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ABSTRACT The disturbance and uncertainty of the motor drive systems are very complicated terms. There
is no exception for the slotless-self bearing motor (SSBM), where the perturbations of the bearing motor
are mainly came from the outside as the wind affect, from inside as the thermal changing of the coils, and
incorrect modeling of the winding processes. First, to delete these inversed terms, this paper proposes a new
super-twisting disturbance observer (STDOB) to obtain the desired goal of the robust control design. The
proposed disturbance observer was based on the information ofmeasured and estimated states with the aim of
softening the cost of the measurement. Second, to estimate the velocities and accelerations of the movements
on x− and y−axes, the stability concept of homogeneous function-based was used to design the fixed-time
state observers (FTSOBs) for these axes. The state of the rotational operation on ω− axis was estimated
with a fixed-time state observer. Third, to control the positions and rotational speed, a variable boundary
layer thickness (VBLT) fixed-time sliding mode control (FTSMC) was designed to force these positions
and speed states converge to the desired goals. Finally, the stability of the proposed control algorithm was
theoretically verified by using Lyapunov condition and simulation ofMATLAB software. The obtained states
were acceptably stable with small overshoots, small settling-times, and stable steady-states.

INDEX TERMS Slotless-self bearing motor, super-twisting disturbance observer, variable boundary layer
thickness, fixed-time sliding mode control.

I. INTRODUCTION
The concept of interaction between magnetic field and fer-
rite materials was intelligently used to create the magnetic
machines such as bearingless systems, self-bearing motors,
levitation devices, etc. The advantages of the magnetic bear-
ing devices are frictionless, non-contact working, no lubrica-
tion. The main problem of the bearingless system is how to
design the precision control scheme. Some papers presented
the control designs for the magnetic devices such as follows:

The associate editor coordinating the review of this manuscript and

approving it for publication was Wonhee Kim .

The control designs for the active magnetic bearing systems
were discussed in [1]–[5]. In this paper, the SSBM control
system is presented. The basic concepts of the SSBM can be
found in [6]–[10]. Some efforts to reduce the size of bearing
systems were presented in [11], [12]. In this paper the robust
control algorithms were presented for SSBM system. Due to
the limit number of the investigations of the disturbance rejec-
tion techniques for SSBM, this paper proposed a new super-
twisting disturbance observer to meet the goal of precision
control design. Especially, the sources of disturbances and
uncertainties of the SSBM were ignored in [8]–[10]. In this
paper, all these mentioned terms will be clearly clarified by
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each source such as the fabrication process will make huge
error of winding process, there are included the distortions of
hexagonal shapes of the SSBM, the incorrect of initial angle
of the shape, the stacks of the wires, and the incorrect lengths
of the shape’ edges. These errors are called uncertainties.
To manually correct these uncertainties is a difficult task.
However, to compensate these disturbance and uncertainty of
the SSBMby using the mathematical operation is simpler and
more precise. Otherwise, to design the sliding mode control
for SSBM system, the first derivative of state vectors are
needed. Sometimes, these vector can be obtained by directly
taking derivation of the measured output vectors. However,
the derivation action leads the obtain information to incorrect
terms. To obtain the goal of robust control and avoid the
incorrect of the first derivative state vector, the state observer
is highly recommended. After obtained the state vectors such
as the velocities and accelerations of the movements on three
coordinates, the proposed disturbance observer concept was
used to design the STDOB.

Basically, disturbance and uncertainty of a physical system
are well known as the inversed terms, which usually pull
down the performances of a control system. Many papers
discussed and proposed the disturbance observers as fol-
lows: In [13], the high-order DOB was proposed for the
motor system with the condition of the after k + 1 times
of derivative disturbance is equal to zero, then the estimated
disturbance will be converged to the true disturbance value.
The disturbance and uncertainty estimation for wind energy
convergence system was discussed in [14] with the low-
varying uncertainty. The fault estimation with the condition
of the boundary condition of first derivative disturbance value
was proposed for Takagi-Sugeno fuzzy system [15]. The
basic nonlinear disturbance observer (DOB) was proposed
in [16]. In [17], the nonlinear DOB was used to estimate
the perturbation of the motor control system. The nonlinear
DOB for overhead crane system was discussed in [18]. Some
developments of nonlinear DOB can be found in [19], [20].

The motivations of this study are mainly divided into three
terms: Fist, the state observer for highly nonlinear such as
the SSBM is difficulty requested. In the real application,
the fixed-time state observer with the function of switch-
ing control helps the observer overcome the proportional
nonlinear characteristics in compare with the simple high
gain observer. Furthermore, the fixed-time observer only
needs the information of the output signal of the physical
and estimated systems. The request of the first derivation
of the measured signal was deleted. Therefore, the incorrect
of derivation of the state vector was not appeared. Second,
motivated from the previous papers, there are so compli-
cated conjunction of the disturbance observers such as the
first derivative disturbance need to be zero, which mean
to the low frequency disturbance can be deleted by these
proposed disturbance observers [16], [17]. In our develop-
ments of nonlinear disturbance observers in [19]–[21] still
need some conjunctions of parameters. Or some disturbance
observers just only can be used to estimate the fixed format

of disturbance value such as [22]–[24]. This paper aims to
provide a new super-twisting DOB for the SSBM systemwith
simple structure and simple condition. There is only the state
observer requested together with the DOB. The conjunctions
of fixed format of disturbance value and the first derivative
disturbance condition were free. Due to the reason of the
condition of the existence of the state observer, the fixed-time
state observer was used to estimate the states on the x−, y−,
andω− axes, respectively. Third, to reduce the chattering and
overcome the effects of initial condition, this paper proposed
a new concept as the variable boundary layer thickness sliding
mode control (SMC) for controlling the movements of three
axes, respectively. The boundary layer thickness was also
considered in the fixed-time SMC. The proposed concept was
suitable with the small scale of SSBM. According to the best
of author’s knowledge, this may the first consideration of the
variable boundary layer thickness of fixed-time SMC.

State observers are important soft measurement tech-
niques, which is used to estimate the immeasurable or dif-
ficult to be measured terms. There are many state observers
such as extended state observer, linear matrix inequality-
based state observer, sliding mode observer, etc. The stabil-
ities of these observers are finite-time. Which were strongly
affected by the initial conditions. Taking this weaken point
as the motivation of the work, the fixed-time state observer
was design to estimate the states of the three axes of move-
ment on x−, y−, and rotation of ω− axes, respectively. The
states of the movement of the speed coordinate was estimated
with a simple fixed-time observer. Otherwise, the states of
the movements of x− and y− axes were estimated by the
homogeneous function-based state observers. The stability of
the homogeneous function-based state observer was provided
in [25]. The advantages of the fixed-time observer are listed
as simple in design the gains of the observer and free conjunc-
tion of the initial condition. After obtained the information of
the states and disturbances, the fixed-time controllers with the
variable boundary layer thickness were proposed to control
the positions and speed, respectively.

