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ABSTRACT An accurate analytical model is adopted to estimate the torque ripple of a synchronous
reluctance motor (SynRM). Desired behavior of the torque ripple functionin this motor is obtained by
changing the angles of one and two flux barriers per pole (FBs) in the rotor. The torque ripple function
of the SynRM serves as the multiple and close local optima. By identifying the behavior of this function,
a comprehensive learning particle swarm optimization (CLPSO) algorithm (typically applied in solving
multimodal functions), is adopted to reduce the torque ripple. The results indicate that compared to PSO
(i.e. global optimization algorithms) the CLPSO algorithm is more efficient in torque ripple reduction and
findingmore local optima. Among the available optimal solutions with four FBs per pole, a sample is selected
for motor construction. Finite element analysis and laboratory tests are performed to validate the results.

INDEX TERMS Synchronous reluctance machine, multimodal optimization, torque ripple.

I. INTRODUCTION
To design a synchronous reluctancemotor (SynRM), the rotor
configuration, method of analyzing the motor performance,
and optimization algorithm constitute the fundamental com-
ponents. The configuration of a SynRM rotor for obtain-
ing high reluctance difference is subject to placing multiple
conductive and insulating magnetic layers. In transversally
laminated rotors, a popular theme of study in the literature
(due to its easy manufacturing process), is to have magnetic
insulators implemented by air voids, also referred to as flux
barriers (FB)s in the rotor’s magnetic sheets.

The FBs’ shape can take straight lines (rectangular,
trapezoidal [1]), curves (circular [2], [3], crescent [4]–[6],
hyperbolic[7], etc.), or a combination of straight lines and
curves [8]. The main objective of these various shapes is to
optimally chanel the flux lines within a solid rotor. The shape
of FBs can be expressed by analytically [9]. The findings of
most studies reveal the superiority of the fluid shaped, the
Zhukovski shaped, and field path design geometry, for FBs
when compared to other shapes [10], [11].

The associate editor coordinating the review of this manuscript and

approving it for publication was Paolo Giangrande .

The methods applied in analyzing the performance of
electric machines are grouped into two general categories
namely, numerical and analytical. The finite element anal-
ysis (FEA) with high precision is widely applied in design
of SynRM. The main problem in applying FEA to design
of SynRM is attributed to its prolonged computational time
in view ofthe large number of design variables. Reducing
torque calculation points by randomly selecting them within
the optimization iterations [12], surrogate models like Krig-
ing [13], computationally efficient electromagnetic FEA [14],
and combining FEA with analytical methods [1] are among
the measures that has been taken in reducing the computa-
tional cost.

As to the analytical methods, they are faster than FEA,
with a high possibility to evaluate more cases in achiev-
ing the optimal solution. Obtaining an analytical model for
SynRM usually involves simplifying assumptions that reduce
its accuracy. The initial analytical models [15], regardless
of the effect of the stator slots, merely estimate the radial
component of the air gap magnetic field. Consequently, stator
slotting effect in radial magnetic field modeling was added
using permeance functions [16]. In addition to the radial com-
ponent, the tangential part of the magnetic field is estimated
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by combining the magnetic equivalent circuit (MEC) and
conformal mapping (CM) methods [17].

Maximizing average torque and minimizing torque rip-
ple are the two main objectives in SynRM optimization.
In multi-objective optimization, these two are considered
simultaneously [18]. In some studies, these two are optimized
independently [1], and it is reported that these two objectives
are not conflicting [1]. There exist many locally optimal
solutions using which the problem of SynRM optimization
is characterized. In [18] and in order to find more optimal
solutions, optimization is done in two stages. First a more
extensive range is considered for the variables, and several
iterations are performed towards finding the global optima.
This is followed by a zoomed local search around the poten-
tial solutions obtained in the first stage with a smaller range
for the variables.

