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ABSTRACT Magnetic resonance (MR) images from low-field scanners present poorer signal-to-noise
ratios (SNRs) than those from high-field scanners at the same spatial resolution. To obtain a clinically
acceptable SNR, radiologists operating the low-field scanners use a much smaller acquisition matrix than
high-field scanners. Thus, the current state of the image quality indicates the need for further research
to improve the image quality of low-field systems. Strategies based on super-resolution (SR) techniques
can be alternatives for image reconstruction. However, predetermined degradation methods embedded in
these techniques, such as bicubic downsampling, seem to impose a performance drop when the actual
degradation is different from the pre-defined assumption. In this study, we collected a unique dataset by
scanning 70 participants to address this problem. The anatomical locations of the scanned image slices were
the same for 0.35T and 3T data. Low-resolution (LR) images (0.35T) and high-resolution (HR) images
(3T) were the image pairs used for data training. Herein, we introduce a novel CNN-based network with
hybrid attention mechanisms (HybridAttentionResNet, HARN) to adaptively capture diverse information
and reconstruct super-resolution 0.35T MR images (3T-like MR images). Specifically, the proposed dense
block combines variant dense blocks and attention blocks to extract abundant features from LR images.
The experimental results demonstrate that our proposed residual network efficiently recovers significant
textures while rendering a high peak signal-to-noise ratio (PSNR) and an appealing structural similarity
index (SSIM). Moreover, an extensive subjective-mean-opinion-score (SMOS) proves to be promising in
the clinical application using HARN.

INDEX TERMS MR images, super-resolution, 0.35T MRI, 3T MRI, hybrid attention residual network,
subjective-mean-opinion-score.

I. INTRODUCTION
Nowadays, Magnetic Resonance Imaging (MRI) has been
one of the most widely used medical imaging technologies
because of its non-invasive examination of the human body’s
architecture and physiology. Themost criticalMRI character-
istic is spatial resolution. Clinical researchers and hospitals
generally prefer high-resolution (HR) images because they
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present a clear anatomy structure and rich texture details,
whereas low-resolution (LR) MR images always have fuzzy
tissue boundaries with lower contrast. Generally, the image’s
signal-to-noise (SNR) is proportional to the magnetic field’s
strength [1], [2]. For instance, a 3T scanner provides 2.5 times
higher SNR than a 0.35T scanner for the same spatial resolu-
tion. In other words, 3T MRI can provide images in higher
resolution with similar SNR. In addition, 3T MRI is more
sensitive to tissue changes and anatomical details, presenting
more physiological features than 0.35TMRI. Specifically, 3T
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MR images obtain more explicit tissue boundaries and higher
tissue contrast than 0.35T, with Figure 1 depicting the 3T and
0.35T images of the same person’s brain axial slice.

However, 3T MRI scanners are prohibitively costful, lim-
iting their broad adoption. Many hospitals, particularly the
township hospitals, still employ 0.35T scanners but wish to
improve the images’ quality for better disease diagnosis and
image-guided intervention. Image post-processing method
can be an alternative solution to reconstruct the 3T-like MR
images from 0.35T MR images. Notably, though spatial res-
olution and SNR are not the only differences between images
acquired from the low-field and high-fieldMRI systems, e.g.,
tissue contrast, using super-resolution (SR) related methods
to increase the image’s resolution without degrading the SNR
is still a prominent approach to improve low-field image
quality and make it comparable to the high-field ones.

SR techniques can reconstruct HR images from one or
multi LR images without changing theMRI hardware system.
The SR methods can be categorized based on the number of
input LR images to single image super-resolution (SISR) [3]
and multi-image super-resolution (MISR) [4]. Unlike MISR,
SISR has a much higher efficiency [5] and lower graphics
memory demands. Thus, we only foucus on the SISR tech-
nique in this study.

Existing SR techniques in MRI can be classified as
interpolation-based, reconstruction-based, and learning-
based approaches. The interpolation functions are often con-
sidered the most straightforward and intuitive SRmethod [6],
[7]. Whereas the interpolation-based methods are computa-
tionally simple, the processed images may be over smoothed
and usually have visual artifacts such as ringing and fuzzy
edges. The present reconstruction-based methods apply the
degradation model by utilizing prior information with regu-
larizationmethods. Bahrami et al. [8] used regression random
forests and proposed a novel sparse representation method
that predicted 7T-like images from 3T MR images. Although
their method has high accuracy for brain MRIs, their study
has high input requirements, and the sample size limits
generalization.

