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ABSTRACT Natural Language Processing (NLP) has contributed to extracting relationships among
biological entities, such as genes, their mutations, proteins, diseases, processes, phenotypes, and drugs, for
a comprehensive and concise understanding of information in the literature. Self-attention-based models for
Relationship Extraction (RE) have played an increasingly important role in NLP. However, self-attention
models for RE are framed as a classification problem, which limits its practical usability in several ways.
We present an alternative framework called the Attention Retrieval Model (ARM), which enhances the
applicability of attention-based models compared to the regular classification approach, for RE. Given a text
sequence containing related entities/keywords, ARM learns the association between a chosen entity/keyword
with the other entities present in the sequence, using an underlying self-attention mechanism. ARM provides
a flexible framework for a modeller to customise their model, facilitate data integration, and integrate expert
knowledge to provide a more practical approach for RE. ARM can extract unseen relationships that are not
annotated in the training data, analogous to zero-shot learning. To sum up, ARM provides an alternative
self-attention-based deep learning framework for RE, that can capture directed entity relationships.

INDEX TERMS Attention models, biological literature mining, deep learning, knowledge graphs.

I. INTRODUCTION
A. BACKGROUND
Modelling molecular and cellular processes considers an
increasingly large number of interacting molecules that are
relevant to the questions investigated. For a more com-
prehensive understanding of molecular networks, it is thus
necessary to extract relationships among large numbers of
biological entities, including genes, proteins, diseases, pro-
cesses, phenotypes, where the details of interactions are usu-
ally extracted from literature. The rise of research studying
large scale molecular interaction networks has subsequently
renewed an interest in text mining of biological literature.

Text mining and Natural Language Processing (NLP)-
based techniques are finding their applications in reducing the
efforts of biologists to mine the biological literature for tasks
like curation of large-scale models and keeping databases
updated, handling problems such as Named Entity Recog-
nition (NER) and Relationship Extraction (RE). Both rule-
based andmachine learning (ML) NLP approaches have been
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popular in this context, with multiple research and review
articles examining the scope of such models in Biological
Literature Mining (BLM) [15], [21]–[23].

Sequence-to-sequence models typically receive a sequence
as input and generate a sequence as output. Input and output
sequences can be numerical, time-dependent data or string
data. Recurrent Neural Network (RNN) is a deep learning
based model designed for learning from sequence data.
At every learning step, RNNs take elements of a sequence as
input and generate an output for that time step and updates a
hidden state, that can be associated with the ‘‘memory’’ of the
network. For text-based data, RNNs once used to be the state-
of-the-art models. However, RNNs proved to be less effective
to learn from longer sequences, that is to create associations
among elements of long sequences. This means that if there
is a long sequence of text (say, a long sentence) and there is
an association between two words, one located very early in
the sentence and the other very late, RNNs are unlikely to
capture that information. LSTMs and GRUs were designed
to mitigate this ‘‘memory’’ problem. The extremely popular
LSTM model, for example, is designed to retain or forget
information that is stored in the hidden state sequentially.
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Since the introduction of the attention model by
Bahdanau et al. for Machine Translation in 2015, it has
found applications in a wide range of Neural Network-based
architectures [16], while it receivedmore recognition after the
introduction of transformer models in 2017 [13]. Moreover,
even more advanced domain specific pre-trained models like
BERT and BioBERT based on the principle of self atten-
tion, are finding their application in biomedical relationship
extraction problems. The ARM approach that we propose
is also a self-attention-based model designed to address the
issues of the common classification based RE, as discussed
in Section II-C.

B. RELATED WORK
The general problem of relation extraction from text is a
popular and active NLP research field. For example, Neural
Relation Extractionwith Edge-orientedGraphs [24], Relation
Extraction fromWikipedia Using Subtree Mining [26], Rela-
tion Extraction using Sequential and Tree-structured LSTM
with attention [27], etc. Now, we discuss some state-of-the-
art self-attention-based models that have been proposed on
using the classification approach for biological RE over the
last two years.

Elangovan et al. draw their motivation from the fact
that popular PPI databases such as IntAct contain a large
amount of data on PPIs, but only 4% of these interactions
are functionally annotated [9]. Such functional annotations
can, however, often be found in relevant publications. Func-
tional annotations can be very important to understand causal
aspects driving biological processes. Elangovan et al. [9]
focus on extracting functional annotations of interacting
proteins, providing relevant information from text data
(e.g., abstracts of publications). Conventional stringmatching
is used to search for co-occurrences of entities (gene or
protein names) in a sentence. However, this can result in the
inclusion of noisy data curation.

A contrastive learning approach is implemented by Su et al.
(2021) to improve performance of pre-trained models [12].
The training process for such models is designed such that
similar input instances have ‘‘positive’’ labels whereas, dis-
similar input instances are labelled as ‘‘negative’’ instances.
The goal is to learn a text representation by maximising
the agreement between inputs from positive pairs via a con-
trastive loss in the latent space, and the learned representation
can then be used for relation extraction [12].

The architecture of the model proposed by Wang et al.
takes advantage of multitask (main and auxiliary tasks) learn-
ing strategy as proposed by the authors [11]. The authors use
BERT and BioBERT model, to create a meaningful vector
representation of the input text adding the main RC task and
auxiliary Document Triage task, a downstream Text CNN
model to the model. Moreover, BiLSTM layers are also used
as a downstream layer for the gene recognition auxiliary
task. According to this research, introduction of the auxiliary
learning tasks improves the classification performance of the
main RE task [11]. Zhou et al. propose the Knowledge-aware

Attention Network (KAN) for PPI extraction. The motivation
of this work, published in 2019, is the fact that pre-existing
methods needed extensive feature engineering and could not
make full use of the prior knowledge available in the form of
knowledge bases. This work integrates external knowledge
with a deep learning framework for RE [8].

According toGiles et al., for PPI extraction from biological
text, about 75 % of the sentences containing co-occurring
names of possibly interacting proteins do not describe any
causal relationship between them [10]. The authors, thus,
investigate the possibility of using fine-tuned BioBERT to
analyse these co-occurrences and thereby to accurately deter-
mine the functional association between the co-occurring
proteins in a given sentence [10]. An experiment conducted
by the authors during the data preparation is the investigation
of inter-annotator agreement, is worth mentioning. Three
independent expert curators curated PPIs from 925 sentences
identified by NER tagging within papers drawn from MED-
LINE. Surprisingly, concordance between all three curators
was observed in only 48.8 % of the cases, which demonstrates
the complexity of the problem [10]. This is a significant
experiment in the sense that even manual annotations can be
subjective, demonstrating the complexity of the problem.

C. EXISTING RESEARCH GAPS AND OUR CONTRIBUTIONS
We observe from the existing literature that it is a popular
trend to frame RE as a classification problem. However,
framing RE as a classification problem has its limita-
tions [28].First, prediction of a classification model for RE
is limited to the labels used in the training dataset. Secondly,
the classification framework does not directly preserve the
sense of directionality among interacting entities. Thirdly,
for integration across different datasets, the classification
approach can lead to complex multi-label classification prob-
lems [28]. The details of these are discussed in Section II-C
and Table 3. In this article, we provide a practical alternative
to the classification approach for biological RE such that
modellers can customise RE easily as per their modelling
requirements, maintaining the sense of directed interactions,
wherever applicable.

Biological information can be represented in its most
general form as knowledge graphs. The nodes of the knowl-
edge graph represent the entities, and edges are annota-
tions of directed or undirected relations among the entities.
Customised edge annotations, as per the interest of the mod-
eller, can be fed into the ARM model, making the model
adaptable to the need of the modeller. Given the posi-
tional information on a word representing an interaction type
(e.g. activation, repression, phosphorylation) in a sentence,
ARM can predict the positions of the source and target node
entities (e.g. source gene, target gene) for that particular
edge annotation. We will henceforth refer to an inter-entity
interaction, where the type of the interaction is of interest, as a
typed interaction. In the cases where this information is not
relevant, we will call the inter-entity interaction as untyped.
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We developed the ARM, which can be used to curate and
represent new literature, entities such as genes, proteins, phe-
notypes, etc. and their relationships. ARM provides a flexible
framework for a modeller to customise their model, facilitate
data integration, and integrate expert knowledge to provide a
more practical approach for RE. The general architecture of
ARM was reused for different tasks such as retrieving a new
related entity from the query entity or interaction keyword.
In case a modeller is not interested to model a particular
relationship and is simply interested in modelling whether
there is an association between two entities (gene-phenotype
association), ARM can account for this by learning the posi-
tion of one entity given the position of the related entity in
a sentence. Moreover, ARM is not affected by imbalance
and is capable of zero-shot learning. We used the dataset
from Elangovan et al. having unseen interaction keywords
to validate ARM’s zero-shot learning capability. In contrast,
classification models cannot predict unseen interaction key-
words without architectural modifications. Even though the
research field of RE from biological texts is still dynamic,
with model-based publication arising so often, some research
gaps that we address are uniquely addressed by ARM.

II. ATTENTION RETRIEVAL MODEL
In this section, starting with the applicability of ARM to
model biological information in terms of knowledge graphs,
we formalise the architectural framework of ARM and
thereby discuss the aspects of the framework associated to
its practical use.

A. ARM IN THE CONTEXT OF MODELLING
KNOWLEDGE GRAPHS
A graph H (N,E), is consisted of a set of nodes N and a
set of edges E ⊆ N × N. A KG, G(N,E) can be realised
as encoding of context-specific knowledge using graphs.
Biomedical knowledge such as protein interactions, gene to
ontology associations, chemical to gene relations, disease
to drug associations can be represented as KGs in its most
general form. Biological entities such as genes, chemicals,
diseases, or pathways can be identified as the node set of the
KG. The set of nodes of a KG can have several categories
as well. In other words, the set of nodes can consist of
several types of entities such as genes, proteins, chemicals
or diseases. In the most general representation of KG, one
can assume a mapping τN : N → TN, where TN is the set
of types of node entities. Edge set E of G encode relations
between a pair of nodes. Similar to the set of nodes, in the
most general representation of KG, the edges in the edge set E
can also have several types. For instance, given that the nodes
of a certain KG are proteins, an edge among any two proteins
can encode the type of interactions among the protein pair.
Given that the interaction can be an activation, inhibition,
binding, or even more specific such as phosphorylation, the
interactions are considered as typed. Note that, some of the
typed interactions for example, activation are directed while
some, for instance, binding are undirected. In the other cases,

such as gene to disease associations, where interaction type
is not specified, the interactions are considered as untyped.
Similar to the map τN, in this case, we can define a mapping
τE : N × N ⊇ E → TE, where TE is the set of types of
edge entities. For untyped interactions, we can assume that
|TE| = 1 and for typed interactions |TE| > 1.