In this paper, the average torque and torque ripple objec-
tives are optimized independently. The analytical model is
applied to optimize the SynRM torque ripple. Instead of
running repeated optimizations to assure the optimality of the
solutions, the behavior of the torque ripple function for one
or two FBs is determined using parametric analysis (incor-
porating an analytical model that allows rapid evaluation
of motor performance). At this juncture a comprehensive
learning particle swarm optimization (CLPSO) algorithm is
applied, and its performance is compared to that of the PSO
algorithm. After performing torque ripple optimization, the
sample of optimal rotors in terms of torque ripple is selected
for average torque optimization, and the best candidate is
designated for construction and laboratory examination.

II. ANALYTICAL COMPUTATION OF TORQUE RIPPLE
The analytical model is based on combination of the MEC
and CM methods, which allows for much faster calculation
of torque ripple when compared to FEA. In this section, the
analytical modeling of SynRM is briefly described; More
details can be found in [17].

In the first step, by disregarding the rotor FBs, the com-
ponents of the air gap magnetic field (formed from the sta-
tor winding) are calculated using CM. Following this, the
potential magnetic drop due to the rotor FBs is calculated
through linearMEC and the radial component of themagnetic
field obtained in the first step. Consequently the possible
reduction, due to the rotor, is applied through virtual currents
in the CM method. The air gap magnetic field is equal to the
resultant of the stator winding magnetic field and the virtual
magnetic field of the FBs. This modeling method makes it
possible to obtain radial and tangential components of the
magnetic field by considering the rotor FBs effect.

The stator of an induction motor is selected to design the
SynRM. One magnetic pole along with a rotor having two
FBs per pole is shown in Fig. 1, and the stator parameters are
tabulated in Table 1.

The rotor polewith the two FBs is shown in Fig. 2. Symbols
1α1 and 1α2 are the angles of the first and second FBs,
and W1 and W2 are the thicknesses of the first and second

FIGURE 1. Cross section of one pole from the motor under study.

TABLE 1. Geometric parameters of the motor.

FIGURE 2. Definition of parameters for flux barriers.

FBs along the q-axis, respectively. Radial air gap magnetic
fields formed by stator windings, FBs, and their sum obtained
through the analytical model are shown in Fig. 3. The FBs
form a virtual magnetic field opposite to the direction of
the magnetic field, formed by the stator winding. Due to
the two-layer FBs, two steps drop is created in the air gap
magnetic field. The total magnetic field of the air gap equals
the resultant of the field of stator winding and the virtual
fields of the FBs.
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FIGURE 3. Radial components of the air gap magnetic field due to the
stator, FBs, and their sum.

FIGURE 4. Tangential components of the air gap magnetic field due to the
stator, FBs, and their sum.

The tangential magnetic fields of the stator winding, the
FBs, and their sum are shown in Fig. 4. Similar to the previ-
ous case, the tangential magnetic field generated by the FBs
is in the opposite direction of the stator field, leading to drops
in the tangential component in the area between the FBs. Due
to the rotation of the flux lines at the location of the end angles
of the FBs, drastic changes in the tangential component of the
air gap magnetic field are observed.

The radial and tangential components of the total air gap
magnetic field, in comparison with the FEA results, are
shown in Figs. 5 and 6 respectively. As observed, there exists
a good agreement between the results obtained by the analyt-
ical method and the FEA.

Variations of the motor torque(with the aforementioned
three steps in the stator slot) and for the rotor of Fig. 2 in
which only the second FB angle is reduced by one degree is
shown in Fig. 7.

In both cases, the results of the analytical model are in good
agreement with that of the FEA. For angles 1α1 = 20.5◦

and 1α2 = 16.1◦, the torque ripple is 30.5%, and for angles
1α1 = 20.5◦ and 1α2 = 15.1◦, the torque ripple increases
to 62.1%. As observed by changing one degree of the sec-
ond FB arc, the torque ripple almost doubles, indicating the
high sensitivity of the torque ripple to the end angles of the

FIGURE 5. Radial air gap magnetic field computed through FEA and
analytically.

