile networks, the edge cloud environment has emerged to provide various services to
users. When the mobile user moves to another location while connecting the edge cloud service, to maintain
an optimal service path, it is necessary to migrate the service to a new edge cloud close to the location
where the user is newly connected. Several methods have been proposed to integrate edge cloud service
migration technology with existing mobility management protocols in mobile networks, and a location/ID
separation protocol (LISP)-based service optimal path management method between edge clouds was
recently proposed. However, for real implementation of edge cloud with existing platform specified to
containerized infrastructure, where the address of service is allocated randomly and locally, it is hard to
discover appropriate service from the external client as well as maintain service connectivity when service
location is changed. To solve that, this paper proposed the LISP-based service ID management system which
provides uniform access for equivalent services running on different edge clouds. To apply the proposed
ID management system on real distributed edge cloud systems, the mobility management and edge cloud
networking systems were integrated as shown in the testbed implementation. This shows the possibility of
combining the isolated mobility management for mobile users and internal identification of edge services
using LISP for reducing the interruption and delay of edge service for mobile users. As a result of the
experiments conducted on a real testbed, our proposed system was verified to enable a change in the routing
path while maintaining a single service ID between different edge clouds, and the delay time for path
reconfiguration is reduced compared to the existing method.

INDEX TERMS Location/ID separation protocol (LISP), Kubernetes, multi-cluster, service connectivity.

I. INTRODUCTION
Distributed edge cloud environments have the advantage of
minimizing the delay in accessing services and distributing
traffic by deploying virtualized services close to user access
locations [1]. To provide these advantages inmobile networks
where users are roaming across multiple edge clouds, various
methods have been proposed to deploy equivalent services in
multiple locations or to move virtualized service proximity
to the user’s new location. However, when the location of the
service is changed, the existing session should be released
by changing the IP address of the service, which increases
the service downtime for re-discovering the service location
and re-establishing the sessions. The traditional method to
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solve this problem is to adapt IP mobility management to
service mobility management, which maintains service IP
addresses even when the service location is changed [2]–[5],
however the traffic path cannot be optimized by anchoring the
address at the edge cloud, where the service is initially instan-
tiated. To solve this problem, several methods have been
researched to separate the IP context into the ID and loca-
tion [6]–[10]. In particular, in our previous studies [9]–[10]
the location/ID separation protocol (LISP) [11] was used to
assign a unique service regardless of its location. With the
enhanced mapping system of the service ID and its locator,
our work verified that the nearest service is always accessed
whileminimizing the service downtime evenwhen themobile
user is rapidly roaming across multiple edge clouds. Despite
these efforts, to adapt this method to real implementation,
a detailed method is required to assign the same service ID
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and manage them in different edge clouds that operate inde-
pendently, which should be compatible with the management
and orchestration functions running for the edge cloud.

For edge cloud deployment, because resources are more
constrained at the edge, a container-based infrastructure
with lightweight virtualization technology has been intro-
duced to increase the agility and flexibility of application
deployment [12]. For container-based service deployment
and execution, resource provisioning, networking, and fail-
ure management, Kubernetes [13] is the most widely used
orchestration tool. For the configuration of an edge cloud
environment, although the physical nodes in a single clus-
ter can be deployed at the edge, independent clusters are
generally deployed in each geographic location to provide
localization and management distribution. However, accord-
ing to the basic design principles of Kubernetes networking,
to improve the flexibility, the IP address assigned to a pod
is non-permanent, and thus the IP address is changed when a
pod is reinitialized [14]. For this reason, a fixed endpoint can-
not be supported when the service is dynamically instantiated
or moved to another edge cloud. To provide consistent service
to endpoint nodes, Kubernetes defines a service object that
acts as an access point for application containers by allocating
a permanent IP address [15]. This IP address can be used as
a service ID; however, it is necessary to synchronize unique
service IDs across all edge clusters for a specific service
to avoid ID duplication. Currently, there are no proposals
for allocating the same service ID to different edge clusters.
When we use the LISP control plane, a centralized control
plane can help in the efficient management of service IDs
while avoiding duplication. To do so, the LISP control plane
should have a function to communicate for querying and
responding to service ID requests in the service instantiation
phase at each cluster.

