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ABSTRACT This paper describes a new non-rigid approach to register images from same- and cross-imaging
modalities such as magnetic resonance imaging, computed tomography, and 3D rotational angiography. The
deformation is a key challenge in medical image registration. We have proposed a diffeomorphism-based
method to tackle this problem using an optimized framework. A non stationary velocity field is used to
minimize the effect of forces that are derived from the image gradients. Furthermore, we propose a similarity
energy function, based on the gray scale distribution, to limit the fluctuations while approaching the local
minima. The proposed method is evaluated on both private and public datasets; the results show that the
values of mean square error (MSE), normalized cross-correlation (NCC), structural similarity (SS), mutual
information (MI), feature similarity index (FSIM), and mean absolute error (MAE) are 1.3136, 0.9962,
0.9897, 0.883, 0.9922, and 1.52 ± 2.09, respectively. Both qualitative and quantitative evaluation show
promising registration accuracy reflecting the potential of the proposed method.

INDEX TERMS Image registration, diffeomorphism, MRI, CT.

I. INTRODUCTION
There are different types of imaging modalities such as
computed tomography (CT), ultrasound imaging (US), three
dimensional rotational angiography (3DRA), and magnetic
resonance imaging (MRI) that have been used by the
clinicians to diagnose, plan and treat the health issue [1], [2].
The patient’s real world coordinate must be registered with
this data to keep both data and patient in the same perspective;
this helps the clinicians to quickly and appropriately plan. The
image registration finds the optimal transformation that best
aligns the structures of interest in the input images.

A. CLINICAL USES OF MULTI-MODAL REGISTRATION AND
CHALLENGES
Multi-modal registration is important in medical imag-
ing, remote sensing, and cross-modal learning (Fig. 1).
Specifically, the deformable registration of MRI and CT
images finds clinically relevant applications that include
treatment planning, computer-aided diagnosis, multimodal
diagnostics, surgery simulation [3], radiotherapy [4],
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image-guided interventions, assisted/guided surgery [5],
and disease follow-up. In interventional radiology, the
pre-operative CT can be registered with intra-operative US
images for hepatobiliary procedures to better visualize the
lesions spread across the liver. Same-modal registration is
complicated due to motion or disease progression, whereas
multi-modal fusion is further challenging mainly due to:
1- non-functional intensity mapping across MRI and CT,
2- locally varying contrast patterns along with others.

B. RELATED WORK
A number of multimodal medical image registration method-
ologies have been reported over the years [6]- [14].
Turco et al. [15] present the impact of positron emission
tomography (PET)/CT attenuation correction on the regis-
tration between cardiac PET and a CT image. It is found
that blurring introduced by the heart beating has negligible
effect on the registration, however, the noise has adverse
impact on the registration outcome. Pilutti et al. [16] pro-
pose a Non-Parametric Bayesian Registration that assumes
model for the effect of distortions caused by heartbeat and
peristalsis; here, a Gaussian filtering is applied for spatial
regularization towards deriving the MR image registration.
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FIGURE 1. Visualizing the liver anatomy and illustrating multi-modal (CT and MR) image registration to identify a
tumour.

Wang et al. propose a model-to-surface MR/US registration
with the help of statistical deformable model and finite ele-
ment analysis to establish the surface-point correspondence.
Samei et al. [17] present a finite element-based registration
method of 3D to 2.5D transrectal US images, where the
method relies on the outcome of an intermediate step to
extract arbitrary slices from a 3D image. Cao et al. [18]
propose a region-adaptive CT/MRI registration method with
the help of multi-target regression forest to deal with the
large appearance gaps. Zhou et al. [20] present a framework
based on correlation-weighted sparse representation in order
to separate the contrast agent from the input dynamic
contrast-enhanced (DCE)-MR images allowing the motion
components to be effectively registered. Xu et al. [19] present
a method for MR/CT registration that co-registers pre-
operative MR image with intra-operative binary CT image
using a rigid approach to make it faster; subsequently, non-
rigid approach is used to correct tiny misalignments.

