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ABSTRACT With the increasing maturity of artificial intelligence (AI) technology, business automation
technology has also become a trend. Particularly, network operation and maintenance (Os&M) is expected
to soon become automated and more efficient. However, the automation of O&M is hindered by the lack
of network failure data and the cost of collecting data. We thus propose an approach to build a low-cost
environment that can produce the same data as the actual production environment and use tools such as
chaos engineering to generate training models for fault data. This paper attempts to build the underlying
physical network layer using a low-cost single-board computer Raspberry Pi instead of an expensive PC
server, while keeping the virtual network layer the same and performing fault simulation, data collection,
and Al model training on the constructed virtual network layer. A comparison of the accuracy of the trained
Al models verifies the feasibility of replacing the traditional PC server with an inexpensive Raspberry
Pi device while keeping the structure and services of the virtual network layer unchanged. Also, a brief
comparison with existing techniques is discussed. Our proposed approach solves the problem of insufficient
data for Al training while reducing cost and risk.

INDEX TERMS Single-board computers, Raspberry Pi, low cost, network fault, chaos engineering,

insufficient data, operation and maintenance.

I. INTRODUCTION

With the rapid development in artificial intelligence (Al)
technology, automation is also being used in more areas [1]
such as robotic process automation and cyber defense [2].
With the widespread application of Al, the problem of
insufficient Al training data has gradually emerged [3].
However, the issue of insufficient training data is undeniable
in network operation and maintenance (O&M).

Especially AI, like network fault detection, usually
requires many different types of fault data for model
training [4], [17]. However, the amount of network fault
data that we can collect in real production is minimal. The
amount of data we need may be related to the complexity
of the problem, the learning algorithm, and the AI model,
so the amount of data needed to train an Al model is not
easy to accurately estimate. The most common practice is
to acquire as much data as possible before processing it [5].
However, most network faults occur very infrequently, so the
failures are difficult to reproduce. This leads to training data
for network fault Al being more difficult to collect, and the

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiqi Liu

24578

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

problem of insufficient or nonexistent training data becomes
more apparent [6]. There has been research on insufficient
Al training data, such as using existing data to augment
data, retraining trained Al models, or collecting fault data
directly in real production environments. However, none of
these approaches has addressed the root of the problem of
insufficient Al training data.

Our team put forward an idea to compensate for insuffi-
cient Al training data and improve the automation of network
(OsM). We can build an environment that can produce
and collect the same training data as the actual production
environment. Chapter II of this paper introduces the existing
methods to solve the problem of insufficient data and its
residual problems. Then, Chapter III proposes and explains
a solution that can solve the residual problems of existing
methods. Next, Chapter IV proves the feasibility of the
proposed scheme through a simple experiment, and Chapter
V compares the solution with the existing methods. Finally,
Chapter VI concludes this paper.

Il. BACKGROUND AND PROPOSED APPROACH
This chapter mainly introduces the existing methods to solve
the problem of insufficient data and the remaining problems.
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A. RELATED WORK

Regarding the solution to the problem of insufficient
Al training data, there are three main directions of existing
approaches: data augmentation, reuse of data or results, and
data production.

1) DATA AUGMENTATION

Mikotajczyk and Grochowski proposed a method to increase
the original image data by using a series of transformations
such as orientation change and color transformation to obtain
more training data [7]. This simple and efficient method of
increasing training data is widely used in image recognition.
Although this method is often used in image processing,
care must be taken to preserve the dataset’s features while
adding data. In addition, this approach requires that the data
be available and have the learning features we need before
adding data through transformations. However, network fault
data is often difficult to obtain and use to identify learning
features [8]. Therefore, it does not fundamentally solve the
problem of insufficient or nonexistent data.

2) REUSE OF DATA OR RESULTS

We often use methods to compensate for insufficient data
in machine learning by reusing Al training data or training
results. For example, Zhuang et al. proposed using transfer
learning [9] when training a neural network (NN), which uses
similar trained models or reuses past data to compensate for
insufficient training data. Similar methods to transfer learning
include meta-learning proposed by Hartmann ez al. [10] and
semi-supervised learning proposed by Shao ez al. [11]. These
methods can alleviate the problem of insufficient training
data, but they presuppose the existence of correct datasets
or trained Al models. The result is that this reuse approach
cannot fundamentally solve the problem of insufficient or
nonexistent Al training data.

3) DATA PRODUCTION

Another method is using chaos engineering tools to produce
data in the actual production environment [12]. Netflix first
proposed chaos engineering to detect potential problems
in providing services in advance. They also developed
the well-known Chaos Monkey [13], a resiliency tool that
helps applications tolerate random instance failures. With
the widespread application of chaos engineering technology,
many excellent chaos engineering tools have emerged, such
as Pumba [14], Gremlin [15], and other tools that can simulate
network faults. By using chaos engineering to produce data in
a production environment, data can be effectively collected.
However, in most cases, this action is accompanied by high
risks, such as the system being less able to go back to
the normal state than estimated or desired. To reduce these
risks, operators must strictly design and control this behavior.
In addition, this behavior is generally concentrated when
there are relatively few users (like early morning) and requires
much pre-planning or real-time observation by professionals.

VOLUME 10, 2022

STEP1
Build the mirror environment
| l STEP 2
Occurrence of failure
/- ™\

/ Mirror \
Environment

/" Production )
Environment

Data collection
STEP 5 STEP 4
Migrating Al Training Al

FIGURE 1. Al training using a mirror environment.

This means a reduction in risk accompanied by an increase in
late-night labor or labor volume.

B. PROPOSED APPROACH

Data augmentation and reuse methods require correct basic
datasets, so these methods cannot solve the problem of insuf-
ficient or nonexistent data. Moreover, if the existing dataset
is incorrect, a data augmentation or data reuse method may
produce results far from the original expectations. Although
the data production method using chaos engineering tools
in a real production environment can help collect correct
data, it has high risks and costs [16]. It also has feasibility
problems depending on the industry. For example, it is
difficult for providers of network communications services
to use. Because the vast infrastructure business always has a
physical structure, it is hard to rebuild. Moreover, using chaos
engineering tools in a natural production environment has
high risks, but the users will not accept any risk of a network
fault.

In summary, the existing methods cannot fundamentally
solve the problem of insufficient network fault data.

We propose a zero-risk idea that accumulates the same
data as that of a production environment. First, a mirror
environment of the target production environment is built,
and the same data as the actual production environment
is collected in this mirror environment. Then, we can use
methods such as chaos engineering in this new mirror
environment to collect data to compensate for insufficient
Al training data.

The concept of data production and collection in the mirror
environment is indicated in Figure 1.

First, we need an actual production environment and
Al that we want to train. Then, a mirror environment is
created (Step 1). We use chaos engineering methods to
produce network faults artificially (Step 2) and create and
collect data (Steps 3&4) in the mirror environment. Finally,
we transfer the Al models trained in the mirror environment
to the target production environment (Step 5).

We hope to build a mirror environment for training Al with
the same performance as Al trained directly using data
from a production environment. This mirror environment
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will also use fault injection tools, such as chaos engineering,
but it does not present the same risks as the actual
production environment. The zero risk of producing data
in a mirror environment is because this approach is not
performed in an actual production environment. In addition,
the proposed approach addresses the legacy issues of the
existing techniques mentioned earlier.

IIl. MIRROR ENVIRONMENT

To implement the approach proposed in Chapter II to solve
the problem of insufficient Al training data, this chapter
discusses the requirements and functional components of a
mirror environment that can generate the same data as the
actual target environment.

A. REQUIREMENTS

For the mirror environment to produce and collect Al training
data instead of the real production environment and to
compensate for insufficient Al training data, the mirror
environment needs to satisfy at least four requirements.

1) REPRODUCING THE ENVIRONMENTAL ARCHITECTURE
To collect the same fault data as the target production
environment for Al training, the structure of the target
production environment needs to be reproduced in the mirror
environment.

2) ARTIFICIAL FAULT

To safely collect fault data for Al training, a method is needed
to artificially produce the required types of faults (including
low frequency and unknown faults).

3) EFFICIENT RECOVERY

To obtain the required Al training data in large quantities in a
short time, the recovery time after the occurrence of artificial
faults needs to be made as short as possible. Although the
required amount of training data depends on the Al, most
Al requires hundreds or thousands of training data, so data
must be efficiently acquired in a short time for availability.