In addition to service IP address synchronization for use as
a unique ID, because the IP address is still private, additional
operations are required to expose the service to the external

internet to provide connectivity for external clients. A com-
mon method used in current systems for exposing services
to external clients is to expose services using the public IP
address of the gateway or load balancer of the cluster, and
then translate those addresses into the internal IP addresses
of the services [16], [17]. In such an environment, a user
can acquire the proper IP address for a target service by
using a DNS server that records the service names and cor-
responding IP addresses. However, when using this service
exposure approach, a user must rediscover the service IP to
change their connectivity to equivalent services, which can
increase the service downtime during the reestablishment of
service connections when a user moves or a service failure
occurs. Several solutions have been proposed to resolve DNS
failures and conduct dynamic server selection [18], [19].
However, DNS-based methods cannot maintain the target IP
address of service and break session connectivity when a
target service changes. For a seamless change in service con-
nectivity between different clusters with minimal discovery
time, it is necessary to minimize the location dependency
of the services, which can be achieved by separating the IP
contexts into locations and identifications. When we use the
LISP approach, this can be solved by implementing the LISP
router function in front of each edge cluster to encapsulate a
packet that can be forward between the LISP router where the
client is connected. Because the LISP control plane manages
service ID-Locator mappings, it can replace the DNS system
aswell asmaintain service connectivity evenwhen the service
location is changed.

In this study, based on our previous work, we designed and
implemented LISP-based service ID management functions
for a real multi-cluster cloud system to allocate a single
service IP to equivalent services. Instead of using the cur-
rent system, which allocates service IPs from each cluster
orchestration system individually, with the proposed system
architecture, a service ID management function located in
the centralized control plane manages the IP address pool

FIGURE 1. Kubernetes networking architecture.
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for service IDs that can be allocated across multiple clusters.
When a service is requested to be hosted on the cluster,
the service ID management agent functions in each cluster
orchestrator requests a service ID from the centralized control
plane to create a service. In this manner, the same service
running on different clusters can be assigned the same service
IP, allowing external clients to quickly change their service
connection to the same service running on another cluster by
changing only their locator without an additional discovery
procedure used to change the identifier. For a real imple-
mentation, the proposed functions were designed to inter-
work with Kubernetes functions. In particular, to improve the
compatibility, they were designed transparently by consider-
ing the current networking models and plugins for internal
networking. By implementation and experimentation on the
testbed, the proposed the LISP-based service IDmanagement
shows that the service could be accessed by mobile users
optimally with minor processing delay. The remainder of
this paper is organized as follows. In Section 2, we ana-
lyze the Kubernetes-based container networking environment
and briefly describe the LISP protocol. Section 3 describes
the proposed architecture and its operation. In Section 4,
we describe an operation verification through the implemen-
tation of the proposed method on a testbed. Finally, we pro-
vide some concluding remarks in section 5.

II. RELATED WORK
A. KUBERNETES-BASED MULTICLUSTER NETWORKING
Kubernetes configures several adjacent physical nodes in
a single cluster and deploys pods, which are defined as
groups of one or more containers with shared storage and
network resources. Kubernetes defined several control plane
functions for managing resources and additional methods.
Kube-apiserver is the frontend of the Kubernetes control
plane that exposes APIs for management and orchestra-
tion, which allows access from other control functions and
third-party services for managing clusters. When deploying
a pod to a node in a cluster, the Kube-scheduler function
selects an appropriate node upon which the pod will operate
by considering the resource status and operation policies.
These control plane functions are located on the master node
in the Kubernetes cluster, and each node in the cluster creates
containers for pods using runtime container modules such as
Docker. Each worker node utilizes Kubelet, which is an agent
for managing the cycle of an actual pod, and Kube-proxy,
which is a network proxy that manages network rules for pods
within a node.

Figure 1 shows the Kubernetes networking architecture.
To provide networking models between pods within a Kuber-
netes cluster, Kubernetes provides a network proxy function
that manages routing rules within the host OS and various
container network interface (CNI) plugins [21]. For example,
Flannel [22], which is a representative CNI plugin, provides
an L3 overlay network between pods. SDN-based network-
ing models are also available, such as those of tungsten

fabric [23]. When creating a pod, the CNI plugin allocates
an IP address and forwards it using a virtualized routing
function ormodifying the internal routing table of the host OS
kernel. On a host with a Linux OS, the CNI can dynamically
configure routing rules by accessing iptables, which provide
routing rules and NAT functions in Linux through the kube-
proxy function.

FIGURE 2. Limitations of service access in a multi-cluster environment.

A service object is an abstraction that defines a logical
set of pods and a policy by which to access them. Each
service object has a unique IP address called ClusterIP. Once
a service is created, its ClusterIP does not change, even when
pods are dynamically created or released for the service,
meaning that one can always access the target service within
a cluster. The mapping of the service and its connected pods
is managed by the endpoint controller function in the kube-
controller-manager, which allocates ClusterIPs within a pre-
defined address pool for internal IPs when a service object
is created. Because a ClusterIP is a private IP, an additional
procedure is required to expose the ClusterIP as a public IP
address that can be accessed by an external client. In Kuber-
netes, instead of exposing a ClusterIP directly, the public IP
address assigned to the interface of the physical node or GW
address of the corresponding cluster is exposed. Public IP
addresses are generally recorded in a public DNS system and
mapped to service names from the outside. This method of
exposing services to the external network has limitations in
terms of providing consistent reachability when equivalent
services are running on different clusters because different IP
addresses for the same service are defined as destinations.

Figure 2 presents an example of the limitations of external
access in a multi-cluster environment. The problems that can
occur in the multi-cluster environment defined in the figure
are summarized below. First, when the communicating client
moves after acquiring the public IP address of a specific
cluster through the initial DNS query process or when it is
necessary to change the path because of a service failure in the
current cluster, additional procedures are required to discover
the IP address of the service located in the other cluster. For
this process, the client must detect a connection failure and
request the IP address corresponding to the service name from
the DNS server. In addition, to keep the DNS records up to
date, the DNS server must periodically check all services in
all clusters. For the DNS-based service discovery process,
additional functions such as dynamic server selection [9],
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which can apply DNS requests to respond to mobile users or
communication node failures, have been studied. However,
because the external client and DNS are not managed by the
cluster management function, it is difficult to detect failures
and update the statuses quickly. Although setting a small
time-to-live (TTL) value for DNS records is also possible, one
must be careful because setting a TTL that is too small can
lead to vulnerability to DDoS attacks [24]. In addition, it is
necessary to translate an IP address multiple times to forward
packets to a service. The first translation is required between
the public IP address and ClusterIP, and the second transla-
tion is required between the ClusterIP and pod IP addresses.
These processes may impact the data plane performance by
increasing the total number of services or packets.

B. LISP
In LISP [11], an IP address is divided into two types of
addresses: endpoint ID (EID) and routing locator (RLOC).
The EID is defined as a globally unique IP address assigned
to an endpoint node and is used to establish end-to-end con-
nections between pairs of nodes. The IP packets between
two EIDs are encapsulated and delivered between LISP
routers called xTRs (ingress/egress tunneling routers), where
the EIDs are connected using RLOCs, which represent the
address of each LISP router. When an EID is connected to
the LISP network, it is mapped according to the RLOC of
its LISP router. This mapping information is managed using
a logically centralized LISP mapping system. In the LISP
standard documents [11], control planemessages between the
LISP mapping system and LISP routers are defined to update
and query EID-RLOC mappings. LISP-based ID/location
separation can provide more effective and native support for
mobility management compared to existing IP-based infras-
tructure, which eliminates the problem of non-optimal paths
induced by the forwarding of packets through the anchor
functions defined in existing IP-based mobility solutions.

Several recent studies have proposed the application of
LISP to mobile users and virtualized services running on
cloud infrastructure [6]–[9]. In these studies, an EID was
assigned to each virtualized service, similar to a mobile
user, and mapped to an RLOC, which is defined as the IP
address of the LISP router functions deployed on each cloud.
Using LISP in cloud infrastructure, because services can
be migrated to other clouds without changing their EIDs,
previous methods have focused on integrating the service
migration process with a LISP control plane operation to
optimize traffic paths for migrating services. However, when
the equivalent service is already running in the edge cloud,
this service has a different identifier as an independent unique
entity so it is hard to determine as the same service in network
perspective. Therefore, the results may cause such as migrat-
ing the service to edge cloud where already the same service
is running on or beaking session by re-establishing a connec-
tion to the service having a new identifier. To solve that, in our
previous study [9], we defined a separated mapping system
for effectively managing service EIDs of multiple locators for

equivalent services running on multiple edge clouds. In addi-
tion, we extended the fields in the user EID mapping table to
record the corresponding service EIDs to provide a rapid path
configuration during user mobility. However, to provide user
mobility support and dynamic path configuration for the ser-
vices proposed in previous studies in a real environment, it is
necessary to consider interworking with cloud management
and orchestration systems.

To implement a LISP-based cloud environment, previ-
ous studies [6]–[8] used a hypervisor to virtualize physical
resources and deploy services as virtual machines (VMs).
In such approaches, LISP components are deployed as VMs
and executed on each cloud, similar to services [7], [8],
or as processes running on the host OS kernel [6]. Although
these approaches extend the role of the hypervisor to pro-
vide interworking with LISP control management functions,
this type of method cannot be applied to the Kubernetes
platform because there is no hypervisor. For container-based
infrastructures, the author of [25] developed a LISP-enabled
CNI plugin for a Kubernetes-based container environment
to support service discovery and routing between nodes in
a single-cluster environment. However, because this method
is only available within a single cluster and cannot expand
networking to a multi-cluster environment and an external
network, the aforementioned limitations of the Kubernetes
environment have not been overcome.

FIGURE 3. Proposed LISP control plane for a Kubernetes multi-cluster
environment.

III. LISP-BASED CONTROL PLANE IN MULTICLUSTER
CLOUDS
A LISP-based control plane architecture for providing ser-
vice discovery and external connections for a Kubernetes
multi-cluster environment is presented in Figure 3. In this
figure, the overall infrastructure is composed of independent
Kubernetes clusters and the LISP control plane that integrates
and manages service mapping between multiple clusters.
In the control plane, a service IP management function is
defined in the centralized LISP control plane along with the
service-mapping system, which was proposed in our previ-
ous study [9]. For communication between the LISP control
plane and Kubernetes clusters, a service discovery controller
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in the control plane and a service discovery agent in each
Kubernetes master node is defined. As a LISP data plane
component, we have defined that the LISP xTR function is
located in front of each cluster, similar to a gateway router.

A. SERVICE ID AND LOCATOR
Considering the design of the LISP-based distributed cloud
system, the first step is to define an ID and locator for the
container service. Because the IP address of each pod in
Kubernetes is non-permanent according to the dynamic man-
agement strategy, it is unsuitable to use service IDs because
one cannot guarantee their immutability, which is a require-
ment for identifiers in LISP. Instead, it is appropriate to define
a ClusterIP as a service ID, which is an IP address allocated
to a service object that can provide fixed IP access for pods
defining the same service. Therefore, the management of the
ClusterIP address pool, which was originally independently
managed in each cluster, should be moved to the centralized
LISP control plane. For the management of ClusterIPs, the
service IP management component, which is newly defined,
allocates an IP address to a service name requested from
Kubernetes when the service is created. Within the ClusterIP
address pool, the IP address for a service can be predefined
according to the policy or allocated dynamically. In addition,
equivalent service objects created in different clusters should
be defined using the same name as the service in the template.
From a management perspective, it is assumed that service
names are consistently maintained between multiple clusters
according to the policies of the network and service operators.

In the LISP, an RLOC is defined as a public IP address that
can be routed in the IP underlay infrastructure and is assigned
to an external interface of the xTR function. As shown in
Figure 3, in the proposed architecture, an xTR function is
located in front of each cluster, and thus a single cluster can
be considered as a single LISP site. In a real implementation,
an xTR can be deployed as a container image or host process

on the master node, or can be implemented independently,
similar to an external load balancer or gateway. In a central-
ized LISP mapping system, the RLOC address of an xTR is
mapped as a locator for a service IDwhen the xTR updates the
mapping of the service IDs by sending a Map-Register mes-
sage. The LISP control plane has an independent mapping
system for each service, and each service-mapping system
supports the mapping of multiple RLOC values for a single
service ID. When a user queries the location of a service
ID, it is necessary to identify an appropriate locator for the
equivalent services distributed throughout several locations.
Although this is an important challenge, algorithms and opti-
mization methods for this operation are beyond the scope of
the present study. Similar to services, users are also assigned
globally unique IDs in the LISP-based environment, and it is
assumed that a user can determine the endpoint service ID
used for a session connection using a predefined method or
an additional procedure.

B. CONTROL PLANE OPERATION
For the requests and responses related to service ID allocation
between the Kubernetes cluster and the LISP control plane,
we define operations and procedures between the service
discovery controller and the service discovery agent. The
service discovery controller receives a service name from
the agent and finds its ClusterIP in the lists formed by [Ser-
viceName:ClusterIP], which are managed by the service IP
management function. At this point, if a mapped ClusterIP
value for the requested service name does not exist, the
controller requests the service IP management function to
allocate a new ClusterIP address for the service and requests
the service ID mapping system to create a service mapping
table for the assigned ClusterIP. Finally, the controller sends
a response message to the agent in the Kubernetes cluster that
requested the ClusterIP, allowing the creation of a new service
object with the received ClusterIP in the cluster. The service

FIGURE 4. Control plane operation procedures.
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discovery agent running on the master node of each cluster
has the functionality to access the Kubernetes API. When
a service creation is requested and the corresponding mes-
sage arrives at the Kube-apiserver, the agent intercepts this
message, reads the service name in the template of the target
service, and sends a request message to the controller. When
the agent receives a ClusterIP for a requested service name
from the controller in the LISP control plane, the agent adds it
to the target service template and resumes the service creation
process through the Kubernetes API. The service creation
process is temporarily paused while exchanging messages
between the agent and controller.

After a service is created, a procedure is required to
send the active ClusterIP to the xTR to update the mapping
information for the service created in the cluster. In a com-
mon LISP network, an xTR can detect a node attachment
by receiving the L3 attachment processes, such as a router
advisement or router solicitation message. However, because
a service object is a logical component, it does not generate
an attachment procedure, unlike a common node, and an
additional process is required to detect an active ClusterIP
at xTR. Therefore, the service discovery agent verifies the
completion of the service creation through the Kubernetes
API and sends a LISP Map-Register message from the xTR
of the cluster to the LISP control plane. Figure 4 shows the
overall message flows between the Kubernetes cluster and the

LISP control plane for creating a service and registering it in
the mapping table, including the service discovery controller
and agent functions.

C. DATA PLANE OPERATION
Networking in a multi-cluster environment is divided into
networking within a single cluster, networking between clus-
ters, and networking with external nodes. Networking within
a single cluster is divided into networking between pods
within a single node and networking between pods in dif-
ferent nodes. In the proposed architecture, LISP-based net-
working is not responsible for intra-cluster networking, and
it can transparently connect an external network to the intra-
cluster networking model provided by the CNI plugin, sim-
ilar to existing methods. Therefore, intra-cluster networking
between the pods and services on a single node or another
node in a cluster is managed by the CNI plugin. Inter-
cluster networking can be supported in two ways. The first
is to implement a networking model based on the service
IDs using the LISP control plane, which forwards packets
between clusters by encapsulating the header from the xTR
of each cluster in the RLOC addresses. When a pod sends
a packet to a specific ClusterIP, the packet is first checked
for information in the internal routing table configured by
the Kube-proxy and CNI in the cluster. If the corresponding
ClusterIP is in the entry, the destination service exists in the

FIGURE 5. Overall operation of the proposed architecture.
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same cluster, and thus it is possible to access the service object
using the network provided by the CNI Plugin. By contrast,
if the destination IP address does not exist in the entry, i.e.,
the target service does not exist in the same cluster, the packet
is forwarded to the xTR of the cluster. Therefore, xTR should
be set as the default gateway node in the internal routing
table. Once the xTR receives a packet destined for a particular
ClusterIP, it sends a Map-Request message to obtain the
RLOC of the corresponding endpoint. The second method
is to configure an inter-cluster networking model based on
the CNI plugin. Networking between different clusters was
supported by plugins. For example, the Tungsten Fabric
CNI [23] deploys the BGP router function to each cluster and
shares subnetwork information using this function. In the case
of using a CNI-based networking model between clusters,
the LISP xTR of each cluster is not responsible for packet
forwarding between clusters and only manages networking
between external clients.