FIGURE 6. Tangential air gap magnetic field computed through FEA and
analytically.

FIGURE 7. Electromagnetic Torque computed through FEA and analytical
model.

FBs; consequently, torque ripple optimization is necessary to
determine the optimal angles.

III. PARAMETRIC ANALYSIS
A. ONE FB PER POLE
To assess the impact of the FB angle on torque ripple, in the
rotor with one FB, the FB angle is changed from 15◦ to
45◦ with a step of 0.01◦. The time required to compute the
objective function consisting of 30 points of the torque curve
(using the analytical model in three steps of the stator slot)
sums to about 3.5 seconds using a Core i5-2.6GHz processor.
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FIGURE 8. Torque ripple results for changing the angle of a FB.

FIGURE 9. Torque ripple results for changing the FBs angle.

This suggests that the time required to calculate all cases
(e.g. 3000 times) is about 3 hours. Although it is recom-
mended to avoid choosing a FB per pole for the SynRMdue to
its inferior performance [19], practical information is found
in Fig. 8, where the torque ripple function has many local
optima, with short distances between some local optima.

B. TWO FB PER POLE
To reduce the simulation time for two FBs per pole, a para-
metric analysis is run by reducing the step to 0.1◦ for the angle
of each FB. The angle of the first FB is changed between
0.2 and 0.6 per unit (relative to the half pole pitch), and the
angle of the second FB is changed between 0.1 and 0.5 per
unit, requiring over 30,000 objective function calls. Due to
the 2D space of the parameters, by selecting the 0.01◦ step,
the number of times for which the objective function is called
will be 100 times greater than the case with 0.1◦ step.
The torque ripple function is shown in 2D and 3D illustra-

tions in Figs. 9 and 10, respectively, Similar to the rotor with
one FB, the torque ripple function has multiple local min-
ima; while, the global minimum value is drastically reduced
compared to the rotor with one FB. As observed in Fig. 9, the
difference between some local minima and a global minimum
is negligible; therefore, with different combinations of FB
angles, torque ripple can be reduced to the vicinity of the
global minimum.

FIGURE 10. Torque ripple function for changing two FBs angle.

IV. TORQUE RIPPLE OPTIMIZATION
In the following, PSO and CLPSO algorithms are used for
torque ripple optimization, and their performances are com-
pared. First, these two algorithms are briefly introduced.

A. PSO ALGORITHM
In PSO algorithm, every particle is an answer to the problem,
which moves in the search space based on the best individual
flight experience and the best group flight experience. Each
particle i contains the position (Xdi ), velocity (V d

i ), and its
best individual position (pbestdi ) data. Index d is the particle
dimension. The particles are randomly scattered in the search
space with zero velocity. Each particle moves according to
the laws of velocity (1) and position (2) [20]:

V d
i ← w.V d

i + c1.rand1
d
i .
(
pbestdi − X

d
i

)
+c2.rand2di .(gbest

d
i − X

d
i ) (1)

Xdi ← Xdi + V
d
i (2)

where w, c1, and c2 are the parameters of the algorithm,
named as the weight of inertia, the acceleration coefficient
of the individual, and social components, respectively. The
weight of inertia has a diverse contribution, and the acceler-
ation coefficients seek to converge the algorithm. Symbols
rand1di and rand2di are the two random numbers between
zero and one that determine the probable nature of the algo-
rithm. Symbol pbestdi is the best position of the ith particle,
and gbestd is the best position ever.

B. CLPSO ALGORITHM
All-particle memory information is applied to the CLPSO
algorithm to update the new particle position. This feature
allows for the dispersal of particles and prevents rapid con-
vergence. The velocity equations in CLPSO are modified
as (3) [21].

V d
i ← w ∗ V d

i + c ∗ rand
d
i ∗ (pbest

d
fi(d) − X

d
i ) (3)

where fi = [fi (1) , fi (2) , . . . , fi (D)] determines which par-
ticles’ pbest positions should be applied in the ith particle.
For each particle dimension, a random number is generated;
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FIGURE 11. PSO’s results on torque ripple optimization with one FB.

FIGURE 12. CLPSO’s results on torque ripple optimization with one FB.

if less than Pc, the pbest of the particle itself is selected for
the proper dimension, otherwise, the pbest of other particles
is selected based on the tournament selection. The differences
between PSO and CLPSO algorithms are [21]:

1. Instead of applying a particle’s pbest and gbest as
the exemplars, all particles’ pbest can potentially be
applied as the exemplars to guide a particle’s flying
direction.

2. Instead of applying all the dimensions of an exemplar,
each particle dimension can take its new position from
the dimension of different particles.

3. Instead of learning from the two pbest and gbest exem-
plars in each generation, each particle can use only
one exemplar in a limited number of repetitions for
learning.

The performance of CLPSO algorithm with eight different
types of PSO algorithms in optimization for different objec-
tive functions is assessed in [21]; in most multimodal cases,
CLPSO outperforms PSO variants.

C. ONE AND TWO FB PER POLE
The objective function is to minimize torque ripple. The
optimization constraints for FBs are similar to that of the
parametric analysis mode. Like the previous case, 30 points
of the torque curve in three stator slot steps are considered to
evaluate the torque ripple. The initial population is generated
randomly. The number of function evaluations for the rotor

FIGURE 13. PSO’s results on torque ripple optimization with two FBs.

FIGURE 14. CLPSO’s results on torque ripple optimization with two FBs.

with one and two FBs per pole is selected to be 300 and
3000 times, respectively. This is almost ten times less than
the number of calls in the parametric analysis with fixed-
step. For better comparison, the parameters of both algo-
rithms are selected to be the same. The results of torque
ripple optimization with a FB by PSO and CLPSO algorithms
in the background of the parametric analysis are shown in
Figs. 11 and 12, respectively.

The optimization results indicate that in PSO algorithm
most of the particles are gathered around the globalminimum,
while in CLPSO algorithm, the same particles are subject to
higher dispersion, thus, they can be found at all local min-
ima’s. Both algorithms with similar accuracy have reached
the global minimum solution, at 53.45%, obtained through
the parametric analysis with a 0.01◦ step. The average of the
solutions in the PSO is 19.15% less than that of the CLPSO.

The results of torque ripple optimization with two FBs per
pole obtained through PSO and CLPSO algorithms are shown
in Figs. 13 and 14, respectively.

By comparing the results observed in Figs. 13 and 14,
both algorithms have reached the global minimum obtained
through the parametric analysis (with slightly higher accu-
racy). The optimization results obtained through PSO algo-
rithm have one local minimum for the first FB and two local
minima for the second FB, which have a ripple value of
less than 20%; while the same through CLPSO algorithm
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TABLE 2. Optimization constraints.

FIGURE 15. CLPSO’s results on torque ripple optimization with three FBs.

for both FBs reveals three local minima of less than 20%.
Particle diversity in the CLPSO algorithm is higher than that
of the PSO algorithm, with more local optimal solutions. The
high convergence of the PSO algorithm necessitates repetitive
executions to find more local optima.

D. THREE AND FOUR FB PER POLE
As the number of FBs increases, sensitivity analysis, even
with a 0.1◦ step for the angle of each FB, leads to an intensive
computational time. Though the analytical model is faster
than FEA, here, to limit the execution time to an acceptable
level, optimization algorithms must be applied. Because in
rotors with one and two FBs per pole, CLPSO outperforms
the PSO algorithm, it is applied to optimize the rotors with
three and four FBs per pole. Theoretically, there is no limit to
the number of FBs, but in small motors, to reduce the shear
level and maintain the mechanical strength of the rotor, the
number of FBs usually does not exceed four for each pole.