4) DATA COLLECTION

The proposed approach aims to solve the problem of
insufficient data for Al training, so the required data also
needs to be collected in a mirror environment. It is also
important to collect data in accordance with the type and
amount of data we need and to stop collecting data when the
required amount of data is reached.

B. CONFIGURATION

A mirror environment that satisfies the above requirements
has four main components (Figure 2): the environment
reproduction department, the events reproduction depart-
ment, the recovery department, and the data collection
department. The functions of the four departments are as
follows
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FIGURE 2. Composition of a mirror environment.

1) THE ENVIRONMENT REPRODUCTION DEPARTMENT

This department reproduces the physical network layer,
virtual network layer, and service layer of the target
production environment in the mirror environment.

2) THE EVENTS REPRODUCTION DEPARTMENT
This department emulates the user’s behavior and produces
any needed faults in the reproduced environment.

3) THE RECOVERY DEPARTMENT

This department enables efficient recovery from artificially
created faults.

4) THE DATA COLLECTION DEPARTMENT
This department collects all the data created in the mirror
environment.

The details of Al training data collection using a mirror
environment with four functional departments are as follows.

First, the target production environment is reconstructed
in the environment reproduction department of the mirror
environment, and the type and amount of training data needed
depend on the target (Al model) [17].

Then, the events reproduction department is used to
simulate the normal operation state of the target environment
and the abnormal state of the target environment when
a failure occurs by using the user access in the mirror
environment in accordance with the type of Al training data
required.

The data collection department is used to collect the data
directly when the normal state data is needed. In the case of
failure data, the fault recovery department is used to recover
the failure after collection.

Finally, depending on the amount of Al training data
required, the cycle of artificial fault occurrence and fault
recovery is repeated until enough Al training data is collected.

C. ISSUE ANALYSIS
We have found five issues that need to be overcome to
implement the proposed technology.

1) LOW-COST ENVIRONMENT REPRODUCTION
In the proposed method, the first step is reproducing the
structure of the target production environment in the mirror
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environment. Most network environments are very large.
However, when the target production environment is huge,
an identical composition is impractical to recreate because
it is expensive. The increased cost of the environment can
also significantly reduce the feasibility of the proposal. Thus,
a low-cost environment needs to be made in accordance
with the situation. Ways to reduce the mirror environment’s
building cost include using a device with lower performance
than the target production environment or reducing the
number of devices. For the mirror environment, we are mainly
interested in collecting data for Al training. As long as the
data to be collected (metrics, logs, and other data used for
Al training) can be consistent, the same environment does
not need to be replicated, only the necessary parts to reduce
costs.

2) THE METHOD OF FAULT REPRODUCTION

When the Al needs fault data for training, the required
faults need to be simulated and reproduced in the mirror
environment. Initially, existing methods, such as the chaos
engineering tool, can be used to simulate faults. However, the
existing techniques can simulate only a very limited number
of faults. Therefore, we need to explore the possibility
of reproducing complex faults that occur less frequently.
Furthermore, if complex faults (including unknown faults)
cannot be simulated and reproduced by existing methods,
methods other than existing methods are needed to reproduce
and simulate the faults.

3) METHODS OF FAULT RECOVERY

In many cases, we need a large amount of training data for
Al training. The data at the time of fault is often collected after
an artificially created fault. Nevertheless, one fault is often
not enough to produce data for training Al. To efficiently
collect enough training data in a limited working time,
multiple cycles of fault generation and fault recovery need
to be performed efficiently. Therefore, an effective fault
recovery method becomes essential. Considering the types
of faults and the diversity and complexity of their recovery
methods, we can save time by recording and backing up
the state before the fault and not performing a one-to-one
recovery after the fault but just rolling back to the state before
the fault. However, the feasibility and details of this approach
still need to be discussed.

4) MIGRATE Al

Once we have collected data in the mirror environment,
we need to use the artificially generated data for Al training.
However, we aim to solve the problem of insufficient
Al training data in the target production environment, so the
Al trained in the mirror environment needs to be migrated
to the target production environment for use. There may be
differences because the low-cost mirror environment and the
target production environment are not the same. To enable
the Al trained in the mirror environment to achieve the same
effect as the Al trained directly in the target production
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environment, we think we also need the difference between
the two environments to make adjustments to the Al so
that the two environments are considered the same for the
trained Al

5) EVALUATION METHOD

A method is needed to accurately determine whether the
Al trained in the mirror environment is the same as the
Al trained in the target production environment. Collecting
data is challenging in the real target production environment,
so the mirror environment is needed to collect data for
Al training. However, because of this, there is no way
to compare the accuracy of the Al trained in the mirror
environment with the Al trained in the target production
environment. Although there are already some metrics (such
as Fp-score) that can be used to evaluate Al, they cannot
be used to evaluate the proposed technology. Therefore,
an evaluation method for proposed technology also needs to
be discussed.

IV. LOW-COST ENVIRONMENT REPRODUCTION

We thought that the first issue was to overcome the cost
of setting up the mirror environment in Chapter III because
the real production environment is often huge. Suppose we
need to set up a mirror environment exactly like the target
production environment. In that case, we may incur the same
or even higher costs. In particular, if the target production
environment is huge and the equipment is very aged, an
identical environment (same device or same scale) is almost
impossible to build. This problem may significantly reduce
the feasibility of the proposed method. Thus, to improve the
feasibility of the proposed method, we discuss the problem
of building a mirror environment at a low cost in this
chapter.

We made a hypothesis and designed a proof experiment
to reduce the cost of setting up a mirror environment.
We assumed that we only need to obtain the virtual
layer data of the target production environment to train
the Al that determines fault spots in its virtual layer.
Therefore, even if the underlying physical network layer
uses lower performance devices or fewer devices than the
target production environment, as long as the virtual layer is
identical, Al should perform the same (accuracy and other
measures are similar).

To test this hypothesis, we built three virtual layers
with identical environments using Raspberry Pi and a PC
server with significant performance differences to set up two
experimental control groups for comparison.

We designed Experiment I to compare Al training when
the mirror environment is built with fewer devices than the
target production environment but has the same virtual layers.
We designed Experiment II to compare Al training when the
mirror environment is built with lower performance devices
than the target production environment but has the same
virtual layer.
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TABLE 1. Physical layer of experiment I.

Experiment I

Environment Target Production I [ Mirror
Device Raspberry Pi
Number of devices 3 [ 2

Ubuntu 20.10
Broadcom BCM2711
Quad core Cortex-A72 (ARM v8)

Operating system

CPU model 64-bit@1.5GHz 8GB
Cores 4
Architecture aarch64

TABLE 2. Physical layer of experiment II.

Experiment II
Environment Target Production IT Mirror
Device PC server Raspberry Pi
Number of devices 2
Operating system Ubuntu 20.04.1 LTS Ubuntu 20.10
CPU model Intel(R)Xeon(R) CPU Broadcom BCM2711
E3-1535M v6@3.10GHz Quad core
Intel(R)Core(TM) Cortex-A72 (ARM
i7-7700 CPU@3.60GHz | v8) 64-bit@1.5GHz
8GB
Cores 8 4
Architecture x86_64 aarch64

A. PHYSICAL LAYER EXPERIMENT ENVIRONMENT

1) EXPERIMENT I

First, we built a target production environment I with
three Raspberry Pi devices and the mirror environment for
the target production environment with two Raspberry Pi
devices. Then, we collected data in the mirror environment
to train Al models and evaluated the performance of the
trained Al. Finally, the AI model trained in the mirror
environment was tested in the mirror environment and target
production environment I. Table 1 shows information of
target production environment I and the mirror environment.

2) EXPERIMENT II

First, we built a target production environment II with
two PC servers and the mirror environment of the target
production environment with two Raspberry Pi devices (the
mirror environment here is the same as in experiment I).
Then, we collected data in the mirror environment to train
Al models. Finally, the AI model trained in the mirror
environment was tested in the mirror environment and target
production environment II. Table 2 shows information of
experimental target production environment II and the mirror
environment.

B. VIRTUAL LAYER EXPERIMENT ENVIRONMENT

In experiments I and II, we built the same three-tier
(or three-layer) architectural model on the Kubernetes
platform (the environment reproduction department), which
can automatically restart (the recovery department). The
three-tier model for the experiments is indicated in Figure 3.
It comprises three layers: the database layer uses MongoDB,
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the application layer uses Node.js to deploy an applet for
logging in information about employees, and the web services
layer (or presentation layer) uses NGINX to implement
1t.

In this experiment, six containers were used to build this
three-tier model, and four (two for the app and two for
the database (DB)) were chosen for fault injection. First,
we used the chaos engineering tool called Pumba, an artificial
fault generation tool (the events reproduction department),
to randomly select one of the four containers to perform a
forced stop (kill container) fault injection. Then we collected
data from Pumba (fault times) and Prometheus (CPU and
memory metrics data for 10s intervals) by Grafana (the data
collection department) for a specific time interval, refer to
Figure 4.

C. FAULT SPOT DETECTION AND RESULT MEASUREMENT
On the basis of the above environment composition, we
collected data and trained Al in the mirror environment and
evaluated the Al in target production environments I and II
and the mirror environment. The experiments are demon-
strated in Figure 5. We evaluated the Al by comparing data
obtained in different environments. Four measurements were
used for the evaluation [18], [19]:
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1) Accuracy: percentage of correct results predicted by the
trained Al out of the total data.

2) Precision: percentage of data in which the faults
occurred where a trained Al predicted a [fault] that occurred.

3) Recall: percentage of data in which trained Al predicts
[fault] out of the actual occurred fault data.

4) F-score: harmonic mean of precision and recall. Refer
to (1).

F 2 X precision x recall
1 =

ey

precision + recall

D. Al MODEL

The AI model used in the experiments is a NN using CPU
and memory data as input data for fault spot detection.
The composition of the AI model is demonstrated in
Figure 6.

Input data is a vector of 112 dimensions. It is logs
of the 7 moments before and after the specified moment
(14 moments in total) and multiplied by 2 characteristics
(CPU and memory) of 4 containers: 2*7*2*4 = 112.

From the chaos engineering tool Pumba logs, we obtain the
time of the fault and use it as the specified moment.

The output is the probability of fault or non-fault of the
4 containers, expressed as a 4-dimensional vector. If the
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TABLE 3. The evaluation results of experiment I1&Il.

Containers
Env | Measures DB APP
CHECEEONEC
Accuracy | 1.000 | 1.000 | 0.986 | 0.991 | 0.994
Precision | 1.000 | 1.000 | 0.875 [ 0.923 | 0.995
Recall |1.000 [ 1.000 | 1.000 [ 1.000 | 1.000
Fy-score | 1.000 | 1.000 | 0.993 [ 0.960 | 0.973
Accuracy | 1.000 | 1.000 | 0.995 | 1.000 | 0.999
Precision | 1.000 | 1.000 [ 0.996 | 1.000 [ 0.992
Recall |1.000 [ 1.000 | 1.000 [ 1.000 | 1.000
Fy-score | 1.000 | 1.000 | 0.982 | 1.000 | 0.996
Accuracy | 0.998 | 1.000 | 1.000 | 0.988 | 0.999
Precision | 1.000 | 1.000 [ 1.000 [ 0.988 | 0.997
Recall 0.984 | 1.000 | 1.000 | 1.000 | 0.996
Fi-score |0.992 | 1.000 | 1.000 | 0.994 | 0.997

Average

II

Mirror

container’s probability of failure (0 to 1) is higher than 0.5,
the Al considers the container a faulted container.

The container determined to be faulted is marked as 1,
and the ones determined not to be faulted are marked as
0. Moreover, because the faults injection method of this
experiment only injects fault into one of the four containers
each time, only one container is 1 at each moment, and the
rest are 0. Thus, the labeling data is similar to (1 0 0 0).

E. RESULTS AND DISCUSSION

Finally, we used the Al model mentioned above for training
and evaluation. We evaluated in the mirror environment
experimental target production environments I and II, and the
evaluation results are presented in Table 3.

From the results for experimental target production
environments I and II, the four evaluation measures for each
container are above 0.875, and the average values are even
above 0.950. These results are similar to the evaluation results
obtained in the mirror environment. This means that the
Al trained in the mirror environment performs similarly to
the others. This result shows that when an Al only needs
the virtual layer’s data for training, it is possible to train the
Al with the same performance even if the physical layer is
different, as long as the virtual layers that directly obtain the
data are similar. However, the app used for the experiment
is relatively simple and does not simulate user access, so
further confirmation is needed, but this experiment proves
this possibility.

Another point is that although the Al trained in the mirror
environment is not poorly rated, this is not a criterion for
judging how good the proposed method is. Even if the
Al trained in the mirror environment does not have a high
evaluation, the feasibility of our proposal can be proved by a
similar evaluation in the production environment.

V. DISCUSSION

In this chapter, we will continue our comparative analysis
of the low-cost mirror environment and use two simple
experiments to discuss the feasibility of our proposed
approach.

24583



IEEE Access

D. Li et al.: Mirror Environment to Produce Artificial Intelligence Training Data

A. THE CONNECTION BETWEEN DATA VOLUME AND Al
We used the two environments and the AI model from
Chapter IV to analyze the connection between Al and data.

The environment built by using two Raspberry Pls is
named PI, (mirror environment), and the environment
built with three Raspberry PIs is named PI3 (production
environment I).

The same amount of data (150 times to kill the containers)
is collected in each of the two environments to train and test
the Al model, and the results are shown in Figure 7.

In the training results of the two environments, the four
evaluation metrics (accuracy, precision, recall, and Fj-score)
of the Al gradually increase in accordance with the increase
in the amount of Al training data.

The training results from the two environments show that
when the amount of Al training data increases, the four-
evaluation metrics of Al also increase gradually. This result
shows that the increase in data helps to improve Al accuracy.
Moreover, even the mirror environment built at low cost has
such characteristics.

In the experiments, we also found that the test results (the
four evaluation metrics) of Al started to change smoothly
(Figure 7) around reaching 150 times in training.

B. SIMULATE EXISTING METHODS AND COMPARE

To compare with existing techniques, in this section, we try
to simulate existing techniques. We have chosen to simulate
the reuse of data or results, the existing techniques in Chapter
II-A-2), as an example to compare our proposal. This existing
technique uses similar Al models trained in the past (pre-
trained) and fine-tuned [20], [21] it with small amounts of
target environment data to create the new Al model we need.
However, as discussed in Chapter II, this approach assumes
the existence of a suitable dataset or learned Al model that
can be reused. A particularly well-matched dataset or model
is often difficult to find. Thus, to simulate the reuse of the
Al technique, we need to train a similar AI model from
a mirror environment and fine-tune it with the production
environment’s (target environment) data.

First, on the basis of past data from our group business
company, we set a data volume of 30 times as the data volume
for the production environment to fine-tune the AI model.
The results obtained in Section A show that the Al model
in this experiment starts to stabilize when the training data
reaches 150 times. Therefore, we decided to use 120 times
data as training for a similar environment AI model and
30 times data in a production environment for fine-tuning.
We collect data 120 times in the environment Pl, as the
similar environment to train the AI model and test the
trained Al model in the environment PI3 as the production
environment. The results are shown in Table 4(before fine-
tuning). This trained model is considered as a similar model
that has been pre-trained. To simulate the existing model
reuse method mentioned in Chapter I1-A-2), we collected data
in environment PI3 30 more times to simulate the existing
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Amount of data A\ferage
Accuracy | Precision |Recall | F-score

15 0.795 0.212 |0.192| 0.176
30 0.836 0.339 |0.295| 0.303
45 0.853 0.435 |0.393| 0.395
60 0.867 0.519 |0.502| 0.495
75 0.887 0.581 |0.552| 0.548
90 0.896 0.625 |0.595| 0.587
105 0.912 0.676 |0.624| 0.627
120 0.915 0.694 |0.656| 0.655
135 0.932 0.751 |0.744| 0.735
150 0.925 0.724 |0.701| 0.692

