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ABSTRACT In this paper, a novel cooperative charging strategy for electric vehicles tuned by a constraint
programming algorithm has been proposed. The implemented model handles heterogeneous and large-scale
residential areas by not only reducing the EV peak charging load, but also improving the user satisfaction
levels. The evaluation of the capability of the proposed model at both individual and aggregated levels is
considered through various scenarios. The simulated results prove the potential of the proposed cooperative
EV strategy in outperforming the uncoordinated EV charging model in terms of peak-to-average ratio
reduction, user satisfaction level, and load factor improvement in addition to the suppression of the peak
load increase. Furthermore, comparative analysis with existing models shows that the proposed algorithm

can manage more complex policies and is performed significantly and efficiently.

INDEX TERMS EV charging control, coordinated management, peak-to-average ratio, user satisfaction.

I. INTRODUCTION

The major challenge of renewable energy integration is
to control the intermittent power generation as much as
possible under the hazard of continuously and short-term
changing weather conditions (minutes or seconds). Demand-
side management (DSM) is a technique for balancing the
electric power system by adjusting energy demand to match
available electrical supply [1]. Demand response (DR) is
a process of DSM that alleviates grid supply by providing
an opportunity for users to take part in the power grid
management by selectively reducing or shifting their smart
loads in response to electricity pricing rates and ancillary
service stress states [2]. Various DR methods and surveys are
presented in the literature [3]-[5]. Direct load control (DLC)
in the residential sector is the most widely discussed DR
method for scheduling aggregated power of a group of
participants [6], in which the utility remotely switches
off electrical loads based on user preferences, such as
electric water heaters (EWH), heating, ventilation and air-
conditioning (HVAC) unit, clothes dryer system (CD), and
electric vehicle(EV). As electric vehicles (EVs) present a
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great rate in the personal transportation market [7], EV load
can be modeled as critical load (controllable), which could
be shifted to alternative time periods to reach different
goals [8]. Their uncoordinated charging behaviors will have
a major negative impact on the power quality, the resiliency,
and economics of the distribution grid [9] e.g. significant
transformer overloading, indie circuit faults, and potential
feeder congestion. Hence, the impact of EV charging on the
infrastructure of the electric power system has been evaluated
in multiple studies, and can be commonly outlined in two
main effects: improving the shape of the energy demand
profile (e.g. minimizing the peak load, and PAR) [10],
or using the EV as a distributed energy storage appliance that
could supply the electricity demand to user buildings or to
the grid during on-peak periods to minimize energy bills and
losses [11], [12]. Both contributions can significantly impact
electricity generation, transmission, as well as distribution
systems [9]. In the present study, the focus is on the reducing
of the peak load, and PAR.

In the literature, the control of EV charging strategies is
divided into three main groups: clustering, forecasting, and
scheduling [13]. Their common objective is to reduce the
impact of high EV charging penetration at the distribution
level. Clustering approaches are used to examine the profiles
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of EV charging demand and data mining. In particular, it is
based on gathering the corresponding daily demand profiles
into identical clusters. Moreover, clustering methods are used
to generate demand profiles that group consumer require-
ments based on their similarities [13], [14]. Forecasting
methods have also been used for EV charging management
and monitoring [15], [16]. Generally, it depends on the time
horizon. Short-time strategies are applied for EV charging
forecasting within one week to one year, medium-term
strategies are applied for EV charging forecasting within
one week to one year, or long-term EV charging models
that concern one year to many years of applications [17].
In the literature, substantial research has been addressed
on scheduling methods for EV charging control tasks
[18]-[20]. Generally, studies for multiple EV charging
schedules are divided into centralized cooperative mech-
anisms [21], [22], and decentralized cooperative mecha-
nisms [23], [24]. In one way, in the centralized schemes, the
EV charging process of each participant is executed directly
by the charging system manager. Therefore, the manager
collects the charging data (charging time and rate) and sets a
universal plan to arrange the EV charging operation. In [25],
the authors employed a fuzzy control algorithm to smooth
load profile and consider smart charging of EVs in the
parking. The proposed scheduling minimized the transformer
peak load, and smooth the load profile in a centralized
manner. However, the high computational complexity of
the model makes it incapable of handling large-scale EV
charging coordination. The work presented in [22] proposed
a hierarchical charging control of electric vehicles to ensure
consumers’ trip necessities. An optimal power allocation for
a look-ahead time is developed based on the grid service’s
needs. The results demonstrate a reduction in computational
complexity and communication levels compared with exist-
ing methods. While a coordinated stochastic optimization
for system travel is envisioned in future works. Another
centralized coordination of EV charging schemes through
various aggregators is presented in [21]. Simulation results
demonstrate electricity cost minimization and peak load
control. On the other hand, in the decentralized cooperative
strategies, each signal consumer determines its EV charging
rate based on the local load controlled by the control
operation center. Unlike centralized schemes, each owner
is allowed to improve its system benefits without the need
for a central operator [24], [26]. In our previous works
[27]1-[29], the impact of demand-side management strategies
were evaluated for all home appliances. Although the
economic aspects and profile of power systems were largely
evaluated and effectively achieved, customer comfort was
not taken into consideration. Therefore, the present study is
conducted to analyze specifically the impact of EV load on
the whole demand profile, including the user’s satisfaction
level.