The learning-based methods are the most widely used
algorithms because they can generate novel details that do
not appear in LR images. The SR methods based on convo-
lution neural networks (CNN) have attracted broad interest,
with Dong et al. [9] developing the first CNN-based SR
method (a simple three-layer architecture called SRCNN)
that performed well on super-resolving photographic images.
Later they proposed a faster network (FSRCNN) with fewer
parameters achieving better performance [10]. Subsequently,
researchers focused on the architecture’s feature extraction
ability, with Kim et al. [11] proposing an intensive, very
deep SR network (VDSR). To accelerate the VDSR’s conver-
gence, researchers put forward residual learning and gradient
clipping. Lim et al. [12] developed an enhanced deep SR
network (EDSR) by removing VDSR’s unnecessary mod-
ules and expanding the model size. Although VDSR and
its variants solve the gradient problems in deep networks

and achieve good performance, a deeper network is harder
to train and preserve hierarchical information. To handle
this problem, Tong et al. [13] leveraged dense skip con-
nections and created a novel super-resolution dense network
(SRDenseNet). For MR images, Zheng et al. [14] employed
variants of dense blocks to enrich the features extracted from
the MR slices. Moreover, Pham et al. [15] developed a three-
dimensional (3D) version of SRCNN for brain MRI. Sim-
ilarly, Wang et al. [16] proposed a 3D feature attention SR
network (FASR), which utilized channel and sparse attention
operations in parallel.

However, the disadvantage of the above-mentioned
learning-based SR algorithms is that they assume the degra-
dation from HR to LR is fixed and known. Thus, the
LR images could be generated using bicubic or other
average-type methods for the models to learn the mapping
relationship from the fixed LR and HR images and estimate
the weights. The weighted model is then exploited to create
the desired HR image. Nevertheless, for a large distribution
gap between the LR and HR images, the reconstruction
performance of these methods may be unsatisfactory.

To adapt the degradation uncertainty, in this paper, we cre-
ate a dataset by scanning 70 volunteers with both 0.35T and
3T machines (refer to Section II-A) and utilized Advanced
Neuroimaging Tools (ANTs) [17] to pairwise register them.
This work assumes that the high-frequency information
obtained in high-field MR images can be directly predicted
from the low-field MR images. Consequently, a low-field
0.35T image can be reconstructed to a 3T-like image by
learning the mapping correction between 0.35T and 3T MR
images.

In addition, the learning-based SR networks can extract
rich frequency information in the channels and spatial
regions. To extract abundant features from input LR images
efficiently and motivated by recent advances [18], we utilize
a dense attention block (DAB) comprising variants of par-
allel placed densely and hybrid attention blocks. The dense
structure assists in the deeper network’s gradients backprop-
agation, while the attention blocks fully utilize the channel
and spatial information. Hence we propose a novel hybrid
attention residual network, entitled HybridAttentionResNet
(HARN), to generate 3T-likeMR images by incorporating the
mapping relationship of 0.35T and 3T MR images.

The major contributions of this work are:
• Scanning 70 volunteers using 0.35T and 3T machines to
collect a particular dataset (Dataset I) for learning the
real-world association between LR and HR imagery.

• Introducing a new feature extraction module, the dense
attention block (DAB), based on dense connections with
an attentionmechanism that focusesmore on the channel
and spatial information.

• Proposing a deep residual neural network relying on
DAB, named HARN, using actual LR and HR dataset
pairs to estimate 3T-like MR images involving 2 ×
upscaling factors. Furthermore, we verify the main
parameters through extensive ablation experiments.
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FIGURE 1. Axial views of 3T MRI (a) and 0.35T MRI (b) of the same slice and zoomed regions. of (a) 3T MRI and (b) 0.35T MRI. 3T MRI has the
higher anatomical quality and details compared to 0.35T.

• HARN can generalize high-quality 3T-like MR
images with higher quantitative indicators in terms of
PSNR/SSIM. Moreover, we test the proposed HARN
via an open-source IXI dataset (Dataset II) to validate
its robustness and accuracy.