Suppose that, a sentence contains information about a
directed interaction: ‘‘Gene-A activates Gene-B’’. Here,
Gene-A and Gene-B can be called the source entity and the
target entity respectively, to indicate the directionality. If we
consider the KG, G, having directed interactions, we can
assume: τE : N1 × N2 ⊇ E → TE, where N1 ⊆ N

and N2 ⊆ N are the set of source nodes and the set of
target nodes, respectively. Note that, modelling a knowledge
graph is equivalent to realising themap τE. Consequently, this
requires realising the sets N1, N2 and TE.

Let S be a set of sentences such that, s ∈ S consists of
a directed set of words W s

= {ws1, . . . ,w
s
k}. Note that, for

convenience of explanation, we can assume that the sentences
in S have the same sequence length. In practice, sentences
are padded so that every sentence is represented by the same
sequence length k . We can call S a knowledge-annotated set
if, for every s ∈ S, we have information about the sets W s

∩

NS
1 , W

s
∩ NS

2 and W s
∩ TSE, where NS

1 , N
S
2 and TSE are the

sets of source nodes, target nodes and interaction types with
respect to S. Given a set of annotated sentences S, ARM is
designed to learn positional associations among the setsW s

∩

NS
1 ,W

s
∩NS

2 andW
s
∩TSE from all sentences in S, usingmulti-

headed self attention. Given a set of new sentences T , if we
have information about any of the setsW s

∩NT
1 ,W

s
∩NT

2 and
W s
∩TTE but not all of them, ARM predicts the unknown sets

by retrieving the attention distribution predicted by a trained
model over each sentence. Retrieving the unknown sets can
help us realise the map TSE and thereby model the knowledge
from the literature, in the form of a knowledge graph.

B. ARCHITECTURE OF ARM
Depending on what information is available in the external
i.e. validation set unseen by the model of annotated sentences
P, the training of ARM can be customised by a modeller.
Given a set of annotated sentences S, let I = {NS

1 ,T
S
E,N

S
2 },

be the set of information that is required for a KG.

1) FOR TYPED INTERACTIONS
Let IT ⊆ I , be the set of typed interactions. Given a set of
knowledge-annotated sentences, we can assume D ∈ IT as
the input set of information and R = RT 6= D,R = RT ∈
IT as the output set of information. In this case, the tuples,
(n1 ∈ NS

1 , t ∈ TSE, n2 ∈ NS
2 ) and (n2 ∈ NS

2 , t ∈ TSE, n1 ∈ NS
1 )

may or may not be equivalent, signifying that there may or
may not be a sense of direction among the entities and thereby
separate source and target entities are preserved.

2) FOR UNTYPED INTERACTIONS
Let IU ⊆ I , be the set of untyped interactions. Given a set of
knowledge-annotated sentences, we can assume D ∈ IU as
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FIGURE 1. Figure showing architecture of ARM model (left) and a schematic visualisation of the ESPE for the input and output entity (right).

the input set of information and R = RU 6= D,R = RU ∈ IT
as the output set of information. In this case, the tuples,
(n1 ∈ NS

1 , t ∈ TSE, n2 ∈ NS
2 ) and (n2 ∈ NS

2 , t ∈ TSE, n1 ∈ NS
1 )

are equivalent, signifying that there is no sense of direction
among the entities.

Traditional attention-based models such as transformers
include positional encoding for word sequences as a part of
the architecture. The formal expression for positional encod-
ing is given by a pair of equations:

P(pos,2i) = sin
(

pos

10000
2i
d

)
(1)

P(pos,2i+1) = cos
(

pos

10000
2i
d

)
(2)

In Equations (1) and (2), the expression pos is used to denote
the position of a word in a sentence and d denotes the user-
defined dimensions for the word-embedding vectors. That
is, each word is essentially perceived by the model as a
d-dimensional vector. The index i runs over the dimensions of
these word-embeddings and thus can take values in the range
[1, d]. Note that, Equations (1) and (2) propose two different
functions over the vector sequence, depending on whether
one is calculating an odd index or even index of the word-
embedding vector. The ARM model adapts the notion of
positional word-embeddings. However, in addition to word-
embeddings, training ARM requires introduction of entity-
specific positional embedding (ESPE) J . Given a sentence
s ∈ S, with a sequence of words W s

= {ws1, . . . ,w
s
k}, for

entity E ∈ I , we can define J (E) as a vector of dimen-
sion k , such that the j-th component (1 ≤ j ≤ k) of the

vector J (E) is:

J (E)j =

{
1 : if wsj ∈ E

0 : otherwise
(3)

For a sentence s ∈ S, ARM receives as input a tokenised
version W s

t of the list of words W s as well as its input
ESPE J (W s

∩ D). Tokenised word vectors W s
t are used to

create a word-wise vector embedding of dimension d , where
d is a hyper-parameter of ARM. The traditional positional
encoding is added to the word-wise vector embedding to
finally obtain a position-encoded vectorised version V s

t of the
words in S. The dimension of V s

t is thus d × k , where k is
the constant sentence length with the assumption of proper
padding. The information on the input ESPE, J (W s

∩ D) is
now integrated to the V s

t through a simple product as:

X st = V s
t ⊗ J (W

s
∩ D) (4)

where ⊗ represents the component-wise product operation.
The obtained vector whose dimension is still d × k , is then
passed to a transformer block as input. The transformer block
consists of two layers, the first is a self-attention mecha-
nism, and the second is a simple, position-wise fully con-
nected feed-forward network [13]. In the first sub-layer of the
transformer block, the self-attention mechanism, three copies
of this component wise product are passed as Query (Q),
Key (K) and Value (V) triplet.