Figure 5 presents the overall procedure for delivering pack-
ets from an external client to service inside the Kubernetes
cluster. When the client sends a packet destined for a service
ID, the xTR of the user’s LISP site receiving that packet
queries the RLOC mapping information for the service ID
by sending a Map-Request to the LISP control plane. After
receiving the RLOC included in the Map-Reply message
from the control plane, the xTR encapsulates the original
packet in an RLOC mapped to the endpoint ID and forwards
it to the network. Packets destined for RLOC addresses are
routable in the underlay network using common routing pro-
tocols; therefore, no additional operations are required to

optimize the paths between xTRs. Packets arriving at the
network interface of a node are delivered to the service object
by looking up the internal routing table, translated into the IP
address of the active podmapped by the endpoint controller at
the service object, and forwarded to the pod where the target
application is running. In a non-LISP environment, with an
exposure service using NodePort or gateway IPs, the trans-
lation of IP addresses occur at each node interface, and the
service object undergoes two NAT operations. By contrast,
when using the LISP, an IP address translation occurs only
once at the service object, resulting in more efficient data
plane operations for packet handling.

IV. IMPLEMENTATION AND ANALYSIS
A. TESTBED ENVIRONMENT
To set up a testbed environment for the proposed architecture,
the LISP control plane and Kubernetes multi-cluster environ-
ment were constructed, as shown in Figure 6. In this figure,
all nodes are created as VMs on a single physical machine
(with an Intel Xeon 5220R 48 Core CPU and 238 GB of
RAM). Each node and network between nodes were config-
ured using OpenStack. Each cluster consists of one master
node and two worker nodes, based on Kubernetes v1.18.10.
To support networking within a single cluster and between
clusters, Tungsten Fabric [23], which is an SDN-based
approach, was installed as a CNI plugin. In a Tungsten-
Fabric-based environment, networking inside a cluster is pro-
vided by performing virtual routing and forwarding (VRF)
between each isolated namespace and providing a dynamic
forwarding for VRF using an SDN-based forwarding

FIGURE 6. Testbed environment.
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Pseudo Code 1 Service Discovery Controller in Cluster
watch_list_url = ‘‘/api/v1/watch/services’’
while watch process:

if process is CREATE;
pause CREATE process
ServiceName = ServiceName(CREATE)
packet.ServiceID = ServiceName
packet.destIP = addr(SercviceDiscoveryAgent)
send packet
wait response;

. . .
If reseponse is 200 OK;
read packet.ClusterIP
write packet.ClusterIP to

template.ServiceName(ClusterIP)
command CREATE(ServiceName) to kubeapi

PseudoCode 2 Service Discovery Agent in the Control Plane
wait request;
if message is GET;
read ServiceID = packet.ServiceName

if ServiceID is exist in SID table;
ClusterIP = ServiceID.IPaddr
packet.CluterIP = ClusterIP
destIP = srcIP(recievedPacket)
send packet with 200 OK

else;
allocate ClusterIP(ServiceID)
packet.ClusterIP = ClusterIP(ServiceID)
destIP = srcIP(receivedPacket)
send packet with 200 OK

policy enforcement. The control plane and xTR functions for
providing LISP-based networking were implemented using
Lispers.net, which is an open-source LISP implementation
using Python [26]. The LISP mapping system, which is com-
bined with the Map-Server and Map-Resolver, runs during
each process on the LISP Mapping System VM shown in
the figure. The xTR functions of each cluster were imple-
mented on the OS of the master node. The xTR accessed
by external clients was deployed on a separate Linux VM,
as shown in the figure. The VM resource specifications for
each node in the testbed are listed in Table 1. For commu-
nication between the service discovery controller and agent
functions, we implemented a WebSocket program between
the controller and agent, which was written in Python. Pseudo
code for each component is written below. Code for service
discovery controller includes operation to pause Kubernetes
service creation, extract service name from template, send
request packet with GET method, and restart service creation
process after receiving IP address for the service ID. Code
for service discovery agent includes operation to extract ser-
vice ID from receiving request, determine whether ClusterIP
of requested service is existing and response ClusterIP to
requested discovery controller.

B. TESTBED EVALUATION
To evaluate the operations within the proposed testbed,
we measured the performance of the control and data planes.

TABLE 1. Node specifications in the testbed.

In addition, we defined a scenario for evaluating the traffic
path changes between multiple clusters and measured the
performance under this scenario.

FIGURE 7. Separation into three phases for control plane evaluation.