Evs’ charging strategies were presented in various works
in the literature in which an optimal charging rate of each
EV is adopted [30]-[34]. Dogan, Ahmet, et al.,in [30]
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present how the charging strategies of EVs are impacting the
increase of peak load and improvement of load factor at a
distribution network level. For this, the authors investigate
the different EV penetration levels and charging modes
to analyze the effectiveness of the proposed strategies.
The resulting simulation demonstrated a negative impact
on the peak load increase. Moreover, the EV charging
protocol considered neither even a coordinated scheme, nor
an optimization model. Jang, Han Seung, et al., proposed
in [31] a coordinated approach for EV charging in large-scale
residential areas in order to maintain a common profit
in total power consumption. However, the study did not
include the effect of different EV penetration rates on
solving the scheduling charging problem. Despite the fact
that the works presented in [30], [31]demonstrate significant
performance, system contributions were considered simple
protocols, because they did not propose realistic and complex
policies when EV penetration did not exceed 50% of the total
areas. Consequently, this does not guarantee that the proposed
strategy performs well with 100% of the EV penetration level.
In other words, when all consumers possess their own EV,
this will yield to increase the computational complexity of the
proposed EV charging rate. In this paper, a novel optimal EV
charging control considering common profits is proposed.

The contributions of this study can be summarized in three
main aspects:

-A high efficient coordinated model for large-scale
residential areas with heterogeneous charging targets is
established to evaluate peak-to-average ratio (PAR), user
dissatisfaction reduction, and load factor increase.

-An EV charging priority level is created to coordinate the
charging cycle of each EV based on its emergency state and
the remaining time before the user’s departure.

-The response status of each EV per minute is determined
using a constraint programming (CP) model developed by
artificial intelligence and provides more constraints and
complexity than the existing work.

The rest of this paper is organized as follows. Section.II
presents a model of the considered system. The pro-
posed cooperative charging strategy (CCS) is presented in
Section.IIl. Section.IV is dedicated to the studied cases
and analysis of results. Then, the main conclusions are
highlighted in Section.V.

Il. MODEL OF THE AGGREGATED SYSTEM

Consider a typical model of the neighborhood residential area
network (NRAN) that is composed of a total of participants
arranged with a set of EV identified as i = {1,...,N},
and a system manager (SM) that controls and schedules the
consumed electricity demand presented by (1).

ltulal(t) = ZEV (t) + lother(t) (1)

Let gy (¢) and lymer(t), respectively, denote the EV charging
demand and other owned loads (i.e., energy consumed by
other building types of appliances during the t — th time
slot). These former include HVAC systems, EWH units, CDs,
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lighting, and refrigerators. Although the huge capacity of the
grid can supply a maximum demand capacity, the NRAN’s
complex relies on contracting with a system manager to set a
demand capacity limit called the restricted demand capacity
him it- Accordingly, this constraint requires an upper limit to
the total energy consumed in any time slot as expressed in (2):

ltotal(t) < liim it (2)

At the individual level, EV charging parameters are fed into
the system manager through a decentralized communication
layer in order to optimize the on/off plug-in status based on a
coordinated scheduling mechanism. The on-off EV charging
decision D;(¢) is maintained by a binary variable, i.e., 1 if the
EV is plug-in, otherwise it equals 0, as represented in(3).

1, EV;i ted to the grid
D,-(t):{ ; 1s connected to the gri

3
0, EV; is disconneted from grid 3)
In this system model, each i — th EV is required to charge
during a number of time slots Ty, that is used as input
variable for system scheduling. It is calculated as follows:

Tred — |:77battery : (Socfdeal - Soci,t):|

4
! Pry - At - 100 )
SoCi+1 = (SoCi; + Ppy X Epar x At) =100 (5)

where:

Socfde“l : The desired state of charge of the i — th EV unit
before the departure.