Q = K = V = X st ⊗ J (W
s
∩ D) (5)
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The equation governing the attention mechanism is given
by [13]:

A(K ,Q,V ) = softmax
(
K · QT
√
d ′

)
V (6)

In practicality, a multi-headed attention mechanism with h
heads (h being a hyper-parameter of ARM) is used. The idea
of the multi-head attention mechanism can be compared to
the use of different filters in Convolutional Neural Networks
(CNNs), where each filter learns different latent features from
the input. Multi-head attention allows the model to jointly
attend to information from different representation subspaces
at different positions [13]. The information from all attention
heads is later integrated by a concatenation operation. The
multi-headed attention can be written as [13]:

MHA(K ,Q,V ) = Concat(head1, head2, . . . , headh)YO (7)

where headi = A(KYKi ,QY
Q
i ,VY

V
i ). YKi , YQi , Y

V
i , and YO

are projection parameters with dimensions d × d ′, d × d ′,
d × d ′, d × d respectively, and d ′ = d/h for all h > 0.
A residual connection is then added around, MHA followed
by layer normalization:

U s
t = X st ⊕MHA(Q,K ,V ) (8)

to retain the entire textual information of the input sentence.
The output U s

t from the first sub-layer of the transformer
block is then passed as input to the second sub-layer, the
feed-forward network with dimension dff . The feed-forward
network is applied to all positions separately and similar to
the first sub-layer, a residual connection is added to the feed-
forward network followed by layer normalisation. The output
of the second sub-layer is the final output of the transformer
block with dimension d × k .
At this point, V s

t is added to the output of the transformer
block. This is possible since both V s

t and transformer block
output are of the same dimension d × k . Finally, we employ
global average pooling [20] over the second dimension of
U s
t , to obtain a flattened k-dimensional vector U s, which is

then fed into a dropout layer for regularisation and a fully
connected dense layer with sigmoid activation to obtain the
k-dimensional output Os:

Os = Sigmoid
(
Dropout(U s)

)
(9)

The loss of the model is then estimated as:

L = MSE
(
J (W s

∩ R),Os
)

(10)

where, MSE is the mean-squared error loss. L is minimised
using a suitable optimiser, in our case the ADAM optimiser.
Adam optimisation is a stochastic gradient descent method
that is based on adaptive estimation of first-order and second-
order moments [19].

In Figure 1 (right), the given sentence has the information
about the AHRHRR gene inducing the expression of DP2,
PCNA, and RFC38 genes. ARM is trained to take as input the

sentence and entity-specific position encoding of candidate
gene AHRHRR and output the ESPE for one of the possible
related entities, in this case, the PCNAgene. The highest three
important words in the output ESPE of ARMareDP2, PCNA,
and RFC38 genes. This example shows the ARMs capability
to understand the relation between two related entities or
between an interaction word and a related entity in a text
and retrieve them, rather than classifying the text based on
predefined annotations.

C. JUSTIFICATION BEHIND THE USABILITY OF
THE MODEL
In simple terms, ARM can model knowledge graphs with
both typed and untyped interactions. For modelling typed
interactions, ARM uses the positions of words indicating
interaction types in a sentence and predicts the corresponding
source and target entities. For typed interactions, ARM can
also be trained to predict the target entity given the source
entity as input and vice-versa. For modelling untyped inter-
actions, ARM uses the position of either of the related entity
pairs or the interaction word and retrieves the position of the
other entity in the sentence that is annotated in a dataset.

FIGURE 2. An interaction in a KG has two nodes (biological entities) and
an edge (interaction). The classification model takes two interacting
entities as input and predicts the type of iteraction. Whereas, the ARM
model can take as input the interaction and predict either of the
interacting entities or take as input one of the interacting entities and
predict the other entity.

Note that the approach for RE in ARM is opposite to
that of a classification approach, in the sense that, in the
classification approach, the goal is to predict the type of
interaction from an input text with or without the information
about the related entities (e.g. in PPI, a pair of interacting
proteins). As a justification to this, we discuss certain lim-
itations of framing RE as a classification problem that can
hinder the practical applicability of such classification-based
approaches for knowledge extraction from new literature.
• Directionality in interacting triplets is not preserved:
Modelling directed relationships among biological enti-
ties such as genes, proteins, chemicals, diseases, and
ontologies require distinction between the source and the
target entity. RE problems have also been approached
as triplet extraction problems, where interacting entities
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are extracted from the text as an ordered tuple of source
and target entities and the corresponding interaction.
This approach would be effective in preserving the sense
of directionality in the interaction. Most classification
models for RE lack the framework of preserving the
sense of directionality among the interacting entities.
Some classificationmodels, such as KAN, take the inter-
acting entities as part of the input, without any associated
sense of directionality [8]. Even if we assume that a clas-
sification framework provides such a scope, this implies
relation extraction from unseen literature requires prior
knowledge of whether the entities are sources or tar-
gets, as they would be necessary for the input. This
can increase annotation effort for unseen datasets. This
would require the model to integrate a triplet finding
algorithm for the entire knowledge extraction pipeline
to work. Thus, the cumulative performance and yield of
the RE approach would depend on the efficiency of the
triplet finding algorithm.

• Difficulty in extraction of unseen interactions: Exist-
ing classification models proposed for RE, are usually
trained and tested on datasets extracted from publicly
available databases such as ChemProt, BioGRID and
IntAct [9], [11], [12]. The classification models in such
cases are useful to detect interactions that are anno-
tated in the training data. To classify labels that are not
present in training data, a classification model requires
re-training with new data having the new labels. For
example, a classification model trained to classify up-
regulation and down-regulation among pairs of genes,
cannot predict an interaction such as ‘‘phosphoryla-
tion’’. For the model to predict ‘‘phosphorylation’’,
it would need re-training with new training data that has
‘‘phosphorylation’’ label.

• Increasing complexity with data integration: A clas-
sification model that is trained as per the annotations
of the BioGRID dataset, for example, cannot be used
for extracting knowledge from a differently annotated
dataset such as IntAct. Combining knowledge across
datasets can increase the number of classes in the clas-
sification problem, making the model more complex.
For example, the BioGRID and ChemProt have 16 and
22 annotated interaction classes. If we are to combine
knowledge across these datasets, we have to integrate
them into a 38-class classification problem. In addition,
the databases are also likely to be annotated by different
experts. Moreover, training such models are likely to be
affected by inherent imbalances present in such datasets.

We now discuss how the ARM approach addresses the
above-mentioned limitations of the classification approach.
• ARM can be trained for typed RE, where a modeler can
provide a bag of interaction words as input to extract
the corresponding source or target entities. Since the
source and target entities can be extracted individually,
it preserves the sense of directionality for the interacting
triplet.

• Since ARM predicts the positions of entities in a sen-
tence, instead of classes, it can be used to predict entities
related to unseen interaction types, that is, interaction
types that are absent in the training dataset. This implies
that ARM provides a zero shot learning framework
for RE. We demonstrate this in Case Study 2 of our
experiments.

• ARM learns positional associations between related
entities or between a word describing a relationship
and its corresponding entities in a sentence. For this
reason, it can integrate data with varied grammatical
structure of sentences. For example, a single model can
be used to learn protein-protein as well as gene-disease
associations. Within a specific language style, ARM
is less affected by imbalance. We mention the phrase
‘‘within a language style’’, to indicate the scenario when
ARM deals with data containing consistent informa-
tion. This means that the data is relevant to a problem
with a particular entity type, say proteins, and a fixed
bag of keywords. The relative indifference to imbalance
makes ARM more suitable for learning from integrated
data.

Moreover, as per the investigation of Giles et al. [10],
there can be considerable ambiguity and disagreements even
among expert manual annotators. Thus, varying annotations
across datasets, hinders the integration and transfer of knowl-
edge across datasets. With a choice of customized bag-of-
words, ARM can integrate the domain knowledge of a mod-
eler in the decision-making process.

III. EXPERIMENTAL SETUP
A. DATASET CURATION
Several popular databases exist, documenting information
on entity interactions. For our investigations, we curated
data from six different databases/datasets: Atlas of Inflam-
mation Resolution (AIR) [2], TRRUST [1], BioGRID [3],
ChemProt [4], Genetic association database (GAD) [5],
and a publicly available dataset curated in the work by
Elangovan et al. [9]. AIR, TRRUST and BioGRID contain
protein-protein interactions, ChemProt contains chemical-
protein interactions, and GAD contains information on gene-
disease association. Note that we chose datasets with multiple
entity types (protein, chemical, gene, disease) for our inves-
tigation. We chose particularly these datasets considering the
following broader motivation:
• We chose the TRRUST dataset, since the annotation
of this dataset is the same as AIR. Both AIR and
TRRUST consist of typed annotations. The annotations
correspond to positive, negative, and unknown type of
interactions among proteins. Directed interactions such
as positive and negative regulation play a crucial role in
building large scale booleanmodels to explain biological
processes.

• AIR is an expert- curated knowledge base focusing on
inflammation resolution. We thus chose this dataset to
support this research further [2].
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TABLE 1. The table shows information on the two curated datasets for typed and untyped relation extraction.

• We chose BioGRID and ChemProt datasets that have
been used in multiple related publications. Both these
databases contain a large volume of data to learn from.

• We chose the dataset by Elangovan et al., since it
contains relationship annotations present in no other
databases, such as phosphorylation, methylation and
acetylation, etc. Using this dataset, we design some
interesting case studies. We will henceforth refer to this
dataset as Elangovan dataset.

1) CURATION OF DATASETS
We curated two datasets, DT consisting of typed inter-
actions and DU consisting of untyped interactions. DT
is curated selectively from AIR, TRRUST and Elangovan
databases/datasets. On the other hand, DU is curated by inte-
gration of ChemProt, BioGRID andGADdatabases. In accor-
dance to our experimental setup, DT is further divided into
two parts, D∗T and Dval

T . D∗T is the part of DT curated from
TRRUST and AIR databases and Dval

T is the part of DT
curated from the Elangovan dataset.

We emphasise here that, even though,DU comprises anno-
tated datasets like ChemProt and BioGRID, these annotated
datasets are not specifically aimed towards positive and neg-
ative regulations among genes. Moreover, both BioGRID
and ChemProt use many annotations that are not likely to
be present in curated sentences from publication abstracts
(e.g. ‘‘synthetic lethality’’, ‘‘dosage growth defect’’, ‘‘syn-
thetic haploinsufficiency’’ etc. for BioGRID and ‘‘Antago-
nist’’, ‘‘Modulator’’, ‘‘Agonist-activator’’ etc. for ChemProt).
Moreover, the majority of interactions in these datasets are
undirected. On the other hand, AIR and TRRUST uses simple
annotations focused on interactions such as activation and
inhibitions among genes. For these annotations, it is possible
to construct an expert annotated bag of interaction words.
We thus use the large volume of data present in ChemProt,
BioGRID and GAD to investigate the potential of ARM to
extract untyped interactions, assuming the data from these
databases to be untyped, whereas selected instances fromAIR
and TRRUST are used for typed RE.