Sliding mode control is nonlinear control method, which
consists the switching control and equivalent controls. These
control values are responsible for forcing the system state
converge to the predefined surface and stabilize system
state on that surface, respectively [26]. Recently years, the
boundary layer thickness with the variability was discussed
as in [1] and [27]. In this paper, the fixed-time sliding
mode control is improved by using the adaptive saturation
function. The basic concept of fixed-time stability can be
found in [28]. The applications of the fixed-time concept
can be found in [29]–[32]. The number of investigations of
the flexible boundary layer thickness of fixed-time stabil-
ity are still limited. Therefore, this paper proposed a new
design of fixed-time stability especially for small system. The
main contributions and originalities of this paper are listed
as follows:

1. The fully descriptions of the embedded external and
internal perturbations of the SSBM were clearly
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presented in this paper, which were not appeared in the
previous works [8]–[10]. The efforts of the modeling is
aimed to softening the control design processes. The
correct mathematical model of the SSBM helps the
control performances become better. Therefore, this
paper carefully presented the sources of perturbations
of SSBM. Which is a helpful step for considering the
robust control of a motor system.

2. The homogeneous stability-based state observer was
used to design the states observers for SSBM,where the
velocities, accelerations of the movement on x−, y−
axes can be easily obtained. Otherwise, the state of the
rotation of ω− axis was estimated by the fixed-time
state observer. These states are costly known by using
physical sensors. The estimation design used the posi-
tion sensors, and encoder only. This effort is aimed to
reduce the cost of the product and improve the preci-
sion of the control design. The derivation procedure of
position to get velocity and acceleration processes was
completely removed.

3. In this paper, a new super-twisting DOB was proposed
to design the disturbance observer for SSBM system.
The proposed DOB can work with the information of
estimated andmeasured signals. Furthermore, the DOB
in this paper can estimate disturbances at both low
and high frequencies. This means that the first deriva-
tive disturbance is here free. Furthermore, there is no
condition of the high order derivation of disturbance
equal to zero. The originality of the proposed DOB
is figured out that there is no conjunction of the first
derivative disturbance such as the DOB in 16]–[18].
The proposed DOB can estimate perturbations in many
different formats. There is no need the prior format of
the perturbations such as [22]–[24]. This is a huge sug-
gestion for future direction of the area of disturbance
rejection control design.

4. A novel boundary layer thickness of FTSMC is pre-
sented in this paper to control the positions and speed
of the SSBM system. This is new concept of an
improved fixed-time stability in compare with our pre-
vious paper [21]. Finally, the proposed method was
theoretically verified by using the Lyapunov condition.
The correction and effectiveness of the proposed meth-
ods were theoretically verified by Lyapunov condition
and the simulation in MATLAB software.

The structure of this paper is as follows: First, the introduction
of the SSBM and some related concepts of the proposed
control algorithms were given in the first section of the
paper. In the second section, the mathematical model of the
SSBM with fully sources of disturbances and uncertainties
is presented together with some preliminary mathematics.
In the third section, the proposedmethods are given for SSBM
system, respectively. In the fourth section, the performances
of the proposed methods for SSBM is given. Finally, the
conclusion of the work is given in the last section with some
comments of the future work.

Notes: The vector symbols are bolds and italics. Matrix
is bold capital. xr , xm and x̂ are used to represent the
algebra values of referenced, measured, and estimated sig-
nals, respectively. |•| is the absolute value. sign(xT ) =[
sign( x1), sign(x2), . . . .sign(xn )

]T
.sign(xi) = 1 if xi >

0, sign(xi) = −1 if xi < 0, and sign(xi) = 0 if xi =
0.sat(s/ε) = 1 if s > ε, sat(s/ε) = −1 if s < ε, and
sat(s/ε) = 1/ε if s ∈ (−ε, ε). xT =

[
x1, x2, . . . xn

]T
.
∫
•

is integral respect to the time, which is used to represent the

calculation of
t∫
0
d(τ ).

II. MATHEMATICAL MODEL OF SSBM AND SOME
PRELIMINARY MATHEMATICS
This section presents the mathematical model of the SSBM
and some relatedmathematics of the utilized controlmethods.
Details are given in the subsections below.

A. MATHEMATICAL MODEL OF THE SSBM
Our proposed bearing motor was clearly presented in [10].
The motor was made by the combination of a cylindrical,
two poles of permanent magnet block, a back yoke, a shaft,
and one term fixed these components as a fixed block. The
stator is fabricated without the iron core with six phases.
The mathematical model analysis can be found in [10]. The
structure of the SSBM can be redrawn as in Fig. 1 below.
The design of SSBM was presented in [10]. The winding
coils of the stator was designed as a hexagonal shapes. In the
winding process, the errors were appeared from the winding
distortions. There are angle of the hexagonal shape, the initial
angular positions of the coils, and the incorrect lengths of the
shapes’ edge.

FIGURE 1. Structure of SSBM.

The angular positions of the parallel parts were calculated
as below.

θk
+phase = (θ0 +1θk+phase)+

k − 1
3n

π +
2m
6
π

θk
−phase = (θ0 +1θk−phase)+

k − 1
3n

π +
2m+ 3

6
π

(1)

where θk
+phase and θk

−phase are angular position for parallel
turns with number k . Total of the turns is n, the phase is
referred by m, the number of turn is k. The angular position
of +a-phase is θ0. k was selected as an old number to avoid
the overlap. 1θk

+phase and 1θ
k
−phase are errors of the angular
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positions for each phase. The positions of the shapes need to
be made within small errors to satisfy the constraints of the
flux-density, magnetic field, and the relations of the forces
and torque in SSBM. The errors of the angular positions need
to be bounded as the assumption 1 below.
Assumption 1: The uncertainties of the angular positions

should be bounded as follows:
∣∣∣1θk+phase∣∣∣ ≤ ξ k

θ+
and∣∣∣1θk−phase∣∣∣ ≤ ξ k

θ−
where ξ k

θ+
and ξ k

θ−
need to be positively

defined.
The magnetic field is

Bag = (B+1B) cos((θ +1θ )− ψ) (2)

where B is the magnitude of magnetic flux density. The
angular position of the rotor is ψ . 1θ is winding error of
angular position. 1B is uncertainty of magnetic field, which
comes from the length of the wire. Eq. (2) can be rewritten as
follows:

Bag = B cos(θ − ψ)+1Bag (3)

The magnetic field error is mainly effected by the permeabil-
ity of the environment and the length of the edge’ shapes.
The reference permeability is vacuum environment. However
in the real working condition, there is some small error.
Furthermore, the referenced lengths for edges of the hexag-
onal shapes are generally defined. In the winding process,
these lengths are sometimes incorrect. These error of per-
meability and the shapes’ edge need to be bounded. The
system can work if the uncertainty 1Bag is bounded as the
assumption 2 below.
Assumption 2: The uncertainty of magnetic field need to

be bounded as follows:
∣∣1Bag∣∣ ≤ Bmax, where Bmax is

positively defined.
In the previous paper [10], the Lorenzt forces were cal-

culated as follows: F f+a = F f
+d ,F

f
−a = F f

−d ,F
f
+b =

F f+e,F
f
−b = F f−e,F

f
+c = F f

+f , F
f
−c = F f

−f . Due to the
winding errors, these forces of the phases were not equal. The
magnitudes of forces of the phases a and d can be calculated
as follows:

F f+a =
∣∣∣Bli fa cos(θ0 − ψ)∣∣∣+1F f+a

F f
+d =

∣∣∣Bli fa cos(θ0 − ψ)∣∣∣+1F f+d
F f−a =

∣∣∣Bli fa sin(θ0 − ψ)∣∣∣+1F f−a
F f
−d =

∣∣∣Bli fa sin(θ0 − ψ)∣∣∣+1F f−d
(4)

1F f+a, 1F
f
−a, 1F

f
+d , and 1F

f
−d are the uncertainties of

the forces of fabrication errors from the angular position
errors and the errors of the length of wires. Herein, l
is used to describe the nominal length of the wire, ifa
is current of generated the bearing force of a-phase. The
unwanted imprecision of forces are mainly came from the
magnetic field, lengths of shape’ edges, and the imperfec-
tion of the angular position for each shape. To obtain the
expected force, these uncertainties need to be bounded as the
assumption 3 below.

Assumption 3: The uncertainties of forces are bounded as
follows:

∣∣∣1F f+a∣∣∣ ≤ ξ fF+a, ∣∣∣1F f−a∣∣∣ ≤ ξ fF−a, ∣∣∣1F f+d ∣∣∣ ≤ ξ fF+d
and

∣∣∣1F f−d ∣∣∣ ≤ ξ
f
F−d , where these ξ fF+a, ξ

f
F−a, ξ

f
F+d , ξ

f
F−d

are positively defined.
The amplitudes Lorentz forces on for phase a-d, b-e, and

c-f are calculated as follows:
Fa =

√
(F f+a + F

f
+d )

2 + (F f−a + F
f
−d )

2

Fb =
√
(F f
+b + F

f
+e)2 + (F f

−b + F
f
−e)2

Fc =
√
(F f+c + F

f
+f )

2 + (F f−c + F
f
−f )

2

(5)

where Fa, Eq. (5) should be changed as below.
Fa = 2Bli fa +1Fa
Fb = 2Bli fb +1Fb
Fc = 2Bli fc +1Fc

(6)

where ifb and ifc are current of generated the bearing forces
of b- and c-phases. 1Fa, 1Fb, and 1Fc are uncertain forces
on a-, b-, c-axes, respectively. The incorrect force for each
phase should not exceed a certain value to help the SSBM
system can work normally. Other words, the uncertainties of
the Lorentz forces need to be bounded as the assumption 4
below.
Assumption 4: The uncertainties of the forces should be

bounded as follows: |1Fa| ≤ ξFamax, |1Fb| ≤ ξFbmax, and
|1Fc| ≤ ξFcmax, where ξFamax, ξFbmax, and ξFcmax should
be positively defined.

In [10], the total forces need to be zero as follows:

Fa + Fb + Fc = 0 (7)

where total force can be calculated as follows:

2Blifa +1Fa + 2Blifb +1Fb + 2Blifc +1Fc = 0 (8)

The total current is then defined as follows:

ifa + i
f
b + i

f
c = −

1Fa +1Fb +1Fc
2Bl

(9)

Remark 1: To consider the total current of ifa, i
f
b, and i

f
c is

to be zero, which was ignored in [10]. These uncertain values
in the right hand side of Eq. 9 should be deleted.

Bearing currents are calculated as follows:
ifa,d = id cos(ψ)+ iq sin(ψ)+1i

f
a,d

ifb,e = id cos(ψ − 2π/3)+ iq sin(ψ − 2π/3)+1ifb,e
ifc,f = id cos(ψ − 4π/3)+ iq sin(ψ − 4π/3)+1ifc,f

(10)

where id is direct current and iq quadrature current. In [10],
the ψ is angular of rotor center in first portion of the
circle with the x-axis. This angular sometime is not nomi-
nal, which is main reason of uncertainties for bearing cur-
rents. For motor can start and work normally, the rotor
should be located in a suitable area. Therefore, uncertain-
ties of the bearing currents need to be bounded as the
assumption 5 below.
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Assumption 5: The uncertainties of the bearing currents
need to fulfil

∣∣∣1ifa,d ∣∣∣ ≤ ξ
f
iad max,

∣∣∣1ifb,e∣∣∣ ≤ ξ
f
ibemax, and∣∣∣1ifc,f ∣∣∣ ≤ ξ

f
icf max, where ξ

f
iad max, ξ

f
ibemax, and ξ

f
icf max are

positively defined.
The torques for three phases are calculated as

follows:
τ a=BliTa (cos(θ0−ψ)+sin(θ0−ψ))R+1τ a
τ b=BliTb (cos(θ0+

π

3
−ψ)+sin(θ0+

π

3
−ψ))R+1τ b

τ c=BliTc (cos(θ0+2
π

3
−ψ)+sin(θ0+2

π

3
−ψ))R+1τ c

(11)

where R is the radius of the rotor. The sources of the uncer-
tainties of the torques from the length of shape’ edges errors,
errors of the angular positions of the shape, error angular
position of the rotor. These values need to be bounded as
follows:
Assumption 6: The uncertainties of torques should be

bounded as follows: |1τ a| < ξτamax, |1τ b| < ξτbmax,

and |1τ c| < ξτcmax, where ξτamax, ξτbmax, and ξτcmax are
positively defined.

The motor currents are calculated as follows:
iTa,d = ±Am cos(φm)+1iTa,d
iTb,e = ±Am cos(φm + π/3)+1iTb,e
iTc,f = ±Am cos(φm + 2π/3)+1iTc,f

(12)

where Am is amplitude of the motor current.1iTa,d ,1i
T
b,e, and

1iTc,f are transposed uncertainties of the currents. These error
also must be bounded. The currents of the opposite phases are
calculated as below.

ia,d = id cos(ψ)+ iq sin(ψ)± Am cos(φm)+1ia,d
ib,e = id cos(ψ − 2

π

3
)+ iq sin(ψ − 2

π

3
)

±Am cos(φm +
π

3
)+1ib,e

ic,f = id cos(ψ − 4
π

3
)+ iq sin(ψ − 4

π

3
)

±Am cos(φm + 2
π

3
)+1ic,f

(13)

1ia,d ,1ib,e, and 1ic,f are uncertainties of the cur-
rents. The torques and forces finally can be calculated
as follows:

τ = knmkmA sin(φm − ψ + θ0 +
π

4
)+1τ

f x = −knbkb{id sin(2θ0)− iq cos(2θ0)} +1f x
f y = knbkb{id cos(2θ0)+ iq sin(2θ0)} +1f y

(14)

where τ is torque of themotor, f x and f y is the force on x-axis,
and y-axis, respectively.1τ ,1f x , and1f y are the uncertain-
ties of the motor system. These uncertainties also need to be

bounded. Some parameters are calculated as follows:

km=−(3
√
2 lp+

8(6− 3
√
2)

π
lt )rB+1km

kb=−(3lp+
12
π
lt )B+1kb

knm=1+2 cos(
π

3n
)+2 cos(2

π

3n
)+..+2 cos(

n− 1
2

π

3n
)

+1knm
knb=1+2 cos(2

π

3n
)+2 cos(4

π

3n
)+..+2 cos((n− 1)

π

3n
)

+1knb
(15)

where lp and lt are parallel and projection length, respectively.
The radius winding is r . 1km,1kb,1knm, and 1knb are the
uncertainties of winding process. The torque and forces with
fully embedded disturbances and uncertainties are calculated
as follows: 

τ = knmkmAm +1τ + dτ
Fx = knbkbiq +1Fx + dFx
Fy = knbkbid +1Fy + dFy

(16)

Eq. (16) can be simplified as follows:
τ − T l = J ω̇
Fx − Flx = mẍ
Fy − Fly = mÿ

(17)

where T l = 1τ + dτ , Flx = 1Fx + dFx , and Fly = 1Fy +
dFy .Where Flx ,Fly, and T l are perturbations on the x−, y−,
and ω−axes, respectively. E.q (17) can be simply rewritten
by using the magnitude value as follows:

knmkmAm
J

−
Tl
J
= ω̇

knbkbiq
m
−
Flx
m
= ẍ

knbkbid
m
−
Fly
m
= ÿ

(18)

The imperfections of the fabrication were mentioned above
together with the outside effects such as self-vibration of the
rotor with the working platform and wind effect on the rotor
of SSBM should be calculated as a unique term for each
coordinate. The SSBM can work if the perturbations of the
system are bounded as the assumption 7 below.
Assumption 7: The disturbances on three axes need to be

limited as follows: |T l | < γT , |Flx | < γFx , and
∣∣Fly∣∣ < γFy,

where γT , γFx and γFy are positively constant defined.

B. PRELIMINARY MATHEMATICS
In this paper, the fixed-time observer concept was used to
design the state observer for the speed coordinate and homo-
geneous function-based FTSOB in [25] was used to design
the state observer for the movements of x− and y− axes,
respectively. These efforts aimed to obtain the system states
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without the effect of the nonlinear and the incorrect of first
derivative state. First, the generalized system as{

ẋ1 = x2
ẋ2 = bu+ cd

(19)

is considered. The proposed state observer is as follows:{
˙̂x1 = x̂2 + k1

∣∣x1 − x̂1∣∣α1 sign(x1 − x̂1)
˙̂x2 = bu+ cd̂ + k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1) (20)

Using Eq. (19) to subtract for Eq. (20) yields{
ė1 = e2 − k1

∣∣x1 − x̂1∣∣α1 sign(x1 − x̂1)
ė2 = cd̃ − k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1) (21)

where e1 = x1 − x̂1, e2 = x2 − x̂2, and d̃ = d − d̂ . For
simple in design the state observer, the disturbance error was
assumed equal to zero. The Eq. (21) is then can be rewritten
as follows:{

ė1 = e2 − k1
∣∣x1 − x̂1∣∣α1 sign(x1 − x̂1)

ė2 = −k2
∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1) (22)

According to the paper [25], the parameters should be
selected as follows α1 ∈ (1 − ε, 1), ε > 0, α2 = 2α1 −

(2− 1) = 2α1, and A =
[
−k1 1
−k2 0

]
is Hurwitz. To prove the

fixed-time stability, the stable for system as follows:

ė = Ke (23)

is analyzed. Eq. (23) is stable if K is Hurwitz. The Lyapunov
is then should be V (e) = eTPe. Therefore,

V̇ (e) = ėTPe+ eTPė

= eT (KTP+ PK)e (24)

The matrix K is requested to satisfy

KTP+ PK = −Q (25)

where Q is positively defined. Eq. (24) is then negatively
defined. If ξ = [ e1/r1 , e1/r2 , . . . . . . . ., e1/rn ],V (ξ ) =
ξTPξ . If Eq. (24) is obtained leads to V̇ (ξ ) < 0. V (ξ ) is then
called homogeneous stability. If n = α− 1, with 0 < α < 1,
therefore V (ζ ) ≤ λmax(P) ‖e‖2 and

V̇ (ζ ) ≤ −λmin(Q) ‖e‖2 (26)

or

V̇ (ζ ) ≤ −
λmin(Q)
λmax(P)

V 1+n(ζ ) (27)

Integrating both sides of Eq. (27) yields

V (∞)∫
V (0)

d(V (ζ ))V−1−n(ζ ) ≤ −
λmin(Q)
λmax(P)

Tmax∫
0

dt (28)

or
1
n
V−n(ζ (0)) ≥

λmin(Q)
λmax(P)

Tmax (29)

or

Tmax 1 ≤
λmax(P)
λmin(Q)

1
n
V 1−α(ζ (0))

≤
λ2−αmax (P)
λmin(Q)

1
n

(30)

The estimation errors are then fixed-time stable.
Remark 2: The gains of fixed-time observer in Eq. (20)

should be approximately chosen to avoid the chattering
phenomenon.

After obtained the estimated system states, a new distur-
bance observer was proposed as follows:

d̂ =
1
c
(bu+ cd̂ + k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1)− bu)
+ kd1

∫ ∣∣∣∣1c (bu+ k2 ∣∣x1−x̂1∣∣α2 sign(x1−x̂1)−bu)
∣∣∣∣1/2

× sign(
1
c
(bu+ k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1)− bu))
+ kd2

∫∫
sign(

1
c
(bu+k2

∣∣x1−x̂1∣∣α2 sign(x1−x̂1)−bu))
(31)

where d̂ is estimated of d .
Remark 3: The integral in Eq. (31) is corresponded to the

time (t) and its derivative is defined by d
dt

t∫
0
f (t)dt = f (t).

Since

1
c
(bu+ cd̂ + k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1)− bu)
=

1
c
( ˙̂x2 + cd − ẋ2)

= d (32)

and

1
c
(bu+ k2

∣∣x1 − x̂1∣∣α2 sign(x1 − x̂1)− bu)
=

1
c
( ˙̂x2 − cd̂ + cd − ẋ2)

= d̃ (33)

where d − d̂ = d̃ . Eq. (31) can be rewritten as follows:

d̂ = d + kd1

∫ ∣∣∣d̃∣∣∣1/2sign(d̃)+ kd2 ∫ ∫
sign(d̃) (34)

Taking derivative for both side of Eq. (34) yields

˙̂d = ḋ + kd1
∣∣∣d̃∣∣∣1/2 sign(d̃)+ kd2 ∫ sign(d̃) (35)

or

˙̃d = −kd1
∣∣∣d̃∣∣∣1/2 sign(d̃)− kd2 ∫ sign(d̃) (36)

Remark 4: The format of the proposed disturbance
observer in Eq. (36) is called super-twisting disturbance
observer.
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The Lyapunov condition for stability analysis of distur-
bance observer can be chosen as follows:

V (d) =
1
2
d̃2 (37)

Taking derivative for both sides of Eq. (37) yields

V̇ (d) = d̃ ˙̃d (38)

Using Eq. (36) to solve Eq. (38) leads to

V̇ (d) = −kd1
∣∣∣d̃∣∣∣1/2 d̃sign(d̃)− kd2d̃ ∫ sign(d̃)