Soc; ;: State of charge level of the i —th EV unit at the ¢ — th
time period.

Nbarrery: Capacity of the battery (in kWh).

&par: The effciency of EV’s battery.

At: Time step that is considered as 1 minute is in this study.

Pgy: the charging power of an EV (in kW).

The EV charging level is assumed to be maintained at
a certain target range Socfdml that has been settled by its
owner. For this, at the first level of the coordinated scheduling
method, the SM calculates the period of stay 7;"* of each EV

to require its charging cycle. Timy is calculated as (6)

T:me — pout _ tint (6)

1 4 1

where:
t{": Arriving time of the i — th EV in min.
1?*': Leaving time of the i — th EV in min.

Ill. PROPOSED EVs CHARGING COORDINATION
STRUCTURE

To enhance system scheduling benefits, a smart coordinated
charging strategy is proposed. The developed algorithm
performs coordinated control of large-scale participants to
provide EVs peak load minimization and users’ satisfaction
improvement. As can be seen in Figure. 1, the above proposed
scheduling model has a total number of 1000 households
with 10%, 30%, 50%, and 100% of EV penetration levels.
For example, a 50% EV penetration level indicates that
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FIGURE 1. Flow chart of the proposed collective charging strategy.

500 consumers have their own EVs in NRAN within
1000 houses. It is important to note that the coordinated
management of an optimal scheduling model based on the
CP approach involves satisfying several constraints and
common objectives. In the proposed strategy two main
indexes are defined: emergency charging index """
and EV charging priority level Pr;. The former one sorts the
EV charging time slots depending on the ratio between the EV
stay period and the required charging time slots, and the latter
one is used to determine the EV charging scheduling vector
depending on their need level as expressed in (7) and (8),
respectively.

Tstay
’BiEmergency — Tl,rgq (7)
i
Pr = {Pri,...,PrN} (8)

Step1: Data Collection
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FIGURE 2. Main steps of CP optimization.

As a first step, the system collects EV charging load
information for the following day. These include the arrival
tl.i”t and departure time 7 of each user, the charging rate that
is assumed to be the same for all the consumers Pgy, and the
initial and required state of charge SoCii"ili“l, Socfde“l . Noting
that each consumer sets its Socfde“l to satisfy the proposed
coordination strategy.

Step 2: Determining the scheduling key parameters

Initially, the system calculates the stay time slots and the
required period to fully charge each i — th EV’s battery
according to (4) and (6).Then, a coefficient is calculated
according to (7). Finally, the algorithm sorts the emergency
charging indexes in ascending order to give faster-charging
preferences to users with a smaller Bgpergency- Thereafter,
BEmergency 1s divided into two categories; ﬂ;‘ rgem(t) and
,B;W’"“l (t) as follows:

-A set of emergency charging indexes for urgent EVs:

IBiEmergency — {ﬂ?rgent(t)’ l.fﬂiEmergency <1, Tismy < Tireq’ Vl‘}
©))
-A set of emergency charging indexes for normal EVs
ﬂfmergency — {ﬂinormal(t)’ l-fﬂinormal > I,Tismy > Tireq’ Vt}
(10)

Step 3: Conducting the target priority time slot for the EV’s
charging cycle

After categorizing the EVs load into two subsets, the
charging priorities are selected according to the index Pr,. The
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FIGURE 4. The departure time of EVs during a single day.

EV with a smaller 87""**"®” should obtain a higher charging
preference Pr,. In other words, a priority management vector
is generated using (8), in which the i — A bit ﬁf mergency
indicates the updated charging schedule order.

lpeak

PAR = (11)

lavemge

Step 4: Optimization statement

Following the proposed CCS algorithm, there are defined
sub-objectives to comply with (1) the EV’ target state of
charge should be satisfied before consumer departure time,
(2) minimize the PAR expressed in (11) at both individual and
NRAN levels, (3) improve the user satisfaction comfort level,
and (4) avoid generating rebound peaks after the proposed
schedules. For this, a constraint programming optimization
is executed at this level to optimally indicate the EV status,
including the proposed constraints and targets as will be
explained in the next subsection. To this end, if the total
maximum demand capacity exceeds the urgent EVs charging
demand, the system manager starts to plug in EVs that need
charging at the present time slot based on their priorities.
Otherwise, only EVs with higher charging preference levels
can be charged. Thereafter, the EV satisfaction index will be
verified to judge if all EV loads are satisfied or not. If yes,
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FIGURE 5. Peak-to-average ratio (PAR) in the NRAN system.

then CCS must be ended. If no, step 2 is executed again to
select the following required time slot with the updated EV
charging data. Hence,the objective function is formulated as
follows:

Minimize ED (12)
in which
H 14407 N A
ED=Y Y [Z Pey x X', + > Ph, x Yj},,} (13)
h=1 t=1 Li=1 ’ a=1
where:

A is the total number of electrical appliances excluding EV
units

H is the total number of buildings in the aggregated
community.