RM focuses on customisable knowledge extraction and
relies on a bag of interaction words that can be provided
by a modeller. For an interaction mentioned in a PubMed
abstract, the sentences present in the abstracts are con-
sidered. The entity names and their synonyms present in
the sentence are replaced with standardised Entrez [6] and

PubChem [7] names. The obtained entity-normalised sen-
tences are then searched for entity and interaction keys. For
typed interactions, if both interacting entities and interaction
keys are mentioned in a sentence, it is assumed that the
sentence has information about the typed interaction. In the
case of untyped interactions, if both interacting entities are
mentioned in a sentence, it has information about the untyped
interaction. For simplicity, sentences having more than five
occurrences of the same entity are not considered.

It is well known that at a large scale, logic-based models
and molecular interaction maps are popular in explaining
biological processes. For protein interactions, such models
are particularly interested in positive and negative regulations
between protein pairs and information on protein pair bind-
ing to form complexes are some key interactions [2], [14].
Thinking of practical applicability, we therefore considered
three types of interactions: Positive, Negative, and Physical/
Unspecified interactions. Positive and Negative interactions
are of course directed typed interactions, while physical/
unspecified interactions can be considered as undirected
typed interactions. We consider two keywords for positive
interactions: ‘Activate’ and ‘Up-regulate’ and extract sen-
tences containing these keywords and source-target entity
names from the correspondingly annotated positive class in
the dataset from the AIR and TRRUST databases. Simi-
larly, the keywords we considered for the negative classes
‘Repress’, ‘Down-regulate’, and ‘Inhibit’ and for Unspecified
classes, ‘Bind’ and ‘Interact’ keys are considered as keywords
for sentence extraction.

We curate Dval
T from the Elangovan dataset as an inde-

pendent validation dataset. This is to account for one of our
case studies, where we investigate whether ARM can extract
relations from data that concerns different interaction types
than the data which the model was trained on. The Elangovan
dataset uses a completely different set of annotations for
interactions compared to that of AIR or TRRUST. These
annotations are, namely: phosphorylation, dephosphoryla-
tion, methylation, demethylation, ubiquitination, deubiquiti-
nation, and acetylation. From these, we chose the interactions
that are annotated as phosphorylation, since it was by far the
largest class with 800 instances. In one of our case studies,
we train ARM on D∗T , which does not contain instances for
the annotation ‘‘phosphorylation’’, and validate it on Dval

T .
The ARM model thus, allows a framework for zero-shot
learning, which is not possible with the classical classifica-
tion approach for RE.
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B. TRAINING AND EVALUATION PROCEDURE
We perform several case studies to demonstrate the diverse
applications of ARM. Here, we provide an overview of these
case studies:
• Case Study 1: The first case study is designed to
investigate how ARM performs when trained and tested
on data with the same bag of interaction words.
For this, we use the curated dataset D∗T , where our
specified bag of interaction words corresponds to
the interactions: Activation, Up-regulation, Repression,
Down-regulation, Inhibition, binding and Interaction.
The ARM model takes selected sentences and the posi-
tion of these interaction words in the respective sen-
tences (through the function P) as input and retrieves the
positions of the source and target entities corresponding
to these interaction words. The ARM in this case, is val-
idated using a 10-fold cross validation procedure.

• Case Study 2: The second case study is designed
to investigate how ARM performs when validated on
unseen labels. As discussed before, this cannot be done
using the classification approach. We train the ARM
model in this case usingD∗T and test it usingDval

T . Recall,
that for Dval

T , the interaction bag of words contain only
phosphorylation, that is not present in the bag of words
chosen to curate D∗T . The training process is similar to
that of Case Study I. While testing, the ARM takes as
input the selected sentences in Dval

T and the position of
the interaction word corresponding to phosphorylation
in the respective sentences.

• Case Study 3: The third case study is to investigate the
performance of ARM to take selected sentences and the
position of the source or target entity in the respective
sentences (through the function P) as input, and retrieves
the positions of the target or source entity corresponding
to these interaction words from the typed dataset DT ,
respectively. Note that, in this case, we still maintain
a sense of directionality in the interactions since DT
largely consists of directed interactions, and, therefore,
consider the source and target entities separately. ARM,
in this case, is trained using a 10-fold cross validation
procedure.

• Case Study 4: The fourth case study is to investigate the
performance of ARM on the untyped datasetDU . Recall
that, even though interactions in some databases used for
curatingDU are typed, most of the interactions are undi-
rected, and the interaction word is unlikely to be present
in a sentence and therefore cannot be used as a keyword
for the bag of interaction words necessary to train the
typed version of the ARM model. Thus, we adapt DU
for our ‘‘untyped’’ case study, by assuming the data to
be untyped. By this assumption, there is no distinction
between the source and the target entity. So for this
case, we randomly select 50% of data from DU and
interchange the source and target entities as annotated
in the dataset. We simply refer to two related entities

as ‘‘Entity 1’’ and ‘‘Entity 2’’, and investigate whether
given the position information of ‘‘Entity 1’’, ARM can
retrieve the positional information of ‘‘Entity 2’’. The
ARM in this case, is validated using a 10-fold cross
validation procedure.