This paper is presented as follows. In Section II, we intro-
duce the data source and propose our 3T-like images recon-
struction network. Designed ablation experiments and visual
results are given in Sections III. Section IV and V provides
the discussion and conclusion of the paper.

II. MATERIALS AND METHODS
A. DATA PREPARATION
For this work, 70 participants were enlisted, equally divided
by gender, and were scanned by 0.35T and 3T MRI scan-
ning systems. Permission was obtained from the Institution
Review Board and all subjects provided written informed
consent before the scans. A total of 2100 axial slices/images
were acquired from the 0.35T scanner (CLIMBER035
designed by Anhui Fuqing Medical Technology Co., Ltd.)
with a 2D T1 scanning sequence SE weighted with param-
eters: TR = 400ms, TE = 16ms, FOV = 24cm × 24cm,
and a matrix of 128 × 128. Regarding the 3T system (GE
MEDICAL SYSTEM – DISCOVERMR750), 13160 images
were acquired with sequence 3D T1-BRAVO adopting the
following parameters: TR= 8.2ms, TE= 3.2ms, TI= 1.0ms,
FOV= 24cm× 24cm, and a matrix of 256× 256× 188. The
3T scanning system was utilized after 0.35T, with the FOV of
the 3T covering that of 0.35T scanning for better alignment.
As note above, the scanning parameters of the two MRI
systems are deviated, and thus the images of both systems
were intrinsically different considering image resolution and
contrast. Nevertheless, as this study aims to improve low-field
images to be like high-field, image contrast differences were
properly handled through our proposed network. Despite the
contrast difference, for convenience, the 0.35T images are
considered the LR dataset, and the 3T images the HR dataset.

If a patient moves between two subsequent scans, he causes
image distortion due to the magnetic field inhomogeneity
of each system, and thus we perfectly align the LR and
HR dataset by applying a medical image analysis toolkit
named Advanced Neuroimaging Tools (ANTs) [17]. The lat-
ter toolkit includes the software suite Analysis of Functional
Neuro Images (AFNI) [19] to minimize the possible dis-
tributions between two sub-datasets in different resolutions.
We aligned all 3T images on the 0.35T images, and the choice
of the target/reference image was due to the fact that 3T
images have higher resolution with smaller slice thickness
(1mm < 5mm). After registration, the new HR slices were
selected by re-slicing the aligned 3T volume, which was
reconstructed from the aligned 3T images that corresponded
to the same slice location of each slice in the 0.35T dataset.
This ensured that the corresponding slices of both datasets
depict the same axial physical slice of the brain and have the
same anatomical structures. We marked this unique dataset
as Dataset I. Moreover, to evaluate the robustness of the
proposed method, we employed the IXI open-source dataset
provided by BarinWeb.1 Specifically, we chose 50 different
T1 axial plane images from the 3T IXI dataset as an unseen
test dataset and marked them as dataset II. To generate the
input LR images, we blurred the original 3T images (HR)
using a Gaussian kernel with α = 4 and then downsampled
them by averaging every four voxels. In this way, the input
LR images have half the resolution of the HR images.

B. NETWORK STRUCTURE
This section introducesHARN,with its overview presented in
Figure 2. The HARN network comprises feature extraction,
outer feature fusion, and up-sampling modules. The critical
phases of HARN are as follows: Initially, a shallow convolu-
tion layer with a ReLU function extracts the initial features
from the input LR images. Then, the feature extraction mod-

1https://brainweb.bic.mni.mcgill.ca/brainweb/
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FIGURE 2. The overall architecture of our proposed HARN network. Before the feature fusion layer, a series of DAB outputs are merged
using an element-wise summation.

ule recovers the important hierarchical features from the pre-
viously constructed feature maps. After that, we simplify the
calculations utilizing the outer feature fusion layer (OFFL)
scheme that decreases the merged feature maps to a specific
size. Finally, the up-sampling module transfers the fused
features into the desired 3T MR images.

1) DENSE ATTENTION BLOCKS
MR images are fundamentally resembling and redundant.
To fully exploit the properties of MR images and capture
the delicate local texture information on a small receptive
field, we focus more on the feature capturing module and
propose a novel architecture named dense attention block
(DAB), which can be regarded as a delicate feature encoder.
The DAB module is depicted in Figure 3, containing various
parallel variant dense blocks (VDB), an inner feature fusion
layer (IFFL), and a hybrid attention block (HAB).

2) VARIANT DENSE BLOCK
We employ convolution layers with variable kernel sizes to
capture enhancedmultiscale information combined in a dense
structure [20] at the same level. As seen in Figure 3 (a), the
blocks adopt two distinct kernel sizes and arrange them in
various sequences. For instance, in the VDB1 the kernel sizes
of the two convolution layers are 1×1 and 3×3, respectively,
arranged alternatively. We employ a small kernel size (1 ×
1 and 3 × 3), as such sizes require fewer parameters and use
less RAM, speeding up processing.

Each VDB has four layers, each of which implements
a composite operation function Fl , where l is the layer
index. As a consequence, in the pth path number of VDBs,
the l th layer receives all the previous layers’ feature maps
f p1 , f

p
2 , . . . , f

p
(l−1), with the l

th layer’s output being:

f pl = σ ([f
p
1 , f

p
2 , . . . , f

p
l−1]) (1)

where [f p1 , f
p
2 , . . . , f

p
(l−1)] represents the concatenated feature

maps, and σ = max(x, 0) refers to the ReLU activation
function. Equation (1) indicates that a particular f pl depends
on the kernel size of each layer and can extract feature maps

of various sizes. The VDB’s hyperparameter growth rate
(G) refers to the channels of each layer’s output feature maps.
Thus, the output channels are the input channels plus four
times G, where four indicates the convolution layers numbers
inside VDB.

3) INNER FEATURE FUSION
We utilize the inner feature fusion layer to concatenate
the features and reduce their dimension, preventing exces-
sive model parameter increase as the VDB’s path number
(P) increases. The output can be defined as:

F ′′i−1 = σ (conv
1×1F ′i−1)+ Fi−1 (2)

where F ′i−1 is [f
1
l , f

2
l , . . . , f

p
l ] refers to the concatenation of p

VDB outputs, Fi−1 is the DAB input, and conv1×1 indicates
the convolution operation with a 1× 1 kernel size.

4) HYBRID ATTENTION BLOCK
After the IFFL, the scale of the F ′′i−1 features grows massively
and includes much redundant information. Simultaneously,
as demonstrated in [16], both channels and spatial areas
restore the MRI features during the SR task. Based on
these two considerations, we introduce an attention mech-
anism [18] to augment the network’s representation capac-
ity. As illustrated in Figure 3 (b), the Hybrid Attention
Block (HAB) comprises two components: spatial atten-
tion (SA) and channel attention (CA). Due to the HAB’s
unique mechanics, the network can be more attentive to infor-
mative spatial regions and meaningful cross-channel infor-
mation. Finally, the HAB’s features are multiplied by the
input feature maps for adaptive feature refinement.

According to Zeiler et al. [21], each channel in a feature
map can act as a feature detector. Thus, CA extracts the global
feature information and generates channel weights utilizing
inter-channel interaction features. Therefore, we utilize a
global max pooling and a global average pooling operation
in parallel to capture the global spatial details, generating
two different channel information descriptors AvgPool(F)
and MaxPool(F). The global average pooling function can
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FIGURE 3. DAB’s architecture (the VDB, IFFL, and HAB parts are depicted in blue, orange, and yellow,
respectively).

be expressed as:

AvgPool(Fc) =
1

W × H

W∑
i=1

H∑
j=1

Fc(i, j) (3)

where Fc(i, j) is the value associated with the position (i,j)
in the C th channel feature map. Fc ∈ 1×1×c refers to the
channel statistic generated by shrinking the input feature map
F into spatial dimensionsW×H.Moreover, the max-pooling
operation is determined as:

MaxPool(Fc) = max
i,j

Fc(i, j) (4)

After the pooling procedure, we employ a multi-layer per-
ceptron (MLP) to reduce the parameter overhead and set the
reduction ratio to 0.5. Then, we use element-wise summing
to merge the pooled feature vectors and apply them to a
sigmoid gating mechanism. As illustrated in Figure 4 (a),
F ′′i−1 indicates the feature maps of size W × H × C, with
the channel attention output FCA computed as:

FCA = σ (MLP(MaxPool(F ′′i−1))+MLP(AvgPool(F
′′

i−1)))

(5)

The MLP comprises two convolution layers with a ReLU
activation function in between, aiming to reduce the net-
work’s parameters. Finally, the final output F ′′′i−1 is obtained
by pulsing the spatial input F ′′i−1 with feature attention
weights FCA.

We supplement CA by utilizing the SA module.
SA restores more position-specific information through gen-
erating spatial weights by exploiting the feature’s inter-
spatial relationship, enabling HARN to focus on critical
but often neglected spatial areas. The entire procedure, pre-
sented in Figure 4 (b), is as follows. Initially, we apply a
global average-pooling operation AvgPool(F) and a global
max-pooling operation MaxPool(F) along the channel axis,
which effectively emphasize information regions by reducing
the channel’s dimension [22]. Following the average pooling,
the input feature map F ′′′i−1 can be regarded as an efficient

feature descriptor. The two feature maps are concatenated,
and then are sent to a convolution layer to create a spatial
attention map, encoding the regions’ weights that are empha-
sized and suppressed. Mathematically, the complete process
is as follows:

FSA = σ (conv7×7[MaxPool(F ′′′i−1);AvgPool(F
′′′

i−1)]) (6)

where conv7×7 denotes the convolution operation with a 7 ×
7 kernel size, and [MaxPool(F ′′′i−1);AvgPool(F

′′′

i−1)] is the
concatenation operation involving the pooling feature maps.

5) OUTER FEATURE FUSION
Section II.B.1 indicates that DAB can have various additional
features assisting HR reconstruction. Indeed, we properly
align DAB utilizing various parameter setups to exploit fully
the hierarchical features it provides. However, the gradient
vanishes as the network depth increases, and the loss becomes
non-convergent. To solve this matter, we apply a fusion layer
to merge all previous transformation feature maps:

FOFFL = σ (conv1×1[F1,F2, . . . ,Fi−1,Fi]) (7)

where F1,F2, . . . ,Fi−1,Fi represent outputs of different
DAB, i denotes the series number of DAB, and FOFFL is the
output of the outer feature fusion layer, which is then fed to
the next up-sampling stage.

C. LOSS FUNCTION
Several SR techniques utilize a mean square error (MSE)-
based loss function to reduce the difference between the
input and the reconstructed images. Nonetheless, decreasing
MSE typically reduces the reconstructed images’ perceptual
quality due to over-smoothing. To overcome this problem,
we utilize a hybrid loss function comprising an image-domain
MSE loss at the pixel level and a VGG loss at the perceptual
level:

LMSE =
1

W × H

H∑
i=1

W∑
j=1

(
ISRij − I

HR
ij

)2
(8)
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FIGURE 4. The HAB architecture (a) Channel attention, (b) Spatial attention.

where H and W define the image’s height and width, and ISR

and IHR denote the 3T-like MRI generated by the model and
the 3T images acquired from the 3T scanner. Inspired by the
content loss [23], we import the VGG loss from the ReLU
activation layers of the pre-trained 19-layered VGG network.

LVGG =
1

W × H

H∑
i=1

W∑
j=1

(
SVGG

(
ISRij
)
− SVGG

(
IHRij

))2
(9)

Here, SVGG indicates the supplied feature map from the
VGG19 network. As a result, the total loss function is rep-
resented by:

LTOTAL = LMSE + αLVGG (10)

where α is a constant coefficient balancing the two losses,
heuristically set to 1e-1.

D. EVALUATION METRICS
We evaluate the image quality utilizing objective and subjec-
tive metrics. Considering the objective metrics, we deploy the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index (SSIM) [24]:

PSNR = 10 lg(
L2

MSE
) (11)

SSIM (x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ 2

x + σ
2
y + C2)

(12)

When an image is normalized using the linear normaliza-
tion approach, for PSNR, we set L = 1. In Equation (12), C1
and C2 are the stability constants, µx and µy are the average
values of x and y,µ2

x is the variance of x, σxy is the covariance
of x and y, and σ 2

x is variance of x.

III. EXPERIMENTS
A. IMPLEMENTATION DETAILS
This work regards the original 3T MR images, and as test
images as ground truth (GT) HR images (256 × 256), the
LR images (128 × 128) acquired from 0.35T scanners hav-
ing half the GT image resolution. The main changes to
the HARN parameters are described in Table 1. During the
feature extraction stage, the channel numbers of the first
convolution layer’s output features are set to 64. The output
channels inside the VDB are determined by the growth rate
(G) of the dense connections. Before feeding the features to
HAB, we utilize IFFL to reduce the channel numbers from

((64 + G × 4) × P) to 64, where P refers to VDB’s path
numbers. Then the OFFL receives all DAB’s concatenated
features and reduces the channel numbers from (64×I) to 64,
where the variant I indicates the number of DABs. Finally,
we restore the image size using the transposed convolution
layers (convTrans) [25].

A cross-validation strategy divides our dataset into train-
ing, validation, and test set with a ratio of 7:2:1. Moreover,
we employ the Adam optimizer [26] with β1 = 0.9, β2 =
0.999, and a learning rate of 1e-4. The proposed model is
trained using Pytorch 1.9.0 on an NVIDIA RTX 3090 GPU
with 24 GB RAM.

B. SUBJECTIVE MEAN OPINION SCORE(SMOS) TESTING
We conducted a subjective mean opinion score (SMOS) test
to quantify the reconstruction ability of various approaches.
Specifically, we selected ten versions of each image from
the test dataset: input LR image, Bicubic, SRCNN [9],
FSRCNN [10], VDSR [11], EDSR [12], SRDenseNet [13],
HybridNet [14], ours, and the ground truth HR image. Two
radiologists with 5 and 7 years of experience, blinded to
the acquisition details, were assigned to score for each
image from 1 to 5(a higher score indicates better perfor-
mance). Thus, each rater scored 1350 images (10 versions of
135 images) presented randomly.

In this testing experiment, we discovered that SMOS has
a high degree of dependability because there is no signifi-
cant discrepancy between the ratings of the identical images.
At the start of testing, we collected 20 pairs of different LR
and HR images (score 5) for doctors to calibrate the rating
criteria. We added the HR and LR images into the test set
twice to confirm the raters’ reliability. Interestingly, the two
doctors’ ratings for the same image category showed high
similarity. Table 2 and Figure 5 describe the experimental
results of the SMOS test.

C. ABLATION STUDY
We conduct the following extensive ablation experiments of
PSNR and SSIM to explore the best parameter values for
HARN’s various components.

1) STUDY OF G, P, AND I
Since growth rate (G) is a hyper-parameter of the dense
connections, we performed several ablation studies to explore
its influence on HARN’s performance. As visualized in
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FIGURE 5. Heat map of the SMOS score distribution on Dataset I. For each method, 260 samples (135 images ×

2 doctors) were evaluated, and the mean is shown as a blue marker (the bins around the mean value) [2 × upscaling].

FIGURE 6. Training convergence changes of PSNR on the growth rate (G), path number (P), and the number of DAB (I).
The first row (a-c) shows the influence of G, P, and H in the whole converges of HARN, second row (d-f) zooms the
selected rectangle of the first row.

Figure 6 (a) and (d), the PSNR increases first and decreases
as quantity increases. Thus, we choose 16 as the final growth
rate to balance the computation complexity and network per-
formance.

To demonstrate the multipath effect structure in VDB,
we perform several contrast experiments, with Figure 6 (b)
displaying the HARN’s various training convergences. Lim-
ited by the sample size, the PSNR reduces as the path num-
bers increase. Moreover, Figure 6 (e) shows the detailed
convergence changing in the last 15 epochs, illustrat-
ing that the increasing path number may not increase
PSNR. Finally, after balancing complexity and recon-
struction capabilities, we set the path number of VDB
to four.

The numbers of HAB affect the entire network depth and
complexity. To investigate the effects of HAB’s number on
the performance and computational cost, we study parameter
I under different HAB numbers. Figure 6 (c) and (f) display
the results of HARN’s five training convergences. As the
HAB numbers increase, the faster HARN converges, but
PSNR becomes lower. To preserve a better balance between
computational efficiency and performance, we set the number
of HAB to four.

Figure 7 indicates the ablation experiments of G, P and I
based on SSIM. Notably, the training convergences of SSIM
and PSNR are highly similar. Thus, we set the same parame-
ters as those analyzed based on PSNR.