Xl{’t represents a binary variable denoting the responsive
decision of i — th EV at r — th time slot.

1, SoCi, < SoCi% and 1" <t <t

h
xh — . - (14)
L 0, SoCi; > Sonde“l, and 1" <t <t

Y(f’l represents a binary variable denoting the responsive
decision of «-th appliance at t — th time slot. Pgy is the
average charging power of an EV.

PZ’ , is the Rated power of an «-th unit.
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Y};VAC’I is the responsive decision variable of the HVAC
load. It depends on user-specified limits (equation.(15)). The
room temperature should be maintained between the upper
T™ and lower T™" room temperature limits.

T < T, , < TMin (15)

YgWH’[ is the responsive decision variable of the EWH.
Similar to the thermal model of an HVAC load, the heat
transfer operation of an EWH load is also depending
on user-specified thresholds as presented in (16). The
water temperature should be maintained within between
user-specified minimum and maximum water temperature;
Tmax Tmin_respectively.

T L T, , < T (16)

YgD , 1s the responsive decision variable of the CD system.
As demonstrated in (17), the CD is generally operated about
Atyeq, and at a consumer-specified start time f¢p.

Atyee < Atpeg, and t > tcp a7

where Af,. denotes the accumulated drying cycle.
Appliances-level datasets are given in details extracted
from [28], [29].
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FIGURE 6. Average dissatisfaction level in the NRAN system.

A. SOLUTION METHODOLOGY

As explained in the preceding section, an optimal schedul-
ing scheme is assessed in terms of PAR minimization,
users’ satisfaction improvement, and load factor increase.
Moreover, the computational complexity increases with the
heterogeneous conditions of consumers (departure time,
required state of charge, etc.). To perform all of these,
CP-based scheduling is used to solve these problems due to its
capacity to handle combinatorial and large-scale optimization
problems with a huge variety of formatting constraints [35].
To deal with the constraint satisfaction problem, there is a
special triple T = (X; D; C) to be defined, where:

X represents a set of decision variables (corresponds to an
EV activity task).

D denotes a sequence of domains (includes the EV start
time, departure time, and length of EV task).

C corresponds to the set of constraints limiting the values
of the decision variables.

Commonly, the backtracking search algorithm is the most
used for solving a constraint scheduling programming (CSP)
problem [36]. Indeed, if a decision variable takes a value that
keeps the problem’s constraints, a solution has been found.
Otherwise, a backtracking step of one or more assignations
is required (constraint violation). Figure.2 presents a simple
scheme for CSP solving process.
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In the second block of the flowchart.2, domain propagation
essentially arises where each constraint reduces systemati-
cally the domains of the variables (search space). After the
constraint propagation step, two possibilities occur. In other
words, either a feasible solution is found or not. In the case
of acquisition of a solution, the algorithm verifies if all limits
are required, and then the basic process is repeated.

IV. CASE STUDIES AND SIMULATION RESULT ANALYSIS

To examine the impact of coordinated EV charging schedul-
ing on the total load demand, a simulation is required. The
proposed CCS is carried out with a slotted time of 24 h and
an on-off status based on system manager decisions. One
day cycle starts from 6 A.M of the current day to 6 A.M
of the following day with 1440 time slots per day in the
total (time slot interval of 1 min), assuming that the NRAN
involved 1000 participants with different proportions of
EVs penetration. According to [37] around 5:30 P.M is the
standard EV arrival time with one hour of deviation while
the objective state of charge Socfd“’“l is randomly selected
and distributed as shown in Figure.3, with the proportion
case of 100% EV penetration. The distribution of " is
illustrated in Figure.4. Hence, for the comparison with the
existing work, thermal and technical data of individual home
appliances are extracted from [28], [29] and are accessed
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FIGURE 7. Number of EVs completely charged under the restricted demand capacity.

in [30]. Although similar devices are considered for all users
in this study, the proposed approach can include different load
profiles as tested in [28].The study is carried out on a typical
day in May. The proposed optimization scheme is solved
using open-source software for combinatorial optimization
(OR-Tools) using a constraint programming solver that is
programmed in C#.