In recent years, machine learning (ML) and deep learn-
ing (DL) have vigorously gained traction in medical image
registration. Huang et al. [21] present an unsupervised
learning-based framework, where the network consists of
affine and deformable transformations. Hansen et al. [22]
propose a sparse key point-based geometric network that
leverages discrete dense displacement maps facilitating the
registration process. Grim et al. [23] present a method that
first trains a neural network to detect a set of anatomical
landmarks, then, the combination of landmark locations and
network is used in computing the initializations to incorporate
the confidence of the network to detect the landmarks.
Yu et al. [24] present an unsupervised network based on a
metabolic constraint function and a multi-domain similarity
measure towards determining PET/CT registration that uses
standard uptake value (SUV) distribution of hypermetabolic
regions of the human organs or region of interest (ROI).
Fechter and Baltas [25] employ a method that combines
U-Net with a coarse-to-fine approach and a differential spatial
transformer module to estimate deformable image registra-
tion. Guan et al. [26] present a multi-channel convolutional
neural network that combines a periodic vascular diameter
variationmodel with the convolutional neural network (CNN)
registering digital subtraction angiography images with their
3D models. Thus, the literature shows that the research

fraternity has shown more inclination towards these ML/DL-
based methods, however, there have been several limitations
that still remain unanswered: Deep learning (DL)-based
methods, specifically neural networks for medical image
registration, have received attention due to their end-to-
end nature and state-of-the-art performance. However, neural
networks face several challenges that are not present in
the conventional methods [45]. In a clinical setting, these
variations are expected in the data due to multiple machines
with several acquisition parameters that can cause the data
distribution to change. One technical limitation for training
the neural networks is due to the limited quantity of clinical
data, resulting in overfitting (i.e., poor generalizability).
Additionally, the training procedure of the neural networks
does not provide any convergence guarantees. Other technical
challenges include the black-box nature of deep learning-
based approaches, which downplays the reliability of the
neural networks in clinically sensitive settings [46].

We realize the above mentioned issues, especially, the
shortage of clinical data and thus decided to focus on
the conventional methods. Yipeng et al. [27] present a
method for generating a subject-specific statistical shape
model capturing the prostate deformation. Li et al. [28]
introduce an objective function for similarity measurement
that embeds the local phase features derived from monogenic
signal in the modality independent neighborhood descriptor
based on autocorrelation of local structure. Pai et al. [30]
propose a multi-scale, multi-kernel shape, compactly sup-
ported kernel bundle framework for stationary velocity
field-based image registration. Jarrod et al. [32] describe
a human-to-phantom validation framework that transforms
the surface collection patterns from in − vivo image-
guided liver surgery procedures onto a well-characterized
hepatic deformation phantom for validating surface-driven
nonrigid registration. Sun et al. [33] use lower-order B-spline
functions for registration, while preserving smoothness of
the deformation. Chakraborty et al. [36] propose a 2D
myocardial deformation imaging to develop a nonrigid image
registration motion estimator adapted to radio frequency (RF)
data sets. Darkner et al. [37] present collocation for
diffeomorphic deformations as a numerical solution to
diffeomorphic image registration using an implicit A-stable
collocation method. Qin et al. [40] combine two separate
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methods: 1- a superpixel-based structure scale estimator to
estimate the boundary-aware structure scale of each reference
structure, 2- an edge-aware mismatch scale measuring the
mismatch degree of the edge structures to be matched
in the images. Sureerat et al. [31] present a symmetric
diffeomorphic deformable registration algorithm incorporat-
ing a modality-independent neighborhood descriptor and a
Huber metric for MR/CT registration. Zhang et al. [41] use
local-phase mean and phase-congruency values of different
orientations, to improve the robustness and accuracy using
filter-bank of Log-Gabor filters at different orientations and
frequencies. Yang et al. [42] use an adaptive weighted
objective function that formulates the alignment of two point
sets as a mixture model estimation problem.

Despite having rich literature, the problems are many
and they still remain: 1) different physical acquisition pro-
cesses may generate statistical correlation between imaging
structures that do not correspond to the same anatomical
structures, violating one of the underlying assumptions for
most intensity-based similarity measures, and 2) the deforma-
tion, spatial and temporal variabilities. The ability to capture
the complex image deformations and establish accurate
point-wise correspondence is key to many computer vision
applications that involve image registration and atlas con-
struction. These properties become particularly challenging,
when the object depicted on the images undergoes a severe
deformation or has a high shape variability. Dissimilarities
can occur due to inter- and intra-fractional anatomical varia-
tions from the pre-operative image set, i.e. variations between
different treatment sessions and during single treatment
sessions, respectively. Furthermore, the imaging data is taken
from different imaging devices (multi-modality) and may
be taken within different time frames (multi-temporality).
Deformable registration has a significantly greater number
of degrees of freedom (DOF) to manage the aforementioned
local distortions between anatomical structures. Interestingly,
diffeomorphismmethods [30], [31], [37], [41] register images
slowly warp images until a satisfying overlap is attained;
this method is particularly capable of preventing an invalid
folding of the deformation field and guarantees a smooth one-
to-one mapping between points. However, these registration
methods have been domain specific and parameter sensitive.
The update scheme relies on forces derived from the
image gradients (even though partially) and is therefore
fundamentally limited by the local scope. Therefore, we have
proposed a new diffeomorphism-based method that designs a
similarity energy function overcoming these problems.

The rest of the paper is organized as follows: Section II
describes the clinical data used and the proposed method,
Section III includes the results obtained by the method.
Finally, Section V concludes the paper.

II. DATA AND METHODOLOGY
A. DATA
We have used both private (Hamad Medical Corporation)
and publicly available datasets. The data that have been

obtained from Hamad Medical Corporation have the follow-
ing description: each dataset consists of 700 slices acquired
along the long axes of the subjects. The average slice
thickness, pixel spacing, and matrix size are 0.29 mm,
0.29mm×0.29mm, and 512×512, respectively. In the public
dataset [43], and [44], a single inversion pulse is followed
by a 400 ms delay time. As a result magnetization-prepared
180 degrees radio-frequency pulses and rapid gradient-echo
(MP-RAGE) images are T1-weighted. The excitation pulse
has a 10 degree flip angle, echo time (TE) is 4 ms, and TR is
10 ms. The resolution is 128 × 256×256. The ground truth
data were provided by the respective organizations.

B. METHODOLOGY
Generally, an image registration aims at determining the spa-
tial correspondence of two or more image sets for minimizing
their differences. Let us consider two image sets: a static,Fxd ,
and a dynamic/moving, Mvg; image registration algorithms
try to find the optimal transform minimizing the difference
between Fxd and Mvg. Such algorithms can be rigid or
deformable. For rigid image registration, the translation and
rotation of all image pixels is uniform, such that all pixel-to-
pixel relationships within the image set remain equal before
and after the transformation. For deformable registration
(also called non-rigid), those pixel-to-pixel relationships
change, i.e., while two image sets are aligned on the same
reference coordinate, a pixel in each image set on the same
coordinatemay not necessarily represent the same anatomical
structure. Therefore, deformable image registration can
account for local distortions, occurring since organs and
tissues are non-rigid structures and subject to deformation.
In our method, we use the nearest-neighbor searches
establishing the global correspondences between the images;
the spectral forces capture the substantial deformations. This
is a diffeomorphism-based method that uses an optimized
framework venturing the global scope and the speed of
nearest-neighbor search to limit/capture the deformations.
The theory of Lie groups states that a diffeomorphic
transformation φ resides in a Lie structure [37]. Furthermore,
φ is associated with velocity field by, φ = ev. However,
in case of stationary velocity fields, φ = ev [29], where
v is the velocity field and φ is the diffeomorphism. In this
work, we perform feature matching followed by the spectral
representations. Section II-B1 describes the similarity metric
used for symmetric registration, Section II-B2 discusses the
velocity field inducing diffeomorphic mapping. The working
flow-chart of the method is provided in Fig. 2.

1) SIMILARITY METRIC FOR SYMMETRIC REGISTRATION
Intensity-based measures are divided into statistical mea-
sures, information theoretic measures, and measures that
consider the dependency of neighboring pixels [34], [35],
[38]. Pearson correlation coefficient, Spearman correla-
tion coefficient, mean square differences, and Hellinger
distance are some of the statistical measures. Similarly,
there are other methods in information theoretic measures
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FIGURE 2. The block diagram of the proposed methodology highlighting the key stages of the registration process.

such as mutual information, entropy correlation coefficient,
and Kullback-Leibler distance. Furthermore, there are also
approaches in spatial dependency measures such as second
order mutual information, gradient mutual information, etc.
The registration is sort of a matching, where the feature
vectors Fxd and Mvg are matched via the correspondence
map. The feature vectors include the image intensity and
spatial information: Fxd = (αiIFxd , αsxFxd ) and Mvg =(
αiIMvg, αsxMvg

)
, where I (.) is a pixel intensity and x(.) =

(x, y) is a point coordinate, both weighted with parameters
αi,s. Since we only consider diffeomorphic deformations,
in such deformation, the inverse of a mapping exists and
is continuously differentiable, that means ‖x − (ψ ◦ φ)‖ ≈
0 and ψ = φ−1 such that Id = ψ ◦ φ, where φ is the
transformation mapping the points fromMvg to Fxd and φ is
that from Fxd to Mvg. It may be noted that ◦ denotes the the
composition of functions. In this work, we intend to register
two images (Fxd ,Mvg) either from same modality, where the
images have been acquired at different time instants or from
different modalities; Fxd,Mvg : �→ 0, where � ⊆ RN is
the image domain and 0 ⊆ R is the value domain. The aim
is to seek a bijective mapping φ : �→ � such that Fxd ◦ φ
improves the similarity to Mvg and Mvg ◦ φ−1 improves
similarity to Fxd under the similarity metric or function:

En (φ) = Sim (Fxd,Mvg ◦ φ)

=
1
2
‖Fxd−Mvg ◦ φ‖2 +

1
λφ
Reg (φ)

=
1

2 |�P|

∑
P∈�P

|Fxd (p)−Mvg (φ (p))|

+
1
λφ
Reg (φ) (1)

where p, ◦, Reg, λφ , �, represent the mapping of pixel,
transformation operator, regularization term, regularization
parameter, and common region of two input images Fxd
and Mvg after registration, respectively [50]; λφ =

αi
2

αs2
and

Reg (φ) =
∥∥xFxd − xMvg◦φ∥∥.

In order to minimize, a hidden variable is introduced
that considers the regularization criterion as a prior on the
smoothness of the transformation φ. Instead of requiring the
point correspondences between the image pixels (a vector
field l) to be the exact of the transformation, some error
is introduced at each image point. Thus, we introduce a
non-ruled spatial transform parameter l, that makes the new

symmetric function as:

En (l, φ) = ‖(Fxd−Mvg ◦ l)‖2

+
1

λun
2Dist(l, φ)

2
+

1
λφ
Reg (φ) (2)

where Dist (l, φ) = ‖l − φ‖, λ2un represent uncertainty
degree between l and φ, respectively. The displacement field
u is produced using the space geometric transform, and two
vectors are added directly to form a new vector. The energy
functional then becomes:

En (u) =
1
2
‖Fxd−Mvg ◦ (φ + u)‖2 +

1

λun
2 ‖u‖

2 (3)

where ‖u‖ = ‖l − φ‖. The energy function depends on
two fields, l and φ, thus it is minimized with respect
to l and φ. We first start with φ0 = Id at itera-
tion 0; then iteratively at iteration=n, 1) we find ln by
minimizing 1

2‖Fxd−Mvg ◦ (l)‖
2
+

1
λun

2 ‖ln − φn−1‖
2 using

gradient descent method [58], 2) we find φn, minimizing
1
2‖Fxd−Mvg ◦ (l)‖

2
+

1
λun

2 ‖ln − φn‖
2 using single con-

volution [59]. After minimizing the energy function and
solving the displacement field, the final displacement field
is obtained. Diffeomorphic transform or space ensures
reversible, smooth deformation and topologically invariant
deformation.

2) VELOCITY FIELD INDUCING DIFFEOMORPHIC MAPPING
Since there is deformation, we consider a non-stationary
velocity field (nSVF), where the initial velocity (or equiv-
alently the momentum map) is different at different time
points along a geodesic [49]. In this case, for more than
two time points, it is necessary to choose a time point
for the subject-specific template, and this time point is
generally the average (or median) of the observed time points.
The momentum maps (from the template to all the time
points) can then be compared in the template reference space
only. Diffeomorphic transform is the exponential map of
nSVF, v, and it is a time independent vector that induces
diffeomorphic mapping φ. Let us consider pairs of points
in the image domain x0, xt ∈ �, t ∈ R+, such that
xt = φt (x0). Here φ is parametrized by time t as dx

dt =

v (x) , x (0) = x0, φt (x0) = xt . The vector field is
found as ∂φt (x)

∂t = v (x). The inverse mapping is found by
integrating −v, i.e. for y0, yt ∈ �,

dy
dt = −v (y) , y (0) =

y0, ψt (y0) = yt . We suppose that the two input images are
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Algorithm 1 Diffeomorphic Registration

Require: A static image, Fxd , and a moving image,Mvg, such that �→ 0, where � ⊆ RN , 0 ⊆ R
Ensure: Determine the optimal transform T(x) minimizing the difference between Fxd and Mvg
1: Seek a bijective mapping φ : �→ �: Fxd ◦ φ to improve the similarity with Mvg and Mvg ◦ φ−1 improves similarity to
Fxd under En (φ), φ being the diffeomorphic mapping