2) STUDY OF ATTENTION MECHANISM AND LEARNING
PARAMETERS α
To further validate HAB’s effectiveness, we consider a net-
work without HAB as the baseline and investigate the impact
of SA and CA at a reduction ratio equal to two. Figure 8 (a)
illustrates the convergence curves of several networks, but
Figure 8 (c) reveals that the network with CA or SA presents
an improved PSNR compared to the baseline. Notably, the
cascaded CA and SA network outperform the network solely
using CA or SA. Given that CA and SA can generate the
weight of each feature map in channel and space, cascading
the CA and SAmechanisms combines the channel and spatial
information to enhance further the high-frequency features.
Furthermore, in this trial, we also verify the effect of the order
of CA and SA in the HAB. Figure 9 (a) and (c) show the
training convergence changes of SSIM, and the convergences
of PSNR and SSIM are almost identical.
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FIGURE 7. Training convergence changes of SSIM on the growth rate (G), path number (P), and the number of DAB (I).
The first row (a-c) shows the influence of G, P, and H in the whole converges of HARN, second row (d-f) zooms the
selected rectangle of the first row.

FIGURE 8. Convergence analysis on the attention mechanism and learning parameters α based on PSNR. As
(a) indicates, the baseline with attention mechanism can improve the model’s reconstruction ability.
(b) shows that the LVGG plays an important role in reconstruction. Second row (c,d) zooms the selected
rectangle of the first row.

The model with LMSE focuses on the loss of each pixel,
potentially over-smoothing the image, whereas the model
with LVGG produces distorted details. To balance the hybrid
loss, we test several values for the balancing factor α, with the
corresponding results illustrated in Figure 8 (b) and Figure 9
(b), which are the different ablation experiments based on
PSNR and SSIM, respectively. From the two figures, the gap
between two losses becomes wider when α decreases. There-
fore, the reconstruction performance degrades. According to
the results depicted in Figure 8 (d) and Figure 9 (d), we set
α = 1e-1 finally.

D. COMPARISONS AGAINST STATE-OF-THE-ART
METHODS
To further evaluate the proposed network’s performance,
we challenge HARN against bicubic interpolation and six
learning-based methods [9]–[14]. Moreover, to analyze the

results more precisely, we calculate the mean and variance
of PSNR and SSIM. Table 2 lists the corresponding results
of the quantitative indicators. From the results on the left
side of the table, we conclude that HARN achieves the best
performance with PSNR = 25.4623±9.4367 and SSIM =
0.9080±0.0217 on Dataset I, significantly outperforming the
competitor methods.

Figure 10 depicts a qualitative comparison of the eval-
uated methods, including two close-up views of selected
regions below every reconstruction image: the left image
shows the zoomed image of the chosen gyrus region, and
the right, the edge information of the left gyrus region. Fig-
ure 10 reveals that the competitor algorithms tend to recon-
struct fuzzy and over-smoothed details, affecting identifying
the depicted details. By comparison, the proposed HARN
effectively recovers more contours and minor textures. The
zoomed grayscale images show that our algorithm has lower
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FIGURE 9. Convergence analysis on the attention mechanism and learning parameters α based on SSIM.
(a) and (b) show the training convergences of different attention mechanism and learning rates. (c) and
(d) are the zoomed images of selected rectangle in (a) and (b), respectively.

FIGURE 10. Results of the reconstructed images with various approaches on Dateset I. At the bottom left of each image is the
zoomed image highlighted in the red rectangle region, and the right is the Laplace operator’s result on the left zoomed image.
[2 × upscaling].

noise and more precise edge information. The HARN’s rat-
ings are presented in Table 2, highlighting that the SMOS
ratings are closer to the original scores than the competitor
methods. Figure 5 shows the distribution of all SMOS ratings.

Furthermore, we employ additional open-source datasets
(IXI dataset) to incorporate our experiments. The aim is
to verify whether the algorithm can produce more realistic
images with good generalization ability on other datasets.
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FIGURE 11. Results of the reconstructed images with various approaches on Dateset II. At the bottom left of each image is the
zoomed image highlighted in the red rectangle region, and the right is the Laplace operator’s result on the left zoomed image.
[2 × upscaling].