To validate the effectiveness of the proposed approach in
terms of peak load reduction and users’ satisfaction level
improvement, several scenarios are examined: The first one
is selfish charging which refers to the charging methodology
in which EVs start charging at random time periods
[tii"t tl."’”] and are disconnected when their batteries are fully
charged,(uncoordinated EV charging model). The second
scenario is the proposed coordinated scheduling scheme, and
the last one refers to that conventional charging scheme in
which the restricted power is not taken into consideration
and EVs are connected to the grid at a constant charging
power once arrived building area. For quantitative analysis
of the impact of EV charging scheduling on the smoothness
level of a load profile, we measure PAR. It is defined as
the ratio of maximum aggregate demand power Ilpeq; to
average aggregate consumed power lgyerage. The PAR of
the proposed coordination strategy compared to two other
scenarios can be plotted for seven sets of maximum power
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capacity using different EV penetration levels, as shown
in Figure.(5a),(5b),(5c), and (5d). It is clear that using the
proposed coordination model and uncoordinated scheme,
the PAR increases with [y ;; increases. However, the
conventional model takes a constant PAR value for each
EV penetration level, which reveals the incompetency of
this model to control EV charging in the whole community.
Moreover, comparing the different simulation cases, it is
noticed that the curve of PAR using the proposed model
presents the lowest value of PAR and its increase ramp is
the smallest. Obviously, this result infers that the proposed
coordination strategy is completely effective for decreasing
the peak load level compared to two other models.

In another way, we should measure the required Socfde“l
in the studied scenarios. For example, when the CCS system
coordinates a large community with 1000 EVs under a
smaller maximum power capacity (3500 kW-4500 kW),
this may be more complex to satisfy the whole Socfde“l of
all 1000 EVs. To evaluate this dissatisfaction level, a defined
SoCHis of i — th EV is given in (18).

SoCs = Socided! _ Soc;(10") (18)

where Soc;(t"") and Socfd“’l denote the required SoC
level (50%-100%) and the SoC level (0%- 100%) at the
left of the i — th EV, respectively. The average SoCid”
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FIGURE 8. Typical three EVs charging power spectra (case of N = 1000 EVs).

of all EV penetration levels of the proposed scheduling
strategy reduced as I}y increased, and come closer to
Zero Soleﬁs over limir 7000 kW, as shown in
Figure.(6a),(6b),(6c), and (6d).

Moreover, the simulation analysis of the proposed collec-
tive scheduling methodology demonstrates that the PAR and
the SoCl.dis level have an exchange relationship with each
other. In other words, a higher PAR value results from a
smaller SoCidis level. For example, with a lji, ;; = 5000 kW,
the PAR of the proposed scheduling model with 1000 EVs
as shown in Figure.5a equals 1,84, which is reduced by 0,31
and 0,11, respectively,when compared to the conventional
EV charging model and the uncoordinated EV charging.
In addition, as illustrated in Figure.(7d), more than 630 EVs
are accommodated to a complete state of charge (achieving
their Soci®@') which is mainly higher with 582 EVs than the
uncoordinated EV charging scheme.
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To prove the efficiency of the proposed EV charging
strategy on the accuracy of both the individual and aggregated
results, different spectra of three typical EVs are chosen from
the case illustrated in Figure. (8a) and (8b). It is obvious
from Figure.8b that all the three EVs are started charging
randomly at the 10th time slot (as soon as to their time
arrivals). The EV1, EV2, and EV3 are connected to the grid
with Soc,'(tl.i"’ ) equal to 37,5% and charged up to their required
Socideal = 80%, Sock*! = 100%, and Soci**’ = 100%
respectively. However, from Figure.8a it can be found that
the first EV based on the proposed scheme has a similar
power spectrum using the uncoordinated EV charging model
due to its emergency coefficient and priority using (13). The
EV2 postpones charging until the 11th hour and disconnects
from the grid at the 15th hour with the Socéde“l of 100%.
Whereas, the third EV is plugged into the grid at the 16th
time slot and finishes its charging cycle at the 1th hour with
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TABLE 1. Comparison of proposed model performances with existing method.

EV penetration Peak load increase Load factor improvement

Proposed model [30] Proposed model [30]

10% 0 from 0 to 10,296 5% 5%

30% 0 from 0 to 0,169 from 12% to 14% 14%

50% 0 0 from 16% to 19% 14%
100% 0 not studied from 24% to 32% | not studied

a full charge battery soc-target Socgde“l = 100%. Therefore,
it is clear that the power spectrums of EV2 and EV3 based
on the proposed coordinated charging model are thoroughly
different from those based on uncoordinated EV charging
models, that alleviate quietly the pressure on the grid.
Figure.9 illustrates another series of simulation results
when there are one thousand EVs involved, the distribution
of total charging power under two EV charging scheduling
models, in addition to the load profile of other home
appliances. In the case of using an uncoordinated EV
charging scheme, all the EVs are charged as soon as they
are at home, so that the load power can be successfully
allocated to the same periods of time. As a result, it generates
a high peak value of total load power of. On the other
hand, the proposed coordination strategy shows significant
schedules by allocating the EV charging power during the
valley hours of the total power profile, so as to successfully
reduce the peak value of the total EVs load power from
3600 kW to 1202,4 kW, resulting in a significant minimizing
rate of 66,6%. Figure.9 shows a comparison of peak load
demand between the uncoordinated EV charging protocol and
CCS model considering all the lji, j» runs. From Figure.(10),
it is observed that the longer whisker is on the maximum,
indicating a longer tail towards the highest values, which in
turn suggests that around 50% of load profiles correspond to
the more extreme values of peak load demand. Contrarily,
as shown in Figure.(10b) the CCS algorithm is capable
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of yielding the most uniform minimum compared to the
uncoordinated EV charging model. In Figure.11, load factors
are summarized in the 3-D plot for various EV penetration
levels and different /iy, using the implemented strategy
CCS. Tt illustrates the stress on the distribution grid and
the effects of coordinated EV charging on the electricity
demand profile. In particular, it is clear that the load factor is
improved with the restricted demand capacity and achieved
high values in 100% of EV penetration. These show the high
effectiveness of the proposed model in reducing peak demand
load, especially with a large number of EVs.

A. PERFORMANCES COMPARISON

To highlight the contributions of the presented research,
a comparison with a previous counterpart of the main metrics
at the community level can then be derived in this subsection
and depicted in Table.1.

1) PEAK LOAD INCREASE
The gap between the daily peak load before the EV charging
management and after applying the proposed model.

2) LOAD FACTOR IMPROVEMENT
The increased rate of load factor after applying the proposed
EV charging strategy.

In summary, the impact of different penetration degrees
of EV on the increase of maximum demand power and load
factor improvement are listed in Table 1. It clearly shows that

VOLUME 10, 2022
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the presented CCS model offers higher efficiency than the
scheme established in [30]. As demonstraed, the proportion
between the conventional and the proposed models can
achieve 32% in the load factor maximization rate using
the developed CCS algorithm. In addition, in [30] the
EV charging strategy is negatively affecting the peak load
demand by creating a peak load increase with more than
10 kW. In contrary, the adopted model achieves O kw in the
peak load increase rate. With no doubt, these results highlight
the benefits of the CCS to manage large-scale residential
areas with even than 1000 EVs.
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V. CONCLUSION

This paper presented an effective coordinated EV charging
model for a largely residential area with above 1000 EVs
that is expected to achieve 100% of the EV penetration
level. A system manager controls the charging cycles under
heterogeneous EVs charging targets without exceeding the
system power constraints. CP optimization-based technique
was used for reaching the optimum EV load profile with
two main parameters to conduct the charging schedules, viz.,
emergency charging index, and EV charging priority level.
The resulting simulations are conducted for several cases to
demonstrate the applicability of the proposed CCS model.
The results reveal that the charging strategy with the proposed
collective charging strategy algorithm can greatly remove the
negative impacts on power grids of total peak load increase
from the EV loads by achieving 0% of the total peak load
raise after implementing CCS. Furthermore, the proposed
model improves the load factor by 32%, accommodates
more than 930 EVs to a complete charge, and ensures 0%
of end-users dissatisfaction level. Moreover, the presented
model is much better in handling the complexity of high and
multiple EV penetration levels and achieving high efficient
performances.

Future extensions of this study could explore the opportu-
nity of considering the EV’s batteries as a distributed energy
storage device to limit the grid dependence according. For
this purpose, introducing the uncertainty of renewable energy
generation constraints, and the EV battery life simultaneously
with the user preferences and the power demand patterns
in the optimization objective is envisaged. In addition,
a comparison of users’ profits in the case of presence and
absence of EV to the grid interactions will be assessed
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