As an output, ARM generates a signal vector with values
in the range [0, 1], over the words of the input sentence. The
word in the input sentence corresponding to the highest peak
of this signal can be considered as the predicted entity by
the trained ARM model. We demonstrate this in Figure 1.
To quantify the performance of ARM, we define the follow-
ing performance measure.
Definition 1 k-Exact Entity Match Accuracy (k-EEMA):

If the labelled output entity for a test data point d is present
in the set of words corresponding to the k-highest peaks of
the output signal Os(d) generated by a trained ARM, then
the prediction for d is assumed to be correct. The percent-
age of correct predictions on a validation set thus gives the
k-EEMA.

This means that a 1-EEMA Score corresponds to the
percentage of test instances where the highest peak of the
predicted signal corresponds exactly to the output entity
and a 2-EEMA Score corresponds to the percentage of test
instances where any of the two highest peaks of the predicted
signal correspond exactly to the output entity and so on.
We will refer to 1-EEMA simply as EEMA.

IV. RESULTS AND DISCUSSION
A. CASE STUDY 1
From the first case study, we observe that, given the inter-
action word, ARM can predict the corresponding source
entities related to the word with 1-EEMA, 2-EEMA, and
3-EEMA scores of 77.0%, 90.4%, and 95.2% respectively.
It can predict target entities related to the word with 1-EEMA,
2-EEMA, and 3-EEMA scores of 79.3%, 88.7%, and 92.7%
respectively. This shows that if we train and test ARM on
the data which has the same label, the ARM can detect the
source and target entities corresponding to a customised bag
of words.

B. CASE STUDY 2
From the results of the second case study, we observe that,
given an interaction word that is absent in the training data,
ARM can still detect source entities with 1-EEMA, 2-EEMA,
and 3-EEMA scores of 30.2%, 49.3%, and 62.4% respec-
tively. Similarly, for an interaction word that is absent in the
training data, ARM can detect target entities with 1-EEMA,
2-EEMA, and 3-EEMA scores of 30.3%, 47.3%, and 60.0%
respectively. Note that, this example is analogous to zero
shot learning, since the test dataset contains sentences from
a completely different source and with completely different
annotations. A classification based approach would not be
able to perform an RE task in such a case, since such an
approach can only learn annotations/labels that are present
in the training data.
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TABLE 2. Table showing 1,2, and 3 EEMA scores for different case studies. The types of tasks are shown in the format Input Entity → Output Entity. SRC,
TRGT, INT, ENT refers to source, target, interaction, and entity respectively.

C. CASE STUDY 3
The third case study consists of two parts. For the first part,
we use 10-fold cross validation for training and validation
on D∗T and the second part, we train ARM on D∗T and
validate on Dval

T . For the first part, we observe that given
the source entity, ARM can predict the target entity with
1-EEMA, 2-EEMA, and 3-EEMA scores of 85.1%, 92.3%,
95.0% respectively. Given the target entity, ARM can predict
the source entity with 1-EEMA, 2-EEMA, and 3-EEMA
scores of 83.4%, 93.2%, 95.0% respectively. For the second
part, where we validate ARM on an independent validation
set with a different type of interaction, ARM can detect the
source entity, given the target entity, with 1-EEMA, 2-EEMA,
and 3-EEMA scores of 40.0%, 60.0%, and 71.0%. Given the
source entity, it can detect the target entity with an 1-EEMA,
2-EEMA, 3-EEMA scores of 40.7%, 59.1%, and 70.3%. The
reduced instance in the third case can be attributed to the fact
that,Dval

T being annotated differently, contains sentences with
different structures than that of D∗T .

D. CASE STUDY 4
Recall that this case study is for the untyped case, for which
there is no particular notion of a source and a target entity.
From the results of the fourth case study, we observe that,
given an entity, ARM can predict a related entity with an
1-EEMA, 2-EEMA, and 3-EEMA scores of 72.6%, 82.4%,
and 89.3% respectively.

A summary of the results is provided in Table 2. The key
philosophy behind the ARM approach is to train a model to
understand the linguistic context between two related entities
in a text, rather than classifying the text based on predefined
annotations. Our results demonstrate some advantages of
the ARM approach for RE over the standard classification
approach. As ARM uses a customised bag of interaction
words as per the choice of the modeller, one can customise
the model as per their requirements.

While a more desirable scenario could be a comprehensive
comparison among the models discussed in Section I, this
turns out to be difficult for different reasons. To make an
unbiased comparison between these models, BLM sub-tasks
like NER, Triplet finding, and Document triage are required,
which are not addressed in many of the discussed models,

as the general norm in this domain is to address the RE
task singularly. Although most of the models are publicly
available, almost all have a very elaborate pre-processing pro-
tocol, which are difficult to reproduce exactly even from the
provided coding resources. Moreover, ARM also has its own
distinct performance measure. Such factors make it challeng-
ing to perform a comparative study and infer superiority or
inferiority of the ARM model from such experiments. While
the classification approach is well established, even without
going into quantitative comparisons, from the construct of
the models themselves, we can observe that ARM has some
scope beyond the classification approach. We summarise
some of these in Table 3.

TABLE 3. Key differences between the classification and the ARM
approach.

