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ABSTRACT Synthetic training data has been extensively used to train Automatic Post-Editing (APE)
models in many recent studies because the quantity of human-created data has been considered insufficient.
However, the most widely used synthetic APE dataset, eSCAPE, overlooks respecting the minimal editing
property of genuine data, and this defect may have been a limiting factor for the performance of APE
models. This article suggests adapting back-translation to APE to constrain edit distance, while using
stochastic sampling in decoding to maintain the diversity of outputs, to create a new synthetic APE dataset,
RESHAPE. Our experiments show that (1) RESHAPE contains more samples resembling genuine APE
data than eSCAPE does, and (2) using RESHAPE as new training data improves APE models’ performance
substantially over using eSCAPE.

INDEX TERMS Automatic post-editing, back-translation, decoding strategy, machine translation, synthetic
data generation.

I. INTRODUCTION
Machine Translation (MT) has been developed to produce
high-quality translations and is now being used in various
areas. Nevertheless, MT is often inferior to a human trans-
lation, i.e., MT outputs may contain translation errors such
as errors in lexical choice and word order, and these errors
require post-editing to improve the original MT outputs.
In this regard, Automatic Post-Editing (APE) has been pro-
posed to improve the quality of given MT outputs by cor-
recting errors or by tailoring the output style to a specific
domain [1], [2]. Besides diminishing humans’ post-editing
efforts, APE is specifically beneficial when the MT system
is given as a black-box because APE can revise the MT
output on the fly without accessing the MT system’s internal
structure.

Most recent APE studies adopt neural multi-source
sequence-to-sequence model architectures with supervised
learning [2]–[4]. These models typically take a source text
(src) and its MT output (mt) simultaneously as their inputs
and take the post-edited text (pe) as their target. Thus, training
those models requires triplet data, also called anAPE triplet,
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FIGURE 1. An example of APE triplets from the English-to-German WMT
APE dataset [2]. Boldface words are either incorrect words in mt or
post-edited words in pe.

that has the form of 〈src,mt, pe 〉 (Fig. 1). Furthermore, APE
data should satisfy the minimum-editing criterion, where
pe should be created by minimally editing mt yet maintain-
ing the meaning of src. However, the quantity of currently-
available APE data is insufficient to train deep and complex
APE models due to the high production cost of human post-
edited data; this scarcity has become a limiting factor for the
performance of APE models.

To mitigate the data scarcity, it has emerged as a possible
solution to leverage synthetic data along with genuine data
to expand the quantity of training data [6]–[8]. Especially,
eSCAPE [7], a synthetic APE dataset made of parallel
corpora, has been used extensively in many studies
[2]–[4], [9], [10]. eSCAPE uses parallel corpora composed of
bitexts—pairs of a source (src) and a reference (ref), to make
a set of synthetic APE triplets: 〈src,mt, ref 〉, in which mt is
the MT output of src, and ref serves as pe.
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FIGURE 2. (a) and (b) are categorical distributions that indicate the proportion of samples within a specific interval of Translation Error Rate
(TER) [5] — a metric measuring edit distance between mt and its target (pe or ref). (a) describes the PBSMT datasets, mt of which are the outputs of
phrase-based statistical MT (PBSMT) systems. (b) describes the NMT datasets, mt of which are the outputs of neural MT (NMT) systems. The WMT data
is genuine data, and eSCAPE is synthetic data.

However, synthetic data usually lack certain qualities that
genuine data retain. In the same vein, although eSCAPE can
be an effective way to obtain large amounts of training data,
it neglects to comply with the minimum-editing criterion
that genuine APE data should follow. We note that ref is
created independently of mt and is therefore not guaranteed
to have been minimally edited from mt. Consequently, the
correction patterns observed in this synthetic data may dif-
fer from those occurring in genuine data, and this violation
results in a significant discrepancy in the distribution of edit
distance between eSCAPE and genuine data (Fig. 2), possibly
limiting the APE performance.

To solve this problem, we propose a new synthetic APE
data-generation scheme that uses parallel corpora. We intro-
duce back-APE1 (src, pe) → mt which can be seen as
an adaptation of back-translation [12] for APE. Back-APE
learns to predictmt that exhibits the most likely error patterns
for given src and pe. We expect that back-APE will produce
erroneous hypotheses m̃t from parallel corpora based on the
learnt error patterns. Eventually, we use m̃t and bitexts to
compile a set of new synthetic triplets 〈src, m̃t, ref 〉 named
‘‘Reverse-Edited Synthetic Hypotheses for Automatic Post-
Editing’’ (RESHAPE).

We further examine several decoding strategies for back-
APE to identify which strategy yields synthetic data that lead
to the biggest enhancement of the APE performance. Basi-
cally, decoding methods that maximize the model’s output
probabilities, such as beam search and greedy search, are
the primary methods for sequence generation; although accu-
rate, their outputs tend to be rather short and/or conservative
[13]–[16]. We speculate that those decoding methods can
confine back-APE output m̃t to certain error patterns, and
thereby the generated training data can impede the model’s

1This article is an extension of our published conference article [11],
which has proposed the approach to adapting back-translation for APE.
In this version, we additionally present (1) a method to make the training
process of back-APE effective yet efficient, (2) an effective decoding strategy
for back-APE, and (3) a more in-depth study.

learning. Thus, we suggest lending randomness with regard
to the model probability to the decoding process of back-APE
by adopting stochastic sampling methods to encourage the
resulting synthetic samples to be diverse.

In our experiments, we use the same parallel corpora used
to construct eSCAPE when constructing RESHAPE to make
a fair comparison of our method with eSCAPE. For evalua-
tion, we use the English-to-German WMT APE data [2], the
de-facto standard benchmark. Experimental results demon-
strate that, compared to eSCAPE, not only does our method
improve the APE performance, but it also produces more
samples with similar characteristics to genuine data.

II. PRELIMINARY: AUTOMATIC POST-EDITING
Fundamentally, APE has been recognized as a sequence-
to-sequence learning problem and implemented by the
sequence-to-sequence structure in which the encoder pro-
duces latent representations of a given source sequence and
the decoder autoregressively produces the target sequence by
taking the encoded representations. Due to the nature of APE
that produces pe by revising mt while maintaining the mean-
ing of src, the above-mentioned structure has been extended
to dual-source (ormulti-source) sequence-to-sequence struc-
ture (src, mt) → pe to accommodate two input sequences,
in which src is treated as an auxiliary input providing con-
textual information, and mt serves as the primary input to be
corrected.

The majority of recently proposed APE models adopt this
dual-source structure that extends Transformer [17], and sev-
eral variants of this structure have been proposed [18], [19].
Thanks to the article [19], which compared those variants to
each other to identify the optimal architecture, we choose
one dual-source architecture2 (Fig. 3) that shows outstanding
performance with fewer model parameters than others, as the

2We emphasize that the model architecture is not the focus of this article;
we pick one architecture for our experiments but expect others to achieve a
similar result.
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FIGURE 3. An illustration of the dual-source APE architecture [19] to be
used in all our experiments.

underlying architecture shared by APE and back-APE in our
experiments.

Schematically,3 this APE model performs the following
operations. Above all, we notate the set of natural numbers
from 1 to n as [n], i.e. x[t] = {x1, x2, . . . , xt } for notational
convenience. First, let D = {〈xsrc, xmt , y〉}n denote a set of
training data, which is a collection of n APE triplets. For any
training data 〈xsrc, xmt , y〉 ∈ D, where xsrc = xsrc[Tsrc]

, xmt =
xmt[Tmt ]

, and y = y[Tpe], in which T corresponds to the sequence
length, src encoder first reads xsrc to produce a sequence of
representations

hsrc = Encodersrc(xsrc; θ ), (1)

where hsrc = hsrc[Tsrc] . Then,mt encoder takes x
mt together with

hsrc to produce a sequence of contextualized representations

hmt = Encodermt (xmt ,hsrc; θ ), (2)

where hmt = hmt[Tmt] . For every pe yi ∈ y, the decoder
autoregressively produces its conditional probability as

hpei = Decoder(y[i−1],hsrc,hmt ; θ ),

P(yi|y[i−1], xsrc, xmt ) ∝ Softmax(hpei Wpe), (3)

where Wpe
∈ Rd×|V |, in which d and |V | denotes the

sizes of the hidden dimension and the vocabulary, respec-
tively. Finally, the model is trained to minimize the negative

3To avoid clutter, we omit detailed operations of Transformer such as the
multi-head attention, position-wise feed-forward network, layer normaliza-
tion and residual connection. We refer readers to the original papers [17] for
more details.

FIGURE 4. A schematic comparison between APE and back-APE.

FIGURE 5. The overall construction process of RESHAPE.

log-likelihood of the output probabilities with the following
objective function

L(θ ) = −
1
|D|

∑
D

Tpe∑
i=1

log
(
P(yi | y[i−1], xsrc, xmt )

)
. (4)

III. ADAPTATION OF BACK-TRANSLATION TO APE
Back-translation [12] is a method widely used in MT to
obtain additional parallel resources by leveraging monolin-
gual texts. Back-translation first trains an MT system in the
reverse direction, from the target to the source, and then
uses the trained MT system to generate synthetic source-side
texts from the target-side monolingual texts. Motivated by
that method, we introduce back-APE; we apply the back-
translation method to an APE model and use it to create new
synthetic APE triplets by leveraging parallel corpora.

The back-APE method reverses the original APE process
by swapping the positions of mt and pe, thus aiming to learn
(src, pe) → mt.4 Consequently, