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ABSTRACT Accurate vessel trajectory prediction is essential for maritime traffic control and management.
In addition to collision avoidance, accurate vessel trajectory prediction can help in planning navigation
routes, shortening the sailing distance, and increasing navigation efficiency. Vessel trajectory prediction
with automatic identification system (AIS) data has thus attracted considerable attention in the maritime
industry. Original AIS data may contain noise, which limits their application in real-world maritime traffic
management. To overcome this problem, this study proposes a vessel trajectory prediction method that
combines data denoising and a deep learning prediction model. In this method, data denoising is realized
in three steps: trajectory separation, data denoising, and standardization. First, outliers from the original
AIS data samples are removed, after which the moving average model is employed to further clean up the
data; finally the denoised data are standardized into uniformly distributed time-series data. Bidirectional
long short-term memory (Bi-LSTM) is then applied for vessel trajectory prediction. The performance of
the proposed prediction model was verified using data on the trajectories of ten vessels and comparing the
results obtained with those obtained using other prediction models (exponential smoothing, autoregressive
integrated moving average, support vector regression, recurrent neural network, and LSTM models); the
trajectory data were downloaded from a public AIS database. The experimental results revealed that model
prediction accuracy increased after the data denoising process. Specifically, the Bi-LSTM model had the
lowest mean absolute error, mean absolute percentage error, and root-mean-square error, demonstrating that
the proposed method is highly efficient for trajectory prediction and can help vessel traffic controllers predict
accurate vessel tracks; this would enable them to take early preventive measures to avoid collisions and thus
improve the efficiency and safety of maritime traffic.

INDEX TERMS Deep learning, bidirectional long short-term memory, trajectory prediction, collision
avoidance.

I. INTRODUCTION
Approximately 71% of the Earth’s surface is covered by
water, and only approximately 21% of the surface is land.
Taiwan is an island country located at the intersection of
Northeast Asia and Southeast Asia. The eastern half of
Taiwan is close to the largest ocean in the world. Oil
tankers, freighters, merchant vessels, and other vessels
often travel across the surrounding Pacific Ocean. However,
because vessels frequently traverse the western Pacific Ocean
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international trade routes and because of frequent and pros-
perous fishing activities, the marine traffic flow around
Taiwan is of medium to high complexity. According to data
from the Lloyd’s Register Casualty Returns, the Taiwan
sea area is classified as a moderate-risk environment [1].
Moreover, according to relevant statistical data from the
Ministry of Transportation and Communications R.O.C. and
the Coast Guard Administration, Ocean Affairs Council,
in recent years, the average number of marine vessel disasters
that occur in the waters around Taiwan has reached 100 [2].
Maritime transportation constitutes more than 90% of the
global cargo trade. Because maritime traffic accidents are
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likely to cause considerable loss of life and environmental
damage, improving maritime traffic safety has become a
priority. The safety of ships sailing at sea is a key problem
in maritime areas or ports with high traffic density and com-
plicated conditions. A vessel traffic service (VTS), whose
purpose is to accurately and effectively monitor and predict
vessel trajectories (including in real time), provides valuable
technical support for the early warning of marine traffic
accidents [3]. To improve the safety of ships sailing in an
environment with complex and ever-changing sea conditions,
it is necessary to provide trajectory prediction and danger
warning functions to a ship’s intelligent navigation system.
However, the maritime navigation environment is prone to
many accidents, especially in crowded port waters, and it is
not easy to predict moving targets.

The safety and integrity of marine vessels against hazards
should be maintained when planning the ship’s course. Con-
sidering this, the International Maritime Organization (IMO)
proposes the application of various navigation systems, such
as a bridge navigational watch alarm (BNWAS), automatic
identification system (AIS), and electronic chart display and
information (ECDIS), as tools to support the officers on
watch (OOWs). Information collected by an automatic iden-
tification system (AIS) can help prevent maritime accidents
and improve maritime situational awareness. An AIS collects
all types of maritime surveillance data to provide accurate
early warning information, including maritime traffic spa-
tial information, to maritime traffic operators and provide
support for various navigation operation decisions. Thus,
an AIS can obtain information in a timely manner along
the vessel. Studies have demonstrated that AIS data have a
major impact on maritime traffic safety analysis. Therefore,
improving the quality of AIS data has become an active
topic inmaritime informatics research [4]–[6]. The popularity
of AISs has led to the recording and storage of a large
quantity of vessel navigation data; nearly a trillion pieces of
information are stored every day. However, this large quan-
tity of data includes abnormal data caused by factors such
as signal interference and mechanical failure [7]. Methods
for processing abnormal data from AISs involve the use of
statistics [8], unsupervised machine learning, and artificial
neural networks [9], [10]. In addition, many methods, the-
ories, and technologies involving the use of massive data,
data exploration, and machine learning have been proposed.
Developing an approach for efficiently using the informa-
tion obtained to increase maritime transportation intelligence
has become critical [11], [12]. However, the AIS onboard
a vessel usually adds one piece of information every 2 s to
3 min, which results in an extremely large AIS dataset; this
also engenders the data redundancy problem, which makes
it difficult to use the data for research and practical applica-
tions. Data sparsity and erroneous information automatically
extracted from unstructured or semistructured sources may
result in the creation of the same product two or more times
(i.e., duplicates). Product duplicates are not only one of
the main sources of bad product experiences but also make

product matching harder as multiple entities of the same
product exist with overlapping information. The duplicates
can have many fatal effects, including preventing machine
learning algorithms from discovering important consistencies
in product representations [13].

If repeated data is only generated 2–3 times, it will make
the model more significant because the variance would be
reduced. However, we should ideally remove repeated data.
Duplicates are an extreme case of nonrandom sampling, and
they introduce bias in the fitted model.

Therefore, data compression technology is highly crucial
in an AIS [14]–[16]. Automation is more challenging at sea
than it is at land. Unlike cars on the road, sea vessels can
travel in all directions. In addition, compared with car traffic
rules, rules stipulated by the Convention on the International
Regulations for Preventing Collisions at Sea are less quan-
tifiable and their implementation relies more on experience;
this thus increases the difficulty of predicting the navigation
behavior of vessels. Numerous studies have presentedmodels
and procedures for track prediction using AIS data; exam-
ples of such models and procedures include a Kalman filter
model [17], Markov model [18], optimal route estimation
based on clustering, and an ant colony algorithm [19]. Some
researchers also used neural networks to predict vessel tra-
jectories without prior knowledge [20]. The Multihypothesis
of ship navigation addresses the occasion where ships may
have multiple shipping lanes. Multihypothesis means a ship
may choose to follow one of two or more shipping lanes,
which may lead to different predictions. Ship track prediction
may also classify the initial ships by clustering and predict
a similar navigation trajectory to achieve a more accurate
trajectory prediction [21].

Recent developments in deep learning methods, such as
deep neural networks [22] (including convolutional neural
networks [23] and a recurrent neural networks (RNNs) [24]),
have had a considerable impact in the fields of computer
vision, natural language processing, and speech recogni-
tion [25]. Long short-term memory (LSTM) can be used
to model a complex function and extract various features
from a large dataset [26]. Bidirectional LSTM (Bi-LSTM)
used to predict DNA-Protein binding [27]. However, studies
on the use of deep learning methods for vessel trajectory
prediction are scarce; only a few recent studies have explored
the use of deep learning methods for vessel trajectory
prediction [28]–[31].

Inspired by the successful use of deep learning methods
in sequence prediction, we investigated whether an RNN
model can be employed for vessel track prediction. In this
study, a method for vessel trajectory denoising and vessel
trajectory prediction was proposed for determining future
vessel trajectories according to the given AIS observation
sequence. The proposed method is based on the bidirectional
LSTM (Bi-LSTM) structure, which has become an effec-
tive and scalable structure for sequence prediction. Consid-
ering the lag between the input sample and the output to
be predicted, the ability of an LSTM network to learn data
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with long-term time dependence renders it ideal for use in
the trajectory prediction task [26]. The main contributions
of this study are as follows: (1) cleaning of the original
AIS data through trajectory separation, outlier deletion, and
data standardization; (2) development of a Bi-LSTM model
for predicting the trajectory of a vessel using the denoised
AIS data; (3) verification of the performance of the proposed
model using the trajectory of ten vessels. This study can help
vessel traffic controllers accurately predict the trajectory of
vessels, which would allow them to take preventive measures
to avoid collisions and improve the efficiency and safety of
maritime traffic.

II. RELATED WORK
Trajectory prediction methods based on statistical methods
are commonly used in the maritime industry, among which
methods based on Gaussian process regression are the most
common. Anderson et al. [32] used time as the indepen-
dent variable, obtained the measured value in discrete time,
and regarded the trajectory as a one-dimensional Gaussian
process.

Neural networks are computing systems with intercon-
nected nodes that operate akin to neurons in the human brain.
By using algorithms, they can recognize hidden patterns
and correlations in raw data, cluster and classify them, and
continually learn and improve over time [33]. Neural net-
works are ideally suited to solving complex problems in real-
life situations. They can learn and model the relationships
between inputs and outputs that are nonlinear and complex;
make generalizations and inferences; reveal hidden relation-
ships, patterns, and predictions; and model highly volatile
data (such as time series data) [34]. Many types of neural
networks like Artificial Neural Network (ANN) [35]–[37],
Back-Propagation (BP) network [38], Multiple Layer Neural
Network(MLNN) [30], Convolutional Auto-Encoder Neural
Network (CAENN) [31] have been considered for the pre-
diction task. With the popularization of artificial intelligence,
neural networks have also been gradually applied to the field
of maritime navigation [39], [40]. Historical vessel trajectory
data and trajectory characteristics are used as an input for
the neural network to output the predicted vessel trajectory
data [40]. The clusters achieved by the first step were used to
train the artificial neural network (ANN) to predict the ves-
sels’ trajectories [41]. The results showed a 70% prediction
accuracy. Tang et al. constructed a neural network with two
long short-term memory (LSTM) layers, which can observe
the first 10 min of the vessel’s state to predict the location of
the vessel after 20min [28]. Tu et al. proposed a deep learning
method that integrates multiple ship movements, which can
be adapted to predict various categories of vessel trajectories
after training the neural network appropriately [42]. Overall,
the resulting accuracy varies as a function of ship categories,
which entails a need to improve the modeling approach.

A so-called sequence-to-sequence recurrent neural net-
workmodel has been developed to mesh and serialize a vessel
trajectory into a neural network model to predict the main

trajectory and arrival time [43]. An LSTM model was
introduced to predict the ship’s position by evaluating the
probability distribution, and it provides relatively accurate
results [28]. To improve the accuracy of the prediction
mechanisms, a multiple azimuth autonomous device sensor
has been used as an additional data input; however, this
approach requires a large amount of AIS data and is thus
computationally expensive [44]. Although large AIS histor-
ical data sets can be used for a reference to predict maritime
trajectories, good data quality is often not guaranteed and
data redundancy is a major problem. At present, there are
approximately 1600 AIS receivers on the coastline of more
than 150 countries and 65,000 ships sailing at a time [45].
Furthermore, abnormal data due to either environmental con-
ditions or technical problems are likely to generate significant
trajectory prediction errors [46], [9]. The most appropriate
balance between the use of large data sets (to train prediction
mechanisms well) with the minimization of redundant and
noisy data is still a crucial issue in practice [47].

The advantages of common statistical methods are that
they use data that occupy less storage space during the cal-
culation process, they can be used to realize short-term tra-
jectory prediction, and their calculation method is relatively
lightweight; these allow statistical methods to perform com-
parably with their deep learning counterparts. The disadvan-
tage is that the initial state of the model and violations of the
assumptions of ideal conditions greatly affect the prediction
results. However, unlike deep learning, statistical methods
cannot learn the effects of shallow reefs, islands, and other
spatial factors on the trajectory of ships. This feature makes
deep learning more practical in trajectory prediction. This
motivates our search for a trajectory prediction approach
that accounts for the impact of redundant and noisy data on
neural network training and that optimizes the input trajectory
dataset to improve the final quality of the modeling approach.
This led us to combine a neural network with a Bi-LSTM
framework, which is described as follows.

Murray and Perera proposed a novel dual linear autoen-
coder approach for predicting the trajectory of a selected
vessel [29]. Forti et al. explored neural sequence-to-sequence
models based on the LSTM encoder–decoder architecture
to effectively capture long-term temporal dependencies of
sequential AIS data and increase the overall predictive
power [48]. Although scholars have focused on long-term
track prediction (within 5–30 min) to completely prevent the
occurrence of short-range collisions, vessel trajectories are
affected by factors such as terrain features, ocean currents,
and wind direction; therefore, making accurate predictions is
difficult. Advances in artificial intelligence have facilitated
the development of intelligent transportation systems; the
main aim of these systems is to improve the safety and effi-
ciency of maritime traffic. Vessel collision avoidance is one
of the most important issues in marine safety. Vessel collision
avoidance involves controlling the direction in which the ves-
sel moves and obtaining reliable track prediction. Therefore,
track prediction should be accurate and instantaneous.
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AIS data are used to understand the historical behavior of a
vessel and thus predict its trajectory. An AIS stores numerous
vessel parameters in a database. The sailing mode of a vessel
is easier to determine through the AIS; therefore, a prediction
model using AIS data can be optimized [19], [49]. In this
study, by denoising and analyzing original AIS data, we could
reduce the complexity of the input prediction model data
and the calculation time, thereby increasing the prediction
accuracy; thus, fast and accurate vessel trajectory prediction
could be achieved and the efficiency and safety of maritime
traffic could be increased. The prediction performance of
the proposed model was compared with that of the ETS,
ARIMA, SIR, RNN, and LSTM models; the advantages and
disadvantages of each model were analyzed as well.

ETS is a data-averaging method that considers three fac-
tors: the error, trend, and season [50]. Moreover, the weight of
ETS-weighted data decays exponentially. The weight of the
latest data is the highest, with the weights decreasing with the
age of the data. However, because of the lack of calculation,
a considerable gap exists between the predicted value and
the observation value in ETS. The ARIMA model predicts
values by examining the differences between time-series val-
ues. The ARIMA model comprises three components: AR,
integrated (I), and MA components. It also includes a total of
three parameters: p, d , and q. To achieve accurate prediction
results, the ARIMA model must refer to a large quantity of
historical data to determine its optimal parameter combina-
tion and must determine the AR (p) and MA (q) parameters
through the Akaike information criterion and Bayesian infor-
mation criterion. In general, a statistical model cannot be used
to solve nonlinear problems easily. As displayed in Fig. 9, the
ETS and ARIMA models always exhibited the highest error
values in this study.

SVR is a classic machine learning method that has been
successfully used for bus passenger flow prediction [51],
Covid-19 case prediction in India [52], and vessel trajectory
analysis [53]. SVR has three hyperparameters: the regular-
ization parameter (C), kernel function bandwidth (σ ), and
ε-insensitive loss function (ε). Any changes to these parame-
ters would considerably affect the SVR prediction accuracy.
However, the automatic adjustment of the three hyperparame-
ters in SVR remains a challenge [54], [55]. The experimental
results reveal that the MAE, RMSE, and MAPE of the SVR
model were lower than those of the ETS and ARIMAmodels
when the default hyperparameters were used.

Owing to the transient memory, an RNN is suitable for
modeling time-series data. An RNN maintains an excitation
parameter vector for each time step, especially when short-
term correlations are included in the input data. However,
if gradient descent is used to train an RNN, it becomes
difficult for the RNN to learn the long-term dependence
in the input sequence because of the gradient vanishing
problem [51], [52]. Hochreiter and Schmidhuber developed
the LSTM architecture [26]; in an LSTM network, a spe-
cial structure and memory unit are adopted to maintain the
forward and backward transmission between layers within

a stable signal range in order to solve the problem of gradi-
ent vanishing and compensate for the inadequate long-term
dependence of the RNN on vessel trajectory data feature
extraction [24], [53].

An RNN has a fewer number of computations, fewer
neurons, and hidden layers when compared with an LSTM
network; however, an RNN has a higher error rate. Although
LSTM has an outstanding feature extraction ability, its unidi-
rectional memory propagation is not sufficient to achieve the
accuracy required for trajectory prediction tasks; therefore,
LSTM was not the most ideal method for this study, and its
error rate was similar to that of an RNN.

The relationship between past and future time points is
crucial for solving the time-series problem. The Bi-LSTM
model uses its special valve structure (gate) to control mem-
ory access; this gate allows the network to remember the
characteristics of long series data and obtain a model for the
relationship between future data points and past data points
through the bidirectional design, strengthen the original time
series, and make similar predictions for continuous data.
Therefore, the Bi-LSTM model can outperform an LSTM
network in solving nonlinear problems and can more effec-
tively fit a dataset; hence, it can be used in sequence analysis
and provide more accurate predictions.

FIGURE 1. Flowchart of study method.

III. METHOD
In this study, we applied data denoising along with a
Bi-LSTM model to predict vessel trajectories. The flowchart
of the study method is illustrated in Fig. 1. First, data on the
vessel trajectory, speed, heading, and other features were col-
lected. Subsequently, the data were cleaned using trajectory
separation, outlier deletion, and data standardization, after
which the Bi-LSTM model was employed to eliminate noise
in AIS trajectory prediction. The vessel trajectory predicted
by the Bi-LSTM model was then evaluated, and the results
were compared with those of other algorithms. Finally, the
predicted trajectory was comparedwith the original trajectory
data to verify the prediction efficiency of the algorithm.

A. COLLECTION OF DATA ON VESSEL TRAJECTORY,
SPEED, COURSE, AND OTHER FEATURES
Vessel track prediction was the main objective of this study.
The AIS dataset was downloaded from a public database; the
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data included the MMSI, speed over ground (SOG), course
over ground (COG), record time, and boat length. Finally, the
difference of vessel trajectory prediction after data denoising
is discussed.

B. DATA CLEANING THROUGH TRACK SEPARATION,
OUTLIER DELETION, AND DATA STANDARDIZATION
Vessel trajectory data (AIS data) are typically stored in a
database through data transmission and reception. Therefore,
abnormal AIS data must be removed before vessel track anal-
ysis. This study enhanced the quality of the collected vessel
trajectory data through data cleaning, data standardization,
and deduplication.

1) TRACK SEPARATION
The raw AIS dataset contained numerous ship features along
with the data of hundreds of ships. An MMSI can uniquely
identify ships; therefore, it can be used to separate the
AIS data samples of different ships. This helps us to improve
the accuracy of neural network prediction and to establish
different prediction models for different vessel trajectories.
We can predict the trajectories more accurately under similar
navigation modes [56].

The trajectory data of the same vessel are separated. In nav-
igable waters, owing to the large number of ships and the
constraints of the AIS working mechanism, network com-
munication is blocked. For example, the data that should
have been received 1 s ago is received after a delay of 1 s
by the network. This 1 s is the time interval. Thus, the
AIS cannot reserve or listen to idle time slots, causing the AIS
information to be delayed and the trajectory data of a given
ship to appear at larger intervals. Overall, a continuous vessel
trajectory is separated based on the timestamp information of
the AIS data.

2) DATA CLEANING
This study was conducted off the island of Taiwan, at a lati-
tude between 20◦ and 25◦ N and at a longitude between 120◦

and 123◦ E. RawAIS data collected from a single vessel were
cleaned through the deletion of duplicate tracks, deletion of
data abnormal COG and SOG data, deletion of abnormal
MMSI number data, and standardization of the remaining
data. As presented in Fig. 2, several factors can engender
erroneous or noisy data. Changes in direction (latitude) are
common among vessels; hence, to ensure the accuracy of
captured data, the moving average (MA) method should be
used for location data standardization during the cleaning
process.Moreover, manual inspection of the original AIS data
revealed abnormalities in the data regarding the speed of the
vessels, with some of the speeds exceeding >30 knots. Such
pieces of abnormal data were also deleted. To ensure ves-
sel safety, vessel speeds should be standardized for specific
navigation conditions. On the basis of the average navigation
direction of vessels, the average navigation direction of ves-
sels traveling in a region can be predicted.

3) DATA STANDARDIZATION
During data preprocessing, wandering or anchoring trajec-
tories in the original dataset were eliminated. We set the
minimum time interval of the trajectory to 1200 s because the
AIS information receiving interval is generally specified to
be 5–10 min and because an information interval higher than
20 min is used in the next stage of the navigation status [28].
Many noisy data points in the original data were eliminated.
The original ship dataset contained data on many floating
and anchored ships. The speed of these ships is affected
by wind and ocean currents and is often less than 1 knot,
which is an abnormal navigation state. The data required for
the experiment were for sailing ships; accordingly, a smooth
route was obtained along the motion trajectory, making each
trajectory easier to analyze. Because the time interval of the
ship track point acquisition depends on the ship, the ship track
can be regarded as a continuous time series. When encounter-
ing outliers, the MA model was used to standardize the data
series. Taking Figure 2.(a) as an example, when we find that
an abnormal SOG value suddenly appears, MA processing
is performed on two adjacent data, and the obtained value is
used to replace the original abnormal value [47].

C. APPLICATION OF BI-LSTM TO AIS-BASED TRAJECTORY
PREDICTION WITH NOISE ELIMINATION
1) LSTM NETWORK
The Bi-LSTMmodel was applied tomodel individual naviga-
tion features by using the denoised dataset. Consequently, the
accuracy of vessel trajectory prediction could be increased.
An LSTM network is a special RNN that is suitable for
analyzing sequential data [57], [58]. In an LSTM network,
a memory cell replaces the hidden layer function that is
present in a traditional RNN. An LSTM unit usually com-
prises a memory cell, forget gate, input gate, and output gate.
The LSTM unit is used to enhance the long-term memory
ability of an LSTM model and to resolve the long-term
dependence problem. Generally, an LSTM network consists
of at least one unidirectional LSTM layer and one LSTMunit.
This study combines two bidirectional LSTM layers and thus
has four LSTM units. The formula for an LSTM network can
be expressed as follows:

At time t , xt is the input data of the LSTM unit, ht is the
output of the LSTM unit, ht−1 is the output of the LSTM unit
at t−1, and Ct is the value of the memory unit. The operating
procedures of an LSTM network are outlined as follows:

1) The value of the forget gate Ft is calculated. The forget
gate controls the update of the historical data to the
state value of the memory unit, where Wf represents
the weight matrix and bf represents the bias.

Ft = σ (Wf · [ht−1, xt ]+ bf (1)

2) The value of the candidate memory unit C̃t is calcu-
lated, where Wc represents the weight matrix and bc
represents the bias.

C̃t = σ (Wc · [ht−1, xt ]+ bc) (2)
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FIGURE 2. Four types of erroneous and noisy effects. (a) Abnormalities exist in the data in the SOG column. Generally, it is difficult for a vessel to
accelerate or decelerate very quickly over a short period (it would require 52 s to slow down from 8.2 to 2.3 knots); therefore, the values highlighted
are deemed abnormal. (b) Abnormalities exist in the data in the COG column. COG values range from 0 to 360. (c) Duplicate data, which are not
conducive to neural network training and may cause overfitting, are removed. (d) MMSI column is abnormal. The standard MMSI length should be 9.

3) The value of the input gate It is then calculated. The
input gate controls the update of the current input data
to the state value of the memory unit, where σ repre-
sents the sigmoid function, Wi represents the weight
matrix, and bi represents the bias.

It = σ (Wi · [ht−1, xt ]+ bi) (3)

4) The value of the current memory unit Ct is calculated;
Ct−1 represents the state value of the previous LSTM
unit.

Ct = Ft × Ct−1 + It × C̃t (4)

5) The value of the output gateOt is calculated. The output
gate controls the output of the state value of thememory
unit, where Wo represents the weight matrix and bo
represents the bias.

Ot = σ (Wo · [ht−1, xt ]+ bo) (5)

6) The output of the LSTM unit ht is calculated, where
tanh is a nonlinear activation function. It converges the
permissible amplitude range of the output signal to a
finite value. The function is expressed as follows:

ht = Ot × tanh(Ct ) (6)

The three control gates and memory cell of an LSTM unit
facilitate the process of maintaining, resetting, and updating

long-term information. Because of the weight-sharing mech-
anism in LSTM, the number of dimensions can be controlled
by setting the weight matrix. In an LSTM unit, a long delay
exists between forward and back propagation because the
internal state of the memory cell in the LSTM structure
maintains a constant data size, reducing the probability of
gradient explosion and gradient vanishing.

2) BI-LSTM NETWORK
In this study, we designed a Bi-LSTM model to predict the
trajectory of vessels; this network model computes input vec-
tors containing information about the past and future within a
specific time range (Fig. 3). In the proposedmethod, a regular
LSTM state neuron is divided into two parts: one part is
responsible for the positive time direction (forward state)
and the other is responsible for the opposite time direction
(backward state). Our aim was to develop a network that
can outperform an RNN. We experimentally tested this net-
work model by dividing the training set into several batches,
with each batch containing continuous vessel trajectories;
the number of trajectories was determined by the batch size.
Studies have shown that a neural network with a batch size
of 64 achieves the best prediction results. Orthogonal ini-
tialization was employed to initialize the weight and devia-
tion settings, and each model was fitted to training data by
2000 iterations. The learning rate was set to 0.001, dropout
was set to [0.2, 0.2], and number of Bi-LSTM neurons was
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FIGURE 3. Network structure of Bi-LSTM.

set to [200, 100]. The processes involved in the prediction of
vessel trajectory are described subsequently.

An AIS sequence after noise elimination is represented
as MN = {x, y, lat, lon, s, c}, where N is the total length
of the sequence. MN is divided into a training set and a
test set, with the length of the training set being t and the
length of test set being N − t; (lat, lon, s, c) is the input
vector to the Bi-LSTM model, and (x, y) is the output vec-
tor. The Bi-LSTM model includes three layers: an input
layer, a hidden layer, and an output layer. Trajectory data
(lat, lon, s, c) are input to the input layer, and the output
layer outputs the vector (x, y). The hidden layer consists of an
LSTM layer and a fully connected layer. The model training
process includes forward propagation and backpropagation.
In forward propagation, the prediction model between the
input vector (lat, lon, s, c) and output vector (x, y) is estab-
lished. First, the training samples (lat, lon, s, c) are divided
into several groups according to the batch size and sent to
the input layer. Subsequently, they are propagated through
the Bi-LSTM layer according to (1)–(6) to obtain the output
ht . Finally, the prediction offset (xp, yp) is derived using the
fully connected layer. During backpropagation, the prediction
model is optimized by adjusting the weight parameters. The
error between the actual vectors (x and y) and the predicted
offsets (xp and yp) is calculated using the loss function (7).
The weight parameters are adjusted by minimizing the loss
value to improve the prediction accuracy of the model. The
loss function is expressed as follows:

Loss =

∑n
i=1

∣∣xoi − xpi ∣∣
n

(7)

where t denotes the time step, n denotes the length of the
test set, xoi denotes the observation value, and xpi denotes the
predicted value.

3) DROPOUT
Overfitting affects the statistical noise in the training data
for model learning, resulting in the poor timeliness of
the evaluation model on the new data (test set). Due to
overfitting, generalization error also increases. Dropout is a
regularization method that is similar to training a large num-
ber of neural networks with different structures in parallel.
In the training process, some neuron outputs are ignored or

discarded randomly, making the hidden layer appear similar
to a new network structure with a different number of neurons
to reduce overfitting.

During neural network training, the prevention of overfit-
ting is crucial. Srivastava et al. proposed the dropout method
to prevent overfitting in neural network training [59]. During
the training process between layers in a neural network, the
dropout method randomly drops some neurons with a certain
probability, as displayed in Fig. 4.

FIGURE 4. Flowchart of dropout.

D. EVALUATION OF THE ALGORITHM AND COMPARISON
WITH OTHER MODELS
To increase the accuracy of vessel trajectory prediction and
verify the performance of the data denoising process and
the Bi-LSTM model, we compared the error rate of our
vessel trajectory prediction algorithm with those of com-
mon time-series prediction methods in the literature, includ-
ing exponential smoothing (ETS) [50], autoregressive (AR)
integrated MA (ARIMA) [60], support vector regression
(SVR) [61], RNN [62], and LSTM [58] algorithms.

1) ETS ALGORITHM
The ETS algorithm proposed by Brown in 1956 is a classic
time-series prediction method [50]. ETS predicts the future
value of the time series by using the weighted average
of past observations of the time series. This method gives
decreasing weights to past observations and higher weights
to more recent observations. This framework enables reli-
able estimates to be produced quickly in most applications.
The simple exponential smoothing model was first extended
to seasonality components by Winters in 1960 [63], after
which Holt used it to determine trends [64]. In these models,
the trend components can be multiplicative (m), multiplica-
tive damped (MD), additive (a), additive damped (AD), or
absent (n), and the seasonality components can be multiplica-
tive (m), additive (a), or absent (n). The simple ETS formula
is as follows:

St =Wa · yt + (1− a)St−1 (8)

where St denotes the smoothing value at time t , yt denotes the
observation value at time t , St−1 denotes the smoothing value
at time t − 1, a denotes the smoothing constant in the range
[0,1], and St denotes the weighted arithmetic mean of yt and
St−1. The influence of y and St−1 on St can be determined by
changing a. When a = 1, St = yt . When a = 0, St = St−1.
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2) ARIMA MODEL
Autoregression is a statisticalmethod used to analyze the rela-
tionship between a single variable and a group of independent
variables. It is usually employed for time-series forecasting.
However, the autoregression can only be used in models
that can be fitted with extracted time-series data. Therefore,
to obtain favorable experimental results, a large quantity of
data must be collected. The ARIMA model was proposed by
Box and Jenkins in 1976; this model is also known as the
Box–Jenkins model [60]. The ARIMA model can be fitted to
a time series to better understand the future value in the series;
it is a simple linear method. The ARIMA model consists of
two parts: AR and MA components.

3) SVR MODEL
On the basis of the structural risk minimization principle
proposed by Vapnik, a loss function ε was derived; sub-
sequently, an SVR model was developed to solve nonlin-
ear problems, especially time-series prediction problems.
SVRwas proposed by Vapnik et al. in 1997 [61] and has been
used in many forecasting tasks such as short-term load fore-
casting [65] and monthly rainfall forecasting [66]. To obtain
good forecasting performance, all three hyperparameters
(C , ε, and σ , a kernel parameter) of the SVR model must be
determined. These hyperparameters are usually determined
through data resampling, which is computationally time con-
suming. Thus, an efficient approach to simultaneously deter-
mine all parameters is necessary.

4) RNN MODEL
Based on Rumelhart’s work in 1986, the aim of which was
to extract long-term dependency in sequential data [67], [68],
an RNN has a unique memory unit that allows it to be used in
short sequence prediction; however, in practical applications,
the length of the problem sequence is not known, which may
lead to gradient vanishing or gradient explosions during the
learning process. Therefore, the practicability of an RNN is
limited. However, variants of RNNs exist, such as LSTM [26]
and gate recurrent unit [69] models. A simple RNN has only
one internal memory unit ht , which is represented by (16):

ht = f
(
Wxt + Uf ht−1 + b

)
(9)

where f is the activation function, U and W are the weight
matrices of the hidden layer, b is the bias, and xt is the input
vector at time t [70].

E. CRITERIA
The mean absolute error (MAE), root-mean-square error
(RMSE), and mean absolute percentage error (MAPE) are
typically used to determine the deviations of observed values
from predicted values for evaluating the prediction perfor-
mance of models. These metrics were used in this study to
evaluate the performance of the proposed method. Specifi-
cally, assuming yi is the ground truth and ŷit is the predicted

value at time t , they are defined as follows:

MAE =
1
N

∑N

i=1

∣∣∣ŷit − yit ∣∣∣ (10)

RMSE =

√
1
N

∑N

i=1

(
ŷit − y

i
t
)2

(11)

MAPE =
1
N

∑N

i=1

∣∣∣∣ ŷit − yityit

∣∣∣∣× 100% (12)

IV. RESULTS AND DISCUSSION
A. DATA COLLECTION
To verify the efficiency and effectiveness of the Bi-LSTM
model, we recorded data from more than 300 vessels in
the waters around Taiwan over a specific period (Fig. 5).
The vessel trajectory was randomly selected from the AIS
dataset between 00:00:00 on July 6, 2019, and 03:00:00
on July 6, 2019. The MMSI numbers of the vessels were
24955800, 229069000, 357402000, 305097000, 249290000,
271045019, 351296000, 671115100, 667001698, and
636014592. Because of the equipment and signal drift, infor-
mation on the longitude, latitude, direction, and vessel speed
in AIS dataset changes considerably.

FIGURE 5. UTM zone map and data source location.

To ensure data availability, the data had to be prepro-
cessed in this study. The transcoded and preprocessed data
are presented in Fig. 6. For trajectory training, the data of
1,364 vessels with high activity frequency were selected
from the dataset, and 1-month navigation track data were
obtained; a total of 1,048,575 track points were obtained.
In Fig. 6, Lon represents longitude, Lat represents latitude,
and Record_time represents the track point recording time.
Table 1 lists the azimuths corresponding to the COG value in
the AIS data, and Table 2 lists the speed status corresponding
to the SOG value in the AIS data.

B. NETWORK PARAMETER SETTINGS
In this study, Keras was used to help develop the Bi-LSTM
model, and the Adaptive Moment Estimation (Adam) algo-
rithm that optimizes random objective functions was used to
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FIGURE 6. Transcoded AIS Data.

TABLE 1. List of COG statuses.

TABLE 2. List of SOG statuses.

update the parameters in the training process. Adam dynami-
cally adjusts the learning rate of each parameter according to
the loss function (MAE, RMSE, and (7)) and the first-order
matrix estimation and second-order moment estimation of the
gradient of each parameter. Moreover, this algorithm is based
on the gradient descent algorithm [71], but a specific range
is specified for the learning step of each parameter; addition-
ally, a larger gradient would not lead to an excessively large
learning step, and this ensures a relatively stable parameter
value. The learning rate was set to 0.0001, and the decay_rate
was set to 0.5, which indicates the decay_rate in the learning
rate after each update of the parameters. In addition, to pre-
vent model overfitting, the dropout algorithm was employed.
During the training process, the weight of neurons was ran-
domly reset to 0, rendering the neurons ineffective. Setting
the weight to 0.1 would signify a 10% dropout probability
for each neuron. Because the training dataset was relatively
small, we employed a batch size of 1000 in this experiment.

We used 80% of the dataset as the training data and used the
remaining 20% as the test data.

C. RESULTS OF THE PREDICTION OF MULTIPLE VESSEL
TRAJECTORIES
Table 3 presents a comparison of the vessel trajectory predic-
tion results of the proposed Bi-LSTMmodel and those of five
other models. The five models were the ETS, ARIMA, SVR,
RNN, and LSTM models.

In this study, the trajectories of ten vessels (vessels 1–10)
randomly selected from the AIS data were predicted. The
MAE, MAPE, and RMSE were used as the criteria for model
validation. The experimental results revealed that among the
models, the Bi-LSTM model had the lowest prediction error
for vessels 1–10. The MAPE of the Bi-LSTM model was
lower than those of the ETS, ARIMA, SVR, RNN, and
LSTM models by 75.8%, 74.5%, 66.9%, 46.0%, and 44.8%,
respectively. The Wilcoxon-signed rank test was used to test
for statistical significance. The results also indicated that the
prediction performance of the Bi-LSTM model was signifi-
cantly higher than that of the other models.

To better understand the effectiveness of track prediction,
we can consider the results for vessel 1 as an example.
As illustrated in Fig. 7, the predicted values (red dots) of
ETS and ARIMA deviated considerably from the observed
values (blue dots); this can be attributed to the smoothing
coefficient of ETS and the problem in optimizing the ARIMA
hyperparameters p, d , and q. Moreover, the statistical model
requires considerable preprocessing before the data are input
into the model to ensure that the input sequence is stationary
and to increase the prediction accuracy considerably. The
prediction performance of the SVR model was superior to
that of the statistical model; however, the hyperparameter
optimization process remains a challenge. LSTM is a network
structure optimized by an RNN. The prediction accuracy of
the LSTM network was expected to be higher than that of the
RNN. However, as presented in Table 3, we did not observe
considerable difference between the prediction accuracies of
the LSTM and RNN models. The proposed Bi-LSTM model
exhibited a considerable improvement in prediction perfor-
mance. The superior prediction performance of the Bi-LSTM
model can be attributed to the bidirectional structure, which
strengthens the feature extraction process in a sequence.

In the present study, Vessels 1 to 6 were randomly selected
for trajectory prediction. Because of the inertia of vessels,
finding the complex trajectories of heavy vessels in the ocean
is a difficult task. To verify the effectiveness of the proposed
method, Vessels 7 to 10, which had a turning nature, were
added. The experimental results revealed that accurate trajec-
tory predictions were more difficult to achieve with the other
methods (MAPE > 10). The proposed Bi-LSTM yielded
favorable prediction results for the ten vessels (including
those with complex trajectories), and a p-value test revealed
a significant difference between the results of the proposed
method and those of other methods (Fig. 8).
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TABLE 3. Vessel trajectory prediction errors for different models for ten vessels.

D. STATISTICAL DESCRIPTION
To verify the advantages of the proposed Bi-LSTM model,
a Wilcoxon signed-rank test was used to compare the MAPE
andRMSEvalues obtained for the ETS,ARIMA, SVR, RNN,
LSTM models with those obtained for the Bi-LSTM model.
The Wilcoxon signed-rank test is a nonparametric statistical
hypothesis test used to compare two related samples, matched
samples, or repeated measurements on a single sample to
assess whether their population mean ranks differ (i.e., it is
a paired difference test). All statistical analyses were con-
ducted using Python. As presented in Table 3, the prediction
accuracy of the Bi-LSTMmodel improved by 75.8%, 74.5%,
66.9%, 46.0%, and 44.8% when compared with that of the

ETS, ARIMA, SVR, RNN and LSTM models, respectively,
and the differences were statistically significant (p value less
than .05).

Fig. 9 shows the predicted track values generated by the
Bi-LSTM, LSTM, RNN, SVR, ARIMA and ETS models
during the prediction period. The results indicated that the
average MAPE of the Bi-LSTM model was lower than those
of the LSTM, RNN, SVR, ARIMA, and ETS models by
44.8%, 46.0%, 66.9%, 74.5%, and 75.8%, respectively; the
average RMSE of the Bi-LSTM model was lower than those
of the LSTM, RNN, SVR, ARIMA, and ETS models by
32.4%, 35.2%, 51.2%, 68.8%, and 70.4%, respectively; and
the average MAE of the Bi-LSTM model was lower than
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FIGURE 7. Vessel trajectory prediction result for vessel 1 using six models: (a) ETS, (b) ARIMA, (c) SVR, (d) RNN, (e) LSTM, and (f) Bi-LSTM.

those of the LSTM, RNN, SVR, ARIMA, and ETSmodels by
31%, 34%, 57%, 62%, and 69%, respectively. Accordingly,
the Bi-LSTMmodel was superior to the ETS, ARIMA, SVR,
RNN, and LSTM models in all aspects of vessel trajectory
prediction. The Bi-LSTMmodel exhibited the best prediction
accuracy; the experimental results indicate that the Bi-LSTM
model can provide more robust predictions with lower error
rates than can other models.

E. STUDY OBJECTIVE
Accurate vessel route prediction is crucial for maritime traffic
control and management. In addition to collision avoidance,
vessel route prediction can help in planning routes in advance,
shortening the sailing distance, and increasing navigation
efficiency. In this study, we proposed a new AIS data denois-
ing and prediction method. The main contributions of this
study are outlined as follows: (1) cleaning of the original
AIS data through track separation, outlier deletion, and data
standardization; (2) development of a Bi-LSTM model for
accurately predicting vessel trajectories by using denoised
AIS data; and (3) verification of the performance of the
Bi-LSTM model by using the trajectory data of ten vessels
and by comparing its performance with those of other com-
mon prediction models in the literature. Moreover, the study

findings can help vessel traffic controllers to predict the accu-
rate track of vessels, which can enable them to take preventive
measures to avoid collisions and improve the efficiency and
safety of maritime traffic.

Notably, the method proposed in this study focuses on the
trajectory of large ships moving across the ocean. Because
of its weight and inertia, a ship’s trajectory is straightforward
and easy to predict. When the method is applied to small-
and medium-sized ships, the high mobility and high speed
of small ships must be considered. During the training of
the model, we must focus more on the effects of COG and
SOG changes on trajectory prediction. The in-depth learn-
ing prediction model is also a key method for achieving
improvements. It improves not only the prediction accu-
racy but also the operation speed, both of which contribute
considerably to reducing maritime collisions. Moreover, the
proposed models exhibit applicability not just for vessel tra-
jectory prediction but also for other applications (e.g., predic-
tion of hurricane, human, and animal movement trajectories).
Future studies should include contextual information regard-
ing similarity measures and location predictions of trajecto-
ries. Environmental factors such as wind, wave, and weather
conditions have considerable effects on the movement of
vessels and may cause them to deviate from their normal
paths.
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FIGURE 8. Vessel trajectory prediction result for vessel 7-10. (a) vessel 7. (b) vessel 8. (c) vessel 9. (d) vessel 10.

FIGURE 9. Vessel trajectory prediction error via AIS data using ETS, ARIMA, SVR, RNN, LSTM, and Bi-LSTM. (a) MAE; (b) MAPE; and (c) RMSE.

V. CONCLUSION
In this study, a method for predicting vessel trajectory using
AIS data denoising and a Bi-LSTMmodel was proposed. The
model can accurately predict the trajectory sequence and be
used for short-term prediction. We used data on the trajectory

of ten vessels to evaluate our model. Our model was found
to outperform the ETS, ARIMA, SVR, RNN, and LSTM
models, demonstrating its suitability for vessel trajectory
prediction. The proposed model can encode, delete outliers,
standardize data, and effectively extract features of historical
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vessel tracks through data denoising. Furthermore, the pro-
posed model can extract features and apply them to vessel
track point prediction, which helps considerably reduce errors
in vessel trajectory prediction. Thus, the study findings can
help maritime traffic users predict the accurate trajectory of
vessels, which can enable them to take preventive measures
to avoid collisions and improve the efficiency and safety of
maritime traffic.
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