The constraints of parameters are tabulated in Table 2. The
first FB can be changed between 0.2 and 0.6 per unit, and the
rest can be changed from 0.1 to 0.5 per unit. During initial-
ization, the random production of all the particles continues
until satisfying the constraints. During iterations, to keep
the particles in the feasible space, the objective function is
computed for the particles, and the pbest and gbest values are
updated only if the particle is in the feasible space. Because
all particles are in the feasible space, the particle eventually
returns to the feasible region.

The optimization results for the rotor with three and four
FBs per pole are shown in Figs. 15 and 16, respectively. As the
FBs number increases, the global optimum torque ripple, and
the average of the total solutions decreases.

FIGURE 16. CLPSO’s results on torque ripple optimization with four FBs.

FIGURE 17. Definition of rotor parameters and q-axis MMF distribution.

Because the optimal rotors with four ripple FBs per pole
are of less torque ripple compared to others, few samples are
selected, based on suitability for manufacturing, to determine
the FBs’ thickness and further assessments.

V. AVERAGE TORQUE OPTIMIZATION
The FBs’ thickness is an effective parameter in the average
torque with a slight impact on the torque ripple; therefore,
by changing this thickness, the optimal average torque value
can be obtained. In assessing the FBs’ thickness effect on
average torque, the application of a parameter named insu-
lation ratio has been common [9], [22], [23]. The insulation
ratio (kins) is defined as the total FBs’ thickness along the
q-axis to the rotor thickness ratio obtained through (4) [24]:

kins =

∑Nb
i Wi

Rr − Rsh
(4)

where, Wi is the thickness of the ith FB along the q-axis, Nb
is the number of the FBs, Rr is the rotor radius, and Rsh is
the shaft radius. Selecting any value for kins gives the total
thickness of the FBs, but does not determine the thickness of
each FB.

The thickness of each FB should be adjusted to reduce the
q-axis flux at its highest. A pole of the synchronous reluctance
rotor and the principal component of the q-axis magnetomo-
tive force (MMF) distribution is shown in Fig. 17. Themethod
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FIGURE 18. Selected optimal rotors a(A), b(B), c(C), and d(D).

applied below is based on the results given in [22]. It has been
proven that if (5) is established between the thickness of the
FBs, the inductance (flux) of the q-axis will be minimal.

Wi

Wj
=
1Fq,i
1Fq,j

√
li
lj
≈
1Fq,i
1Fq,j

√
αi

αj
(5)

where, li is the length of the ith FB. Symbol 1Fq,i denotes
the difference in the average per-uint of the MMF (Favg,i) in
the ith FB, calculated through (6).

Favg,i =
1

αi − αi−1

∫ αi

αi−1

Fq cos (pα) dα, 1 ≤ i ≤ Nb

1Fq,i = Favg,i − Favg,i+1 1≤ i ≤ Nb−1
1Fq,Nb = Favg,Nb i = Nb

(6)

By determining the insulation ratio and the FBs’ width
ratio, it is easy to obtain each FB’s width. By selecting
the optimal points for the FB angles, location of FBs are
restricted.

Four of the optimal rotor solutions in torque ripple, with
four FBs per pole, named A, B, C, and D, are selected to
determine FBs’ width. The rotors with an insulation ratio of
0.4 are shown in Fig. 18. The flux line pattern is selected for
FBs’ shape to achieve the maximum torque.

The results of changing the insulation ratio on the aver-
age torque and peak-to-peak torque ripple of the motors are
shown in Figs. 19 and 20, respectively. The motors’ torque
is obtained at the current angle that produces the maxi-
mum torque. The FEA (using M400 magnetization curve) is
applied for evaluation.

FIGURE 19. Effect of increasing insulation ratio on average torque.

FIGURE 20. Effect of increasing insulation ratio on torque ripple.