≤ −kd1
∣∣∣d̃∣∣∣1/2 ∣∣∣d̃∣∣∣− ∣∣∣d̃∣∣∣ ∫ kd2 (39)

with kd1 and kd2 are positively defined, Eq. (39) become
negatively defined.
This completes the proof of stability for the proposed

STDOB.
In this paper, a new variable boundary layer thickness

FTSMC was designed to control the positions on x−, y−,
and rotational speed on ω−axes, respectively. The fixed-time
function is generally described as follows:

ṡ = −γ1 |s|
κ1
η1 sat(

s
φ
− k0

∫
s)− γ2 |s|

κ2
η2 sat(

s
φ
− k0

∫
s)

(40)

where γ1 and γ2 and k0 should be positively defined. φ is
boundary layer of the fixed saturation function. The condition
of κ1 > η1, and κ2 < η2 should be fulfilled. k0 need to
be suitably chosen to guarantee the value of the saturation
function get into the area of

(
−φ, φ

)
. Eq. (40) is satisfied

as follows:

ṡ ≤ −γ1 |s|
κ1
η1 sign(s)− γ2 |s|

κ2
η2 sign(s) (41)

According to the previous published paper [28], when
the sliding mode surface with the initial condition out of(
−φ, φ

)
, the settling-time can be calculated as follows:

Ts(out) max ≤
1
γ1

η1
κ1− η1

+
1
γ1

η2
η2− κ1

(42)

If the initial condition of sliding mode surface is in(
−φ, φ

)
, the settling time will be fixed-time in

Ts(in) max ≤
1

γ1 + γ1
(43)

Proof of stability when s(0) ∈
(
−φ, φ

)
.

Eq. (43) can be simplified as follows:

ṡ ≤ −γ1 − γ2 (44)

Taking integration for both sides of Eq. (44) respect to the
time from zero to infinity yields

s(∞)∫
s(0)

ṡ(t) ≤

T max∫
0

−λ1 − λ2 (45)

or

s(∞)− s(0) ≤ (−λ1 − λ2)Tmax (46)

or

Tmax ≤
1

λ1 + λ2
(47)

This completes the proof.
Remark 5: The proposed fixed-time stability is suitable

for both small and big scale systems. However, the proposed
theory is simpler for the small devices.
Remark 6: The proposed control algorithms have ability to

reject the disturbances, uncertainties, and unknown nonlin-
ear terms. Furthermore, the settling-time was obtained with
fixed-time stability, the chattering was also reduced by using
the variable boundary layer thickness of SMC.

The details of proposed control algorithms for the SSBM
are shown in the next following section.

III. PROPOSED APPROACH
In this section, the state observers, disturbance observers,
and the novel FTSMC designs for SSBM are all given in
detail. The organization of this section is as follows: First, the
designs of state observers for movements of x−and y−axes
and rotational speed are introduced. Second, the disturbance
observer based on the information of the estimated and mea-
sured states are presented. Third, the novel FTSMC designs
for these movements and rotation control systems are intro-
duced. Final, the stability of the whole control system is given
to verify the correction of the proposed control methods.

A. THE STATE OBSERVER FOR THE SSBM SYSTEM
1) STATE OBSERVER FOR SPEED COORDINATE
First, the state observer for speed coordinate was designed as
follows:

˙̂ω =
knmkmAm

J
−
T̂l
J
+ k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω ) (48)

where α1ω > β1ω, α2ω < β2ω, k1ω > 0, k2ω > 0, and eω =
ω − ω̂. Using the speed equation in Eq. (18) to subtract for
both sides of Eq. (48) leads to

ėω = −
T̃l
J
− k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )− k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )

(49)

For easy to design the control gains of the state observer such
as Eq. (49), the disturbance error should be assumed equal
to zero. Therefore, Eq. (49) is then fulfilled the condition of
fixed-time stability as Eq. (41). If the Lyaponov for estimation
of speed axis is selected as V (eω) = 0.5e2ω, then the first
derivative V̇ (eω) < 0. The settling-time of the estimation
error is calculated as follows:

Teω =
1
k1ω

β1ω

α1ω − β1ω
+

1
k2ω

β2ω

β2ω − α1ω
(50)
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The state observers for movement on x− and y−axes are
shown in next section below.

2) STATE OBSERVER FOR MOVEMENT OF X-AXIS
First, the mathematical model of the movement on the x−axis
is converted into the format as follows: x1 = x2

ẋ2 = ẍ =
knbkbiq
m
−
Flx
m

(51)

The proposed state observer is as follows:
˙̂x1 = x̂2 + k1x

∣∣x1 − x̂1∣∣α1x sign(x1 − x̂1)
˙̂x2 =

knbkbiq
m
−
F̂lx
m
+ k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)
(52)

Using Eq. (51) subtract to Eq. (52) leads to ė1x = e2x − k1x
∣∣x1 − x̂1∣∣α1x sign(x1 − x̂1)

ė2x = −
F̃lx
m
− k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1) (53)

The disturbance error should be assumed equal to zero.
As mentioned above, the parameter should be selected as
follows: α1x ∈ (1 − εx , 1), εx > 0, α2x = 2α1x − (2 − 1),

and Ax =

[
−k1x 1
−k2x 0

]
is Hurwitz. According to the previous

paper [25], with the ex̄ = [ e1x e2x ]T , the Lyapunov for
state estimation of x-axis should be V (ex̄) = eTx̄ Pex̄ . There-
fore V̇ (ex̄) < 0. The settling-time estimation error will be
fixed-time stable. Similarly, the state observer of y−axes is
designed as follows:

3) STATE OBSERVER FOR MOVEMENT OF Y-AXIS
The mathematical model of the movement on the y−axis also
need to be converted into the format as follows: ẏ1 = y2

ẏ2 = ÿ =
knbkbid
m
−
Fly
m

(54)

The proposed state observer for y−axis is as follows:
˙̂y1 = ŷ2 + k1y

∣∣y1 − ŷ1∣∣α1y sign(y1 − ŷ1)
˙̂y2 =

knbkbid
m
−
F̂ly
m
+ k2y

∣∣x1 − x̂1∣∣α2y sign(y1 − ŷ1)
(55)

Using Eq. (54) subtract to Eq. (55) leads to ė1y = e2y − k1y
∣∣y1 − ŷ1∣∣α1y sign(y1 − ŷ1)

ė2y = −
F̃ly
m
− k2y

∣∣y1 − ŷ1∣∣α2y sign(y1 − ŷ1) (56)

The disturbance error also should be assumed equal to
zero. Similarly, the parameter should be selected as follows:
α1y ∈ (1 − εy, 1), εy > 0, α2y = 2α1y − (2 − 1), and

Ay =

[
−k1y 1
−k2y 0

]
is Hurwitz. with the ex̄ = [ e1y e2y ]T ,

the Lyapunov for state estimation of y-axis should be

V (eȳ) = eTȳ Peȳ. The first derivative of V (eȳ) is then can be
defined as V̇ (eȳ) < 0. The settling-time estimation error is
then also fixed-time stable. In the next section, the distur-
bance observers for SSBM are presented.
Remark 7: The gains of fixed-time observers in Eqs. (48),

(52), and (55) should approximately chose to avoid the chat-
tering phenomenon.

B. THE DOB FOR SSBM SYSTEM
1) DOB FOR SPEED COORDINATE
The proposed DOB for estimating the perturbations on the
speed coordinate is as follows:

T̂l

=−J (
knmkmAm

J
−
T̂l
J
+ k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )−

knmkmAm
J

)+ kdω1

×

∫ ∣∣∣∣−J (knmkmAmJ
+ k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )−

knmkmAm
J

∣∣∣∣ 12 sign(−J (knmkmAmJ

+ k1ω
∣∣eω ∣∣ α1ωβ1ω sign(eω )+k2ω

∣∣eω ∣∣ α2ωβ2ω sign(eω )−
knmkmAm

J
))

+ kdω2

∫ ∫
sign(−J (

knmkmAm
J

+ k1ω
∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )−

knmkmAm
J

)) (57)

where

Tl = −J (
knmkmAm

J
−
T̂l
J
+ k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )−

knmkmAm
J

)+ kdω1

T̃l = −J (
knmkmAm

J
+ k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

+ k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )−

knmkmAm
J

)+ kdω1

(58)

According to the mentioned above, the proof of stability of
the proposed DOB on speed coordinate was obtained. First,
taking derivative for both sides of Eq. (57) yields

˙̂Tl = Ṫl + kdω1
∣∣∣T̃l ∣∣∣1/2 sign(T̃l)+ kdω2 ∫ sign(T̃l) (59)

or

˙̃Tl = −kdω1
∣∣∣T̃l ∣∣∣1/2 sign(T̃l)− kdω2 ∫ sign(T̃l) (60)

Similar as proof of the stability in Eqs. (37-39), Eq. (60) is
called super-twisting DOB. The observer gains kdω1 and kdω2
must be positively defined.

2) DOB FOR MOVEMENT OF X-AXIS
The proposed DOB for movement of x−axis is shown as
follows:

F̂lx = −m(
knbkbiq
m
−
F̂lx
m
+ k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)
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−
knbkbiq
m

)+ kdx1

∫ ∣∣∣∣−m(knbkbiqm
+ k2x

∣∣x1 − x̂1∣∣α2x
× sign(x1 − x̂1)−

knbkbiq
m

)

∣∣∣∣1/2 sign(−m(knbkbiqm

+k2x
∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)− knbkbiq

m
))

+ kdx2

∫∫
sign(−m(

knbkbiq
m
−
F̂lx
m
+k2x

∣∣x1−x̂1∣∣α2x
× sign(x1 − x̂1)−

knbkbiq
m

)) (61)

where

Flx = −m(
knbkbiq
m
−
F̂lx
m
+k2x

∣∣x1−x̂1∣∣α2x sign(x1−x̂1)
−
knbkbiq
m

)

F̃lx = −m(
knbkbiq
m
+ k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)
−
knbkbiq
m

)

(62)

Taking derivative for both sides of Eq. (61) leads

˙̂Flx = Ḟlx + kd1x
∣∣∣F̃lx ∣∣∣1/2 sign(F̃lx)+ kd2x ∫ sign(F̃lx)

(63)

or

˙̃Flx = −kd1x
∣∣∣F̃lx ∣∣∣1/2 sign(F̃lx)− kd2x ∫ sign(F̃lx) (64)

As the mentioned above, the observer gains kd1x and kd2x
must be positively defined. Similarly, the proposed DOB for
movement of y−axis is shown in the next following section.

3) DOB FOR MOVEMENT OF Y-AXIS
The proposed DOB for movement of y−axis is shown as
follows:

F̂ly = −m(
knbkbid
m
−
F̂ly
m
+ k2y

∣∣y1 − ŷ1∣∣2αy sign(y1 − ŷ1)
−
knbkbid
m

)+ kdy1

∫ ∣∣∣∣−m(knbkbidm
+ k2y

∣∣y1 − ŷ1∣∣α2y
× sign(y1 − ŷ1)−

knbkbid
m

)

∣∣∣∣1/2 sign(−m(knbkbiqm

+ k2x
∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)− knbkbiq

m
))

+ kdy2

∫∫
sign(−m(

knbkbid
m
−
F̂ly
m
+k2y

∣∣y1−ŷ1∣∣α2y
× sign(y1 − ŷ1)−

knbkbid
m

)) (65)

where

Fly = −m(
knbkbid
m
−
F̂ly
m
+ k2y

∣∣y1−ŷ1∣∣α2y sign(y1−ŷ1)
−
knbkbid
m

)

F̃ly = −m(
knbkbid
m
+ k2y

∣∣y1 − ŷ1∣∣α2y sign(y1 − ŷ1)
−
knbkbid
m

)

(66)

Taking derivative for both sides of Eq. (66) leads

˙̂Fly = Ḟly + kd1y
∣∣∣F̃ly∣∣∣1/2 sign(F̃ly)+ kd2y ∫ sign(F̃ly)

(67)

or

˙̃Fly = −kd1y
∣∣∣F̃ly∣∣∣1/2 sign(F̃ly)− kd2y ∫ sign(F̃ly) (68)

The observer gains kd1y and kd2y also must be positively
defined. After obtained the information of the states and
disturbances, the controllers for these movement operations
are shown as follows:

C. FTSMC FOR SSBM SYSTEM
In this section, the variable boundary layer thickness FTSMC
is introduced to control the speed of the rotational operation
and positions of x− and y−axes, respectively.

1) FTSMC FOR SPEED AXIS
The sliding mode surface for speed control is as follows:

s$ = e$ + λ$

∫
e$ (69)

where e$ = ωr − ω̂. Taking the first derivative for both side
of Eq. (69) yields

ṡ$ = ė$ + λ$ e$ (70)

Using Eq. (48) to solve Eq. (70) leads to

ṡ$ = ω̇r −
knmkmAm

J
+
T̂l
J
− k1$

∣∣eω ∣∣ α1ωβ1ω sign(eω )

− k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω )+ λ$ e$ (71)

To obtain the equivalent control, ṡ$ and estimated distur-
bance are considered equal to zero. There is a constant refer-
ence speed value. Therefore, ω̇r = 0. The equivalent control
input is then calculated as follows:

Ameq =
J

knmkm
(−k1ω

∣∣eω ∣∣ α1ωβ1ω sign(eω )

− k2ω
∣∣eω ∣∣ α2ωβ2ω sign(eω ))+ λ$ e$ (72)

The switching control was selected as follows:

Amsw =
J

knmkm
(γ1$ |s$ |

κ1$
η1$ sat(

s$
φ$
− k0$

∫
s$ )

23988 VOLUME 10, 2022



Q. D. Nguyen et al.: Robust SMC-Based Novel STDOB and Fixed-Time State Observer for SSBM System

+ γ2$ |s$ |
κ2$
η2$ sat(

s$
φ$
− k0$

∫
s$ )) (73)

The stability of the control for speed axis is proved as below.
First, the Lyapunov condition is selected as follows:

V (s$ ) =
1
2
s2
$

(74)

Taking derivative for both sides of the Eq. (74) yields

V̇ (s$ ) = s$ ṡ$

= −s$ (γ1$ |s$ |
κ1$
η1$ sat(

s$
φ$
− k0$

∫
s$ )

+ γ2$ |s$ |
κ2$
η2$ sat(

s$
φ$
− k0$

∫
s$ ))

≤ 0 (75)

Proof:
Case 1: sat( s$

φ$
− k0$

∫
s$ ) ∈

(
−φω̄, φω̄

)
, Eq. (75) can

be calculated as follows:

V̇ (s$ ) = −s$ (γ1$ + γ1$ ) (76)

Taking integration for both sides of Eq. (76) corresponding to
the time from zero to infinite yields

Tmax∫
0

d
dt
V (s$ )
s$

dτ =

Tmax∫
0

−(γ1$ + γ1$ )dτ (77)

or

Tmax∫
0

d
dt
s$dτ =

Tmax∫
0

−(γ1$ + γ1$ )dτ (78)

or

Tmax ≤
1

(γ1$ + γ1$ )
(79)

Case 2: sat( s$
φ$
− k0$

∫
s$ ) /∈

(
−φω̄, φω̄

)
, Eq. (75) can

be calculated as below.

V̇ (s$ ) = −s$ (γ1$ |s$ |
κ1$
η1$ sign(s$ )+ γ2$ |s$ |

κ2$
η2$

× sign(s$ ) (80)

According to the paper [28], the settling-time of Eq. (80) is
calculated as follows:

Tmax ≤
1
γ1$

η1$
κ1$ − η1$

+
1
γ1$

η2$
η2$ − κ1$

(81)

The settling-time of the speed control is fixed-time value.

2) FTSMC FOR X-AXIS
The sliding mode surface of x-axis is as follows:

sx̃ = ėx̃ + λx̃ex̃ (82)

Taking the derivative for both sides of Eq. (82) yields

ṡx̃ = ëx̃ + λx̃ ėx̃ (83)

where ex̃ = xr − x̂. Using Eq. (52) to solve Eq. (83) with the
conditions of ṡx̃ = 0 and F̂lx = 0. The referenced input xr is
a constant value. Therefore, ẋr = 0.

−
knbkbiq
m
− k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)+ λx̃ ėx̃ = 0

(84)

The equivalent control value was calculated as follows:

iqeq =
m

knbkb
[−k2x

∣∣x1 − x̂1∣∣α2x sign(x1 − x̂1)+ λx̃ ėx̃]
(85)

The switching control was designed as follows:

iqsw = γ1x̃ |sx̃ |
κ1x̃
η1x̃ sat(

sx̃
φx̃
− k0x̃

∫
sx̃)+ γ2x̃ |sx̃ |

κ2x̃
η2x̃

× sat(
sx̃
φx̃
− k0x̃

∫
sx̃) (86)

Similar as the proof of Eqs. (74-75), the V (sx̃) = 0.5s2
x̃
≥ 0,

the first derivative V̇ (sx̃) ≤ 0. The settling-time is then also
fixed-time stable. Similarly, the control of the movement on
y-axis is designed as the next following section below.
Remark 8: The stabilities of the proposed controls for

position on x-axis and y-axis can be proved as the same of
poof of stability analysis for speed control in Eqs. (76) to (81).

3) FTSMC FOR Y-AXIS
The sliding mode surface of x-axis control is as follows:

sỹ = ėỹ + λỹeỹ (87)

Taking the derivative for both sides of Eq. (87) yields

ṡỹ = ëỹ + λỹėỹ (88)

where eỹ = yr − ŷ. Using Eq. (55) to solve Eq. (88) with the
conditions of ṡỹ = 0 and F̂ly = 0. The referenced input yr is
a constant value. Therefore, ẏr = 0.

−
knbkbid
m
− k2y

∣∣y1 − ŷ1∣∣α2y sign(y1 − ŷ1)+ λỹėỹ = 0

(89)

The equivalent control value was calculated as follows:

ideq =
m

knbkb
[−k2y

∣∣y1 − ŷ1∣∣α2y sign(y1 − ŷ1)+ λỹėỹ]
(90)

The switching control was designed as follows:

idsw = γ1ỹ
∣∣sỹ∣∣ κ1ỹη1ỹ sat(

sỹ
φỹ
− k0ỹ

∫
sỹ)+ γ2ỹ

∣∣sỹ∣∣ κ2ỹη2ỹ

× sat(
sỹ
φỹ
− k0ỹ

∫
sỹ) (91)

Similar as the proof of Eqs. (74-75), the V (sỹ) = 0.5s2
ỹ
≥ 0,

the first derivative V̇ (sỹ) ≤ 0. The settling-time is also fixed-
time stable. The stability of the proposed algorithms for the
SSBM is proved as the next section below.
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FIGURE 2. Control system of SSBM.

Stability Analysis: The Luapunov condition is selected as
follows:

V (stotal) =
1
2
s2x̃ +

1
2
s2
ỹ
+

1
2
s2$ +

1
2
T̃ 2
l +

1
2
F̃2
lx +

1
2
F̃2
ly

+V (eω)+ V (ex̄)+ V (eȳ) (92)

Taking the first derivative for both sides of Eq. (92) yields

V̇ (stotal) = sx̃ ṡx̃ + sỹ ṡỹ + s$ ṡ$ + T̃l
˙̃Tl + F̃lx

˙̃Flx + F̃ly
˙̃Fly

+ V̇ (eω)+ V̇ (ex̄)+ V̇ (eȳ) (93)

From section (3.1), Eqs. (60), (62), (66), (83-86), and (88-90),
Eq. (93) can be defined as a negative value as follows:

V̇ (stotal) < 0 (94)

This completes the proof of the stability.
Remark 9: The stability of the whole control system is

finite time due to disturbance observer errors are finite time.
The performance of the proposed methods are shown in the

next following section below.

IV. AN ILLUSTRATIVE EXAMPLE
In this section, the simulation of the proposed control algo-
rithms is given with the comparison of the performances of
the proposedmethods and the existingmethod such as in [10].
The tested disturbances were used for same SSBM of this
paper and the previous one [10] to show the superior perfor-
mance of the proposed control algorithm. Herein, the control

FIGURE 3. The error of positions and speed control: (a) position error on
x-axis, (b) position error on y-axis, (c) position error on ω−axis.

values of the proposed control algorithms were used to con-
trol the SSBM through the driver circuit as Figure 2 below.
The control inputs on all phases need to be measured and
converted to the direct, quadrature, and motor current axes,
respectively. The estimated states were used to design the
controllers for three movement operations. The structure of
the proposed control algorithms for SSBM is shown as in the
Figure. 2 below.

The control parameters are as follows: First the disturbance
observer gains are positively defined as follows: The gains
of the DOB for position axes should be suitable small as
kdx1 = 80, kdx2 = 70, kdy1 = 35, kdy2 = 100, and the
gains of DOB for speed axis should large enough due to
the coefficient J is very small. These gains were chosen as
follows kdω1 = 2.105 and kdω2 = 1.105. The gains of the
state observers were suitably selected to avoid the chattering
values such as follows: k1ω = 2000, k2ω = 2500, k1x = 100,
k2x = 5000, k1y = 20, k2y = 7500. The order fixed-
time observer for speed axis should be chosen to fulfil the
condition of fixed-time stability of Eq. (42). These values
were selected as follows: α1ω = 6, β1ω = 5, α2ω = 3,
and β2ω = 4. The order of the observers for x- and y-axes
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FIGURE 4. Referenced and measured states: (a) signals of x-axis,
(b) signals of y-axis, and (c) signals of ω−axis.

should be chosen as α1x = 0.85, α2x = 0.7, α1y = 0.85, and
α2y = 0.7 to satisfy the constraint as proof form Eqs 23-30.
The parameters of sliding surface were positively defined as
follows: λx̃ = 125, λỹ = 200, and λ$ = 1. The control
gains were suitably selected as follows: γ1x̃ = 50, γ2x̃ =
75, γ1ỹ = 75, γ2ỹ = 300, γ1$ = 0.0125, and γ2$ = 0.015.
The order fixed-time controller were suitably selected as
follows: κ1x̃ = 7, η1x̃ = 4, κ2x̃ = 3, η2x̃ = 4, κ1ỹ =
3, η1ỹ = 2, κ2ỹ = 3, η1ỹ = 4, κ1ỹ = 6, η1ỹ =
5, κ1$ = 3, and κ1$ = 4. The boundary layer thicknesses
and adaptive gains were selected small enough as follows:
φx̃ = 0.02, k0x̃ = 0.125, φỹ = 0.01, k0ỹ = 0.125, φỹ =
0.01, k0ỹ = 0.125. The tested disturbances and uncertainties
are as follows: Flx = 1.25 sin(15π t),Fly = 1.5 sin(7.5π t),
and T̂l = 0.1 sin(5π t) for x−, y−, and ω−axes, respectively.
The performances of the proposed control algorithms for
SSBM with the case of the disturbances on three axes is as
in the Figures. 3-6 below.

The settling-times for control of x−, y−, and ω−axes
are about Tex < 0.1(s), Tey < 0.06 (s), and Teω <

0.01, respectively. The overshoots for these axes are

FIGURE 5. Tested and estimated disturbances: (a) disturbances on x-axis,
(b) disturbances on y-axis, and (c) disturbances on ω−axis.

Oex < 6.7×10−5 (mm),Oey < 5.4×10−5 (mm), andOeω <
0.5 (rad/s), respectively. The steady-states of these axes are
ex ∈ (−7, 7 ) × 10−5 (mm), ey ∈ (−5.8, 5.8 ) × 10−5

(mm) and eω ∈ (−1, 1 ) (rad/s). The performances of the
proposed control algorithmswith the fully tested disturbances
on three axes were very good. The output signals of the three
movements on three axes are shown in Figure 4 below.

The measured and referenced signals were mostly iden-
tical. The disturbances were tested on three axes are
time-varying with low and high frequency values. The main
effort of using the different time-varying disturbances is
aimed to confirm that the proposed disturbance observer is
good at rejecting the disturbance and uncertainty for the
SSBM system at any frequencies. In fact, the time-varying
disturbance is changing problem to many DOB with the
conjunction of the first derivative equal to zero. The perfor-
mances of our proposed disturbance observer are shown as
the Figure 5 below.

As shown in Figure 5 above, the tested and estimated dis-
turbances were mostly identical. These values were tracked
each other in an acceptably short time period. Both low and
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FIGURE 6. Measured and estimated states of the SSBM: (a) states on
x-axis, (b) states on y-axis, and (c) states on ω−axis.

high frequencies of disturbance values were all estimated
and rejected by the proposed DOB. There is new DOB also
used information of measured and estimated states [33], [34].
However, the proposed DOB in this paper was directly con-
structed with the relation of disturbance error and its func-
tions. In [33], the estimated disturbance information was
designed with information of state errors and estimated dis-
turbance information. In [34], the first derivative disturbance
still need to be bounded. However, the proposed methods
is mainly focused for estimate the states and reject the par-
tially unknown dynamic due to the expectation of the math-
ematical model of SSBM as shown in Eq. (18). That is the
reason of difference between this work and some previous
papers [35], [36]. Furthermore, to show the effectiveness of
the fixed-time state observer, the measured and estimated
states of the SSBM are shown in Figure 6 below.

The initial states of the real and observed systems were
defined identical as x(0) = x̂(0) = 0.2 (mm), y(0) = ŷ(0) =
0.1 (mm) and ω(0) = ω̂(0) = 0 (V). The performances in
Figure 6 defines that the state observer was good at estimating
real state of the SSBM system. To show the superior perfor-
mance of the proposed DOB of this paper, the comparison of
the proposed method in [10] and this work is given. The same

FIGURE 7. State errors: (a) error on x-axis, (b) error on y-axis,
and (c) error on ω−axis.

disturbances on x− and ω−axes are Flx = 1.25 sin(15π t),
and T̂l = 0.1 sin(5π t), respectively. The tested disturbance
for y−axis same with it in the Figure 5b for proposed method
in [10] leads performance on y−axis to divergence. There-
fore, the tested disturbance for controller in [10] is reduced
by Fly = 1.0 sin(7.5π t). The performances of the proposed
method in [10] with tested disturbance above are shown as
the Figure 7 below.

The state errors for three axes are quite big in compare with
the performances of our prosed method. Furthermore, the
comparison of the performances of the proposed method with
tested disturbances and the control method in [10] without the
tested disturbances are shown in the Table 1 below.

The comparison of this paper and previous paper was
shown that the proposed control algorithms of this paper
is robustness. The proposed disturbance observer was
very effective with the time-varying disturbance at any
frequencies.
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TABLE 1. Comparision of the proposed method with paper [10].

V. CONCLUSION
This paper proposed a new super-twisting DOB for estimat-
ing the disturbances and uncertainties of the outside effects
and inside parameter variations of the SSBM system. The
perturbations of SSBM were obtained based on the infor-
mation of the estimated and measured states. The condition
of the first derivative disturbance equal to zero is here free.
The disturbance errors converges to zero in finite-times with
the fast speed and stable of a supper-twisting functions. This
is also one of the originality of the paper. Furthermore, the
fixed-time state observer concept was used to design the
state observer for the speed coordinate and the homogenous
fixed-time stability was used to design the state observer for
the movement on x- and y-axes, respectively. After obtained
the information of the disturbances and system states, the
variable boundary layer thickness FTSMC was designed for
controlling the position on x- and y-axes and rotational speed
on ω−axis, respectively. The obtained results shown that the
proposed control algorithms are good for SSBM. The tested
disturbances were mostly rejected by the proposed super-
twisting DOB, the system states were precisely obtained by
the proposed fixed-time state observer. Furthermore, the posi-
tions and speed control was good at forcing the rotor stable in
predefined position and the desired speed, respectively. In the
next study, a new DOB with the basic design of estimated
and measured states in this paper will be proposed to improve
the settling-time of disturbance error. Furthermore, the state
observer will be improved to obtain the states of SSBM in
short time and without the chattering of switching function.
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