Since the position of the associated/interacting entities and
interaction words are used, not the labels, the ARM is not
affected by imbalance. Furthermore, the ARM can retrieve
entities related to interaction words, which are not present in
the training data. To summarise, we have demonstrated the
effectiveness of ARMwithDU , which contains diverse entity
types or with Dval

T , where the interaction word is different
from that of the training set.

ARM provides a modeller with the opportunity to integrate
their knowledge in the decision-making for RE. Suppose that
there is a sentence containing information about the interac-
tion among two entities, where one protein positively regu-
lates the other. When an expert annotates the sentence, and
they base their decision precisely upon two keywords describ-
ing the relationship, say activation or up-regulation. When a
model learns from such a data, its knowledge is essentially
influenced by the knowledge of the annotator. However, the
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perception of positive regulation can be different for another
independent second modeller. For instance, it might be pos-
sible that the modeller considers methylation of one protein
by another, also as activation. Therefore, a second modeller
is likely to get unsatisfactory results if the modeller uses
the data curated by the first expert for his model training.
Giles et al. already points out about annotation-related dis-
crepancies among experts [10].

Moreover, the ARM approach can be used for RE even
when an annotation is absent in the dataset. As we have
demonstrated in Case Study 2, we use a dataset with com-
pletely different annotations for validation and yet, ARM can
retrieve the source and target entities from it. This task, anal-
ogous to zero shot learning, is impossible to achieve with the
classification approach, as the output of such a model would
be dependent on the annotations used for training. It is worth
noting that the RE in the pre-Neural Network era used to be in
the form of triplet extraction. A triplet encodes a relationship
between two entities as a tuple (Entity1, interaction type,
Entity2) [17], [18]. It was an effective method for RE, since
it preserved a sense of direction in the interaction, given the
interaction word. Existing deep-learning-based models for
RE rarely address the issue of retaining this directionality.
ARM proposes a framework that accounts for the direction
of the interaction. For typed interactions, given the interaction
word, ARM retrieves the source and target entities separately.
This is demonstrated in the Case Studies 1 and 2. Since the
ARM predicts the source and target entity, the unseen data
does not need to be annotated with source and target entities.
If one is not interested in the type of interaction, but simply
chooses to extract related entities in a directed or undirected
manner, ARM provides a framework for both of these. For
the first purpose, the framework for Case Study 3 can be
employed, while for the second purpose, the framework for
Case Study 4 can be used. For Case Study 4, we have also
demonstrated that even if there are diverse entities in the
dataset, ARM can learn the associations between them. In the
curated dataset DU used for Case Study 4, entities can be of
different types such as genes, chemicals, and disease. To the
best of our knowledge, there is also no evidence of self-
attention-based frameworks that base their study on RE with
mixed entity types. This provides the ARM framework a
unique advantage for data integration across datasets across
diverse literature. Note, that the ARM framework thus can
also be easily adapted to targeted relationship extraction. For
example, researchers may be interested in the investigation
of a particular entity and its corresponding interactions to
understand their role in a biological process (e.g., E2F1) [14].
A framework ofARMcan be trained to retrieve the position of
an entity given the position of a related entity as input, or vice
versa. This can therefore be used to extract the molecular
interactions by providing a query molecule as a source entity
or a target entity.

Many sentences that we have used for training are complex
in structure, having more than one source/target entities and

interaction words. So, the 1-EEMA score alone would not be
a precise evaluation of the model performances. However,
the consistent increase in performance from 1-EEMA to
3-EEMA scores in all case studies coupled with the fact,
that in most cases, the labelled output entity lies within the
top three retrievals (3-EEMA score) of ARM, provides us
with ample evidence that the ARM model is capable of
understanding the grammatical structure of a sentence by
successfully associating and thereby extracting interacting
entities.

For practical use, ARMcan be integrated with tasks such as
NER to normalise entities and document triage in a pipeline.
The NER task can extract named entities from a given text.
The document triage task, popularised by the BioCreative
VI challenge, determines whether a piece of text contains
information relevant to an interaction triplet [11]. The clas-
sification approach for RE also uses these as pre-processing
approaches. An auxiliary advantage of ARM is that the output
itself can be visualised and interpreted. ARM extracts the
positional distribution of attention over the input sentence,
given an input entity in the form of a signal. This provides
an easy interpretation of the output. In classification-oriented
attention-based models, this can be achieved by extracting
and visualising the attention matrix for each data point.
In addition to this, ARM is much faster compared to pre-
trained attention based models such as BioBERT, which is
often employed for the classification task.

V. CONCLUSION
The ARM approach for RE provides an alternative to the
usual deep-learning based classification approach for RE.
The key philosophy behind the ARM approach is to train
a model to understand the linguistic context between two
related entities in a text, rather than classifying the text
based on predefined annotations. ARM provides a flexible
framework for a modeller to customise their model, with
the opportunity to integrate expert knowledge on interaction
keywords. This enables modellers to build their models as
per their choice of annotations rather than using predefined
annotations, which can be evidently ambiguous, even among
expert annotators. ARM provides an opportunity to learn
from integrated data with diverse entity types and contents.
This facilitates data integration across different datasets.
Furthermore, unlike its classification-based counterpart,
ARM can extract relationships, that might be unannotated in
the training data.

AVAILABILITY OF CODE
The computations were performed on Intel(R) Xeon(R)
Gold 6142 CPU @ 2.60GHz with 8 Nvidia TU102 graphic
processors. The study was conducted using Python3 and
Jupyter-Notebooks. We provide the codes here.
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