TABLE 3. Torque ripple computation using analytical and FEA methods.

As shown in Fig. 19 the behavior of the four motors is
similar. An increase in the insulation ratio increases the the
average torque, because as the FBs’ thickness increases, the
inductance of the q-axis decreases, while there is still enough
iron to cross the d-axis flux.When the insulation ratio reaches
0.4, the maximum average torque is obtained for all four
motors. By increasing the insulation ratio from 0.4, the effect
of iron saturation reduces the d-axis’ flux and decreases the
average torque.

Between the 0.25 to 0.4 insulation ratios, the peak-to-peak
torque of the four motors is almost constant. Furthermore,
increase in insulation ratio increases the peak-to-peak torque
due to the nonlinear effects of the saturation curve. The com-
parison of torque ripple calculation with the analytical model
and FEA for optimal motors with insulation ratio of 0.4 is
listed in Table 3. There exists a good agreement between the
results of the two methods, and the maximum error of torque
ripple is 1.31%. The Motor-C is selected for construction
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FIGURE 21. (a) Single lamination of the rotor. (b) Rotor stack with
embedded shaft.

FIGURE 22. Test bench.

because of its superiority in terms of average torque and
torque ripple.

VI. EXPERIMENTAL RESULTS
The M400-50A magnetic sheet is used in manufacturing of
the rotor. The laminations are cut by the electric discharge
machining method. In Fig. 21 (a), a sample of the rotor
lamination, and (b) the rotor stack without any skew, with a
dummy shaft are illustrated. The rotor ribs are tangential only,
with 0.4 mm thickness. The test bench is shown in Fig. 22.
A DSP board controls the motor, and current vector control is
applied to drive it. The maximum torque per ampere (MTPA)
control strategy is applied at each torque level.

A. MEASURED AND SIMULATED TORQUE
The test motor is rotated at a low speed (10 rpm) to confirm
the motor torque ripple behavior. Two current levels of 2.3A
at 60◦ and 1.5A at 50◦ are considered for comparison. For
each combination of d and q-axis currents in a complete
rotor rotation, the torque waveform is recorded with a torque
transducer. The measurement and the simulation torque at
two levels of rated and half-rated values are shown in Fig. 23.
Themeasured values of torque are in good agreement with the
simulation values. As expected, there exists a direct relation
between the torque ripple and current.

B. EFFICIENCY
Full-load and no-load tests are run on the prototype motor.
The results of FEA simulation and laboratory tests are

FIGURE 23. Torque waveform in rated and half rated values.

TABLE 4. Performance of the motor under rated condition.

tabulated in Table 4. There exists a good agreement between
the simulation and laboratory results. Motor efficiency is
85.71%, which reaches the IE4 class.

VII. CONCLUSION
The performance of PSO and CLPSO algorithms, appropriate
for solving unimodal and multimodal problems, are com-
pared for the optimization of the torque ripple of a SynRM
using an analytical model to determine which algorithm
is more appropriate for machine optimization. The results
indicate that both algorithms yield the same global optimal
solution, while the CLPSO algorithm finds more local optima
than the PSO algorithm.

The analytical model offers a good accuracy in the linear
region of the magnetization curve, however, its accuracy
declines as magnetic saturation increases. The behavior of
torque ripple function for SynRM with one and two FBs is
determined through the analytical model. By changing the
angle of the FBs, the torque ripple function reveals many
local optima, the value of which is not very different from
the global optimal. The accuracy of the optimal solutions
is evident through FEA, and one of the optimal rotors is
selected for construction. The laboratory tests and FEA show
the computational efficiency of the optimization method.

In most electric machine design problems, the shape of
the objective function is unknown, consequently, it is rec-
ommended to apply an optimization algorithm capable of
solving multimodal problems. Because algorithms applied in
solving multimodal problems can solve unimodal problems
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as well, by applying multimodal optimization algorithms,
important information on some local optima becomes is lost.
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