1) CONTROL PLANE EVALUATION
To evaluate the operation of the control plane, we defined
the entire control plane process from the generation of a
service creation request to the updating of the mapping infor-
mation for the generated service in the LISP control plane
in three phases and measured the time required for each
phase. Figure 7 presents the division of steps in the overall
control plane operation procedure. First, Create_to_getID
includes various operations, from requesting a service cre-
ation through the Kubectl command to receiving the service
ID from the LISPMapping System. In the getID_to_MapReg
phase, ClusterIP is added to the template of the requested
service, requests a service creation from the kube-apiserver,
and watches for the completion of service creation to notify
the xTR. In the last phase,MapReg_to_complete is defined as
the completed process with a service created by sending the
Map-Register from the xTR and updating the mapping table
in the LISP mapping system. After completing this phase, the
created service can be discovered by external clients.

To calculate the time required for each step, we collected
logs for Kubernetes and the LISP control plane, and calcu-
lated the processing time using the timestamps in each log.
Figure 8 presents a graph of the processing time for each
phase. The processing time is divided into the Kubernetes
process time, LISP control plane process time, and trans-
mission time for packets between the two components. The
total average processing time was approximately 1200 ms,
and Kubernetes processing accounted for approximately 70%
of the total time. Regarding the evaluation of individual
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FIGURE 8. Control plane evaluation results.

phases, getID_to_MapReg required the longest processing
time because creating a service object after receiving a Clus-
terIP from the LISP control plane is time-intensive. However,
the same value may not be observed every time because the
processing time of various configuration options varies, and
an image of the relevant pod may or may not already exist.
The operation time in the LISP control plane accounts for
approximately 13% of the total time, and thus the effects of
processing delays incurred through interoperation with the
proposed LISP control plane do not significantly impact the
overall delay.

2) DATA PLANE EVALUATION
To evaluate the data plane operations in a testbed using
a tunnel-based packet transfer between xTR functions,
we compared the packet throughput performance to that
of the conventional method, which does not use tunneling.
Because each xTR function must encapsulate/decapsulate
packet headers for a data transfer, the proposed method
can increase the processing overhead and impact the perfor-
mance. To measure the data throughput between an external
client and a pod running in a cluster, we used iPerf3 [27]
to send/receive packets through a total of 10 threads simul-
taneously to record the average throughput. To run iPerf3
on a pod, we implemented a container using a network-
multitool image [28] from Docker Hub, which supports
iPerf3. Figure 9 presents the results for a data throughput
between the external client and pod, while increasing the
packet size from 256 to 1518 bytes, which is the maximum
size that can be transmitted over Ethernet. To clarify any
performance degradation, we also measured the path from
the external client to xTR, which was implemented on the
host’s network interface. Compared to general forwarding,
which does not use tunneling, the proposed environment that
uses a tunneling-based data transfer between xTRs leads to
a decrease in throughput of approximately 10%. This result
indicates that the additional processing required for the tun-
nelingmechanism, including encapsulation/decapsulation for
packet headers in each xTR, leads to a slight performance
degradation, which has already been observed in previous

FIGURE 9. Data plane performance results.

studies [29]. As another interesting result, the throughput
decreases by approximately 28% for both methods when
generating a path between the host interface and pod based
on the target service. This means that data throughput is
impacted by the process of translating ClusterIPs into actual
pod IP addresses depending on the type of CNI plugin or
internal networking mechanism. Therefore, it is expected that
the performance can be improved by applying different CNI
plugins or data plane acceleration technology.

3) PATH RECOVERY EVALUATION
To evaluate the actual path recovery procedure of the pro-
posed architecture, because it is difficult to simulate the
mobility of a client deployed as a VM in the testbed,
we considered another scenario in which the service path was
recovered by another cluster owing to a service failure in
the previous cluster. Under this scenario, a service failure
is detected by a Kubelet, which is a Kubernetes function
running on each node in a cluster. When a failure is detected,
a message is sent to the Kube-apiserver such that additional
functions can take action according to the failure of the corre-
sponding pods and services. By watching the Kube-apiserver
periodically, the service discovery agent can detect failure
events and request the xTR to send a message to the LISP
mapping system to delete the location of a failed service.
Upon receiving a request for mapping deletion from the xTR,
the LISP control plane updates the mapping information and
informs the xTR of the corresponding client to modify the
forwarding path of the packets to a different location of an
equivalent service.