AVERAGE OF MEASUREMENTS

——accuracy —#-precision —a-recall —fl

RESULT
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AMOUNT OF DATA

(a) Results of Plo

Amount of data AYerage
Accuracy | Precision |Recall | F}-score

15 0.812 0.293 |0.261| 0.250
30 0.851 0.426 |0.416| 0.408
45 0.873 0.509 |0.478 | 0.447
60 0.887 0.559 |0.564| 0.551
75 0.907 0.653 |0.605| 0.609
90 0.912 0.684 |0.647| 0.644
105 0.915 0.673 |0.665| 0.658
120 0.923 0.709 |0.670| 0.673
135 0.933 0.752 |0.728 | 0.725
150 0.933 0.727 |0.747| 0.725

AVERAGE OF MEASUREMENTS

——accuracy —#-precision —a-recall —fl

RESULT
°
&

15 30 45 60 75 90 105 120 135 150
AMOUNT OF DATA

(b) Results of PI3

FIGURE 7. Connection between Al and data.

small amount of data. Then 30 times data were collected in
the environment as a small amount of data from the existing
production environment. Moreover, the trained past similar
model models were fine-tuned to simulate the existing model
re-training maneuvers. Finally, the fine-tuned Al model was
tested in the PI3 environment, and the results are shown in
Table 4 (after fine-tuning).

Al accuracy significantly increased when using the trained
similar AI model and a small amount of data for fine-tuning,
with the Fj-score increasing from 0.570 to 0.696. This result
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TABLE 4. Simulation results of existing method.

Fine-tuning | Accuracy | Precision | Recall | £ -score
Before 0.882 0.528 | 0.464 | 0.570
After 0.927 0.706 | 0.710 | 0.696

TABLE 5. Results of using mirror environment only.

Accuracy | Precision | Recall | F-score
0.993 0.718 | 0.807 | 0.745

TABLE 6. Results of discussion.

Sections Data AI Model
cctions Collection Environment | Amount of data | Test Environment F-Score
A P1I3(Production Env) 150 0.725
B \ Before PI>(Similar Env) 120 . . 0.570
(Fine-tuning) [Afler | PI3(Production Env) | (120)+30 PI(Production Env) —gge
C PI(Mirror Env) 350 0.745

means that with a small amount of data and a similar trained
model, fine-tuning can result in a better AI model than
training directly with a small amount of data.

Finally, we collected data from the mirror environment
PI, 350 times for Al model training and tested the Al in
the production environment PI3. It is effortless to obtain
the data in the mirror environment. Therefore, we base our
experiments on approximately two times the 150 times data
in Sections A and Section B to set 350 times data for training
the Al model. This is more than twice the amount of 150 times
data. We think the mirror environment can easily obtain twice
as much data or more, and more data has a better chance of
training better Al models.

The results are presented in Table 5.

Comparing the results of the three experiments, shown in
Table 6.

We found that the F'|-score of the AI model obtained when
using only 150 times of data collected from environment PI3
for training was 0.725. The F-score of the Al model obtained
using the learned Al model and 30 times of data fine-tuning
was 0.696. And the F-score of the Al model trained directly
using the large amount of data (350 times) generated in the
mirror environment Pl was 0.745. This result is higher than
the combination of using a small amount of data and existing
methods.

The results suggest that even when similar AI models
are available for fine-tuning (which is often difficult to
obtain in reality), generating more data directly in the mirror
environment for Al training can yield better results if there is
little available production environment data for fine-tuning.

VI. CONCLUSION
This paper proposes a mirror environment that creates the
same data as the actual production environment. We think that
collecting mirror environment-created data can compensate
for network faults’ insufficient Al training data.

To verify the feasibility of the proposed method, we con-
ducted fault detection experiments with a virtual network
layer, discussed the possibility of low cost using controlled
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experiments, and compared the discussed results with exist-
ing methods of fine-tuning. The comparison results prove that
our proposed approach is a promising option to compensate
for the insufficiency of Al training data for network operation
and maintenance (O&M).

Following this, we plan to reduce the data discrepancy
between a mirror environment and a real production environ-
ment by adding user access simulations. In addition, we plan
to add more network failure types, increase the complexity of
network failure modes, and even find new unknown network
failure types. Try to use other Al outside of this paper to verify
the feasibility of the proposed approach and the accuracy of
the generated data. A usable mirror environment needs to
be built. To build a usable mirror environment for collecting
data, analyzing the relationship between the trained Al and
the object production environment will also be one of our
research focuses in the future.
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