2: The displacement field, u, is initialized
3: A new symmetric function, En (l, φ) is calculated using spatial transform parameter l
4: The energy functional in the displacement field, En (u), is calculated
5: Parametrize the spectral features φ by time, t , as dx

dt = v (x) , x (0) = x0, φt (x0) = xt
6: The driving force is calculated and the velocity field is updated
7: The updates in the velocity field during registering process are computed with spectral correspondence
8: The deformation field is regulated
9: Exponential mapping of deformation is obtained by diffeomorphic transform

10: Similarity measurement function En is calculated and it is solved to judge the convergence
11: Pairwise registration is performed

TABLE 1. Comparative performance of CT/CT registration with other techniques.

affine registered using conditional mutual information [48],
i.e. C (Fxd ◦ φ,Mvg)+ C

(
Mvg ◦ φ−1,Fxd

)
.

The optimal registration is found by minimizing (2)
accommodating the conditional mutual information (C) with
respect to deformation.

∂En
∂φ
=
∂C
∂u

∣∣∣∣
u=Fxd◦φ

∂Fxd
∂x

∣∣∣∣
x=φ
+
∂Reg
∂ζ

∣∣∣∣
ζ=φ

+

(
∂C
∂u

∣∣∣∣
u=Mvg◦φ−1

∂Mvg
∂x

∣∣∣∣
x=φ−1

+
∂Reg
∂ζ

∣∣∣∣
ζ=φ−1

)
∂φ−1

∂φ

The numerical approximate is xt = φ (xt−1) +
f (v, xt−1,1t). The convergence condition is continuously
monitored until E(n)−E(n−1) < threshold . For this, we use
mid-point rule:

En (φ) ≈ 1φEn (φ1)+1φEn (φ2)

+1φEn (φ3)+ . . .+1φEn (φn) (4)

where φi are the diffeomorphisms and i = 1 . . . n.

3) SUMMARY OF THE PROPOSED METHOD
The key steps in the algorithm are summarized below (in
Algorithm 1): The steps after 2 are iterative in nature and it

may be noted that the updates convergence rate is a measure
that defines the efficacy of a diffeomorphic registration
method; the denser is the convergence the faster is the
registration.

III. RESULTS
The proposed method is tested on the datasets obtained from
Hamad Medical Corporation in Qatar, [43], and [44]. The
data include brain aneurysm 3DRA data, brain tumorMR/CT
data, and liverMR/CT data [47].We have tested the algorithm
on the images from same modality and cross-modalities as
well. The results of registration processes are provided in
Fig. 3, 4, 5, and 7. It may be observed that the proposed
method has updates (indicated with the arrows) have faster
convergence indicating a global scope.

Fig. 3 provides the results when tested on brain aneurysm
images. The reference image includes the aneurysm vessels
that appear gradually, when the contrast agent is injected
in the cerebral vessels, therefore, the two images are
at different time instants. Similar is the case in Fig. 4.
Fig. 5 and 6 provide results when tested on cross modalities,
CT and MR. Fig. 7 provides the results of brain MR
images but with deformations on moving image. We too
have measured the similarities in terms of accuracy and
variances as provided in Fig. 8. The algorithm has been
implemented on MATLAB R2017b running on a workstation
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FIGURE 3. Same modal registration. (a) Moving 3DRA image with all cerebral vessels. (b) Reference 3DRA image with
cerebral aneurysm after injecting contrast agent. (c) Registered image. (d) Deformation field image. (e) Updates in the
velocity field during registering process. (f) Difference image.

FIGURE 4. Same modal registration. (a, d) Reference brain MR image. (b, e) Moving brain MR image. (c, f) Registered
image.
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FIGURE 5. Multi-modal registration. (a) Moving brain CT image. (b) Reference brain MR image with tumor. (c) Registered
image. (d) Deformation field image. (e) Updates in the velocity field during registering process. (f) Difference image.

FIGURE 6. Mulit-modal registration. (a) Moving liver CT image. (b) Reference liver MR image with tumor. (c) Registered
image. (d) Deformation field image. (e) Updates in the velocity field during registering process. (f) Difference image.
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TABLE 2. Comparative performance of 3DRA/3DRA registration with other techniques.

FIGURE 7. Deformable same-modal image registration. (a) Reference brain MR image. (b) Moving brain MR image with
missing information. (c) Registered image. (d-f) Updates in the velocity field during registering process.

FIGURE 8. Similarity measurements. (a) Maximum accuracies. (b) Variances. (c) Mean classification accuracies.
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TABLE 3. Comparative performance of MR/MR registration with other techniques.

TABLE 4. Comparative performance of CT/MR registration with other techniques.

TABLE 5. Comparative performance of registration accuracy with DL-based techniques.

with 16 GB RAM and 2.8 GHz Intel processor; the average
time to perform registration on a data with approximately
80 slices is little more than 1 minute that is quite rea-
sonable from clinical perspective. We have also validated
the method quantitatively. We have compared our method
with various other diffeomorphic and non-diffeomorphic
methods such as [31], [32], [39], [38], [40], and [65], using
some popular measures such as mean square error (MSE),
normalized cross-correlation (NCC), structural similarity
(SS), mutual information (MI), feature similarity index
(FSIM), and mean absolute error (MSE) [51]. The results of
CT/CT, 3DRA/3DRA, MR/MR, and CT/MR are provided in
Table 1, 2, 3, and 4, respectively. The values of MSE, NCC,
SS,MI, FSIM, andMAE are found as 1.3136, 0.9962, 0.9897,
0.883, 0. 9922, and 1.52 ± 2.09, respectively in CT/CT
registration; for 3DRA/3DRA registration, the measures are
found as: 1.3231, 0.9820, 0.9779, 0.872, 0. 9813, and 1.54±
2.10, respectively; for MR/MR registration, they are 1.7893,
0.9511, 0.9501, 0.843, 0. 9633, and 1.60± 2.05, respectively;
for CT/MR registration, the measures are: 1.9895, 0.9399,
0.9287, 0.812, 0. 9335, 1.80 ± 1.95, respectively. Thus,
both the qualitative and quantitative results indicate that
the proposed method is quite promising. Additionally,
we have compared (in Table 5) the proposed method with

some popular DL-based methods, including Voxel-Morph
(VM) [66], LT-Net [65], and Symmetric Normalization
(SyN) [34]. We have selected these methods because they
have been regularly preferred by the research fraternity for
comparison purpose. Among these, Voxel-Morph is probably
the most famous methods in recent years. The results show
that the proposed method fairly performs as compared
to the DL-based methods although the margin is not
significant.

IV. DISCUSSION
From the Table 1, 2, 3, and 4, this can well be observed that
the registration performance on CT/CT registration is the best
among the other imaging modalities. The energy function
plays an important role in this registration process. Therefore,
we have investigated the effect of l after its introduction in (2)
by subtracting (1) from (2),

En (l, φ)− En (φ)

= [‖(Fxd−Mvg ◦ l)‖2 +
1

λun
2Disc(l, φ)

2]

−[
1

2 |�P|

∑
P∈�P

|Fxd (p)−Mvg (φ (p))|] (5)
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FIGURE 9. (a) Energy difference, (5). (b) Energy functional defined in (3). (c) All the energy functionals.

In order to have a decent comparison, we have plotted
the difference of the two energy functionalities and their
difference (5). Also, we have plotted the energy functionality
defined in (3) and the difference to assess them fairly. All
of these figures are provided in Fig. 9. We have found that
the energy function defined in (3) converges appropriately
reflecting its significance in image registration.

V. CONCLUSION
In this paper, we have presented a non-rigid registration
method that is based on diffeomorphic mapping. The results
are promising with respect to large or small deformations;
furthermore, it is not domain specific. The image gradients
have little or no effect on the registration outputs. In future,
we intend to test this method on large cross-modal platform
with very large deformations.

APPENDIX
REGISTRATION EVALUATION MEASURES
In this section, some of the measures that evaluate the
proposed registration method are included.

A. MUTUAL INFORMATION
Mutual information (MI) is defined as [52]:

MI (X ,Y ) = IE (X)+ IE (Y )− IE (X ,Y ) (6)

where IE (X) and IE (Y ) denote the information entropy of
reference image X and float image Y , respectively. IE (X ,Y )
is the joint entropy of the two images.

B. MEAN ABSOLUTE ERROR (MAE)
The mean absolute error is calculated over the neighborhood
of the landmarks. The MAE of the real registration error RRi
and the estimated one R̂Ri is calculated by [53]:

MAE =
1
N

N∑
i=1

∣∣R̂Ri − RRi∣∣ (7)

where N is total number of pixels.

C. FEATURE SIMILARITY INDEX
The feature similarity index (FSIM) is a similarity measure
between two images X and Y is calculated as [55]:

FSIM =

∑
x∈� SL (x) .PCm (x)∑

x∈� PCm (x)
(8)

� means the whole image spatial domain. Here SL (x)
determines the similarity between X (x) and Y (x). The
maximum phase congruence PCm (x) weighs the importance
of SL (x).
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