Under this scenario, a service interruption time is incurred
immediately after a service failure until the location informa-
tion for a new service is updated in the client’s xTR. There-
fore, we measured the service interruption time to analyze
the LISP-based path-recovery performance. For comparison
with the proposed method, a non-LISP method for server
reselection was also measured, where the client detects that a
service is down and requests another IP address for the ser-
vice from the DNS server. Under the non-LISP scenario, the
bind9 DNS server was deployed in the testbed, and additional
functions for detecting service failures and sending DNS
queries to the DNS server were implemented in the client’s
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FIGURE 10. Path recovery delay results.

application code. Figure 10 presents the results of measuring
the service interruption time during the path recovery process
for a service failure in a testbed environment. These values
were calculated from timestamps in the Kubernetes log, LISP
control planes, and client applications. The average time from
service failure to service resumption is approximately 1.2 s,
whereas the non-LISP method requires approximately 1.55 s.
The delay required for mapping recovery (i.e., changing the
destination to the service instance running on another cluster)
accounts for approximately 30% of the total delay in the
proposed method and 36% of the total delay in the non-LISP
method. Although the non-LISPmethod also recovers service
connections quickly, it does not maintain the destination IP
address, and thus the previous connection is completely bro-
ken. Our performance measurements indicate that a service
path can be changed within 1.3 s, proving that service avail-
ability in an edge computing environment can be supported
by providing a fast path failure recovery.

V. CONCLUSION
In this paper, we proposed LISP-based service management
and a discovery mechanism for a multi-cluster cloud environ-
ment to provide service connectivity management. With the
proposed architecture, by managing an IP address pool for
the service objects initialized by each cluster, the LISP-based
control plane provides uniform service IDs to external clients,
regardless of the location of a service. Therefore, allocating
the same ID for equivalent services is possible acrossmultiple
clusters. When a packet destined for a service ID address
is sent from an external client, it can be delivered to the
correct pod through tunneling between LISP xTRs, which
is transparent to the current Kubernetes networking model
using the CNI plugin. When a user moves to another location
while communicating with a service running on an edge
cloud, ID-based service discovery is conducted to identify an
equivalent service close to the user’s new location. Therefore,
an external node can connect to a closer service without
changing its destination IP address when service location
optimization is required according to the user mobility. Using
a testbed implementation with additional functions on top of
the Kubernetes system, we verified the process of requesting
a service ID from the LISP control plane and updating the

mapping information in the xTRs. All proposed systems were
evaluated in the testbed, and the evaluation results demon-
strated that the proposed system can provide external access
using the same ID access to equivalent services running on
different Kubernetes clusters with little impact in terms of
processing delay. Moreover, the analysis results for the path
recovery time indicated that it is possible to change the path
in less time while providing network availability that cannot
be provided by existing distributed Kubernetes environments.
From the results, it is verified that our proposed system has
a significant benefit in the distributed edge mobile network
by minimizing service interruptions caused by the mobil-
ity of users between distributed clouds while guarantying
low-latency services for distributed edge clouds. In conclu-
sion, considering the service of edge clouds as another type of
end-user terminal by assigning an identifier from the common
pool of LISP identifiers could enhance the service quality of
mobile edge computing.

With our approach to manage equivalent services as a
single identifier regardless of their multiple locations, it is
expected to adopt an enhanced routing mechanism in the dis-
tributed cloud environment. For example, the Compute-First
Networking (CFN) concept have been introduced recently,
which concerns resource-efficient routing decision for opti-
mizing network management. There are several studies about
CFN [30] and studies such as dynamic load balancing mech-
anism energy-efficient load balancing [31] or maximization
of edge utilization with service execution cost by coop-
erating between decentralized agents [32]. In addition to
these efforts, our approach has possibility to support optimal
decisions by including resource-related metrics from each
edge cloud when they update service ID-location mappings
and also routing configuration by responding ID-Location
mappings. One possible approach of the CFN based on ID-
Location separation has been proposed as the Dynamic Any-
cast (Dyncast) [33], which allocates anycast IP address to
equivalent services and determines routing path by sharing
resource-related metrics between edge clouds when the ser-
vice is requested. In our approach, with a logically centralized
LISP control plane, it enables to collect resource metrics effi-
ciently to collect these resources and configure routing paths
by sending appropriate locator for requests of service ID. For
this, enhancement of LISP protocol to obtain resource-related
metrics and control plane operation may be one of interesting
future works.
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