TABLE 1. The main changes to the HARN parameters. The variables G, P,
and I represent the growth rate of the dense blocks in VDB, VDB path
number, and the total number of DABs, respectively.

As mentioned above, we selected 50 axial images as a new
test dataset and marked them as Dataset II. During testing,
we exploit the model trained on Dataset I. The right side
of Table 2 shows that the HARN does not achieve the best
PSNR/SSIM caused by the loss function difference. How-
ever, our contrast images are more photo-realistic than the
competitor ones. The actual comparison is performed on the
chosen 3T axial plane (Figure 11), highlighting that HARN’s
reconstructed image has more precise details than input LR
images and is more comparable to HR images than the com-
petitor algorithms’ reconstruction outputs. Consequently, the
proposed HARN network achieves a good generalization
ability and can be applied to other datasets.

IV. DISCUSSION
This work demonstrates through SMOS testing that
learning-based methods achieve superior clinical perfor-
mance in generating 3T-likeMR images from low-field 0.35T

images. Furthermore, we demonstrate that high-frequency
information can be predicted from LR images. Thus,
we generate reliable SR images by proposing a CNN-based
algorithm named HybirdAttentionResNet (HARN), which
incorporates dense blocks and attention mechanisms for
better feature extraction. We collected a unique dataset by
scanning 70 subjects from both 0.35T and 3T MRI systems
and aligning the paired images before training to explore
the mapping correlation between the LR and HR images.
Additionally, we conduct several ablation experiments to
determine the best parameters of HARN and employ two
datasets for evaluation. The experimental results suggest
that HARN performs better than current state-of-the-art SR
algorithms and has an appealing generalization ability and
accuracy.

In contrast to SRDenseNet [13], the dense blocks exhibit
sufficient sensitivity for SR tasks. We speculate that our
dense attention block combines the multipath structure of
the convolution layers to extract more diverse features for
reconstruction. In contrast to Zheng et al. [14], our model is
optimized for attentionmechanisms and content loss, with the
proposed attention mechanism having a substantial impact on
the network’s performance. Specifically, the CAmodule gen-
erates global features, but the SA module assists the network
in focusing more on the local regions.

We only scanned the axial brain slices of 70 healthy vol-
unteers in this work. However, the learning-based methods
in SR usually require massive and diverse data for train-
ing to afford enhanced robustness. However, the relatively
small-sized datasets employed in this work are speculated to
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TABLE 2. Qualitative comparison of contrastive SR algorithms on the unique dataset we scanned (Dataset I) and an open-source IXI dataset (Dataset II).
[2 × upscaling].

be responsible for the low PSNR and SSIM values. Future
works could involve a GAN- [27] or Transformer-based [28]
method, or a more extensive database, which will be used to
solve this problem further. Limited by hardware, the input
LR images have some noise and artifacts that are difficult
to eradicate. The content loss function is an effective way
to characterize spatial contents. Maybe emphasizing the con-
tent loss on minimizing rice noise could further enhance
the clinical SR findings. Reconstruction with less noise is
challenging and is part of feature work. Finally, although we
evaluated HARN on two brain datasets, applying the same
method to other organs is still an open question that will be
examined in future works.

V. CONCLUSION
In this study, we collected a unique dataset by scanning
70 subjects with both 0.35T and 3T MR systems to produce
LR and HR images. Instead of utilizing the predetermined
known degradations, we use real paired training data to learn
the mapping relationship between high field and low field
images. Moreover, we proposed a residual network (HARN)
with a hybrid attention mechanism based on the convolution
neural network. After extensive ablation experiments, we set
the best parameters for HARN. The experimental results
demonstrate that HARN achieves good performance on the
PSNR and SSIM metrics with more photo-realistic results.
And via the extensive SMOS testing, HARN is proven to
be more reliable in reconstructing HR images over scale ×2
than current state-of-the-art reconstructionsmethods.We also
evaluate HARN on an open-source dataset (IXI dataset), with
the experimental results revealing that our network achieves
superior performance in robustness and accuracy. Overall,
HARN is proved to be an effective approach to improve the
image quality of 0.35T MR images. In the future, HARN
could be used to apply in clinical applications and other
image processing tasks, such as image-guided experiments
and lesion segmentation, as it can reconstruct high-resolution
images with decent quality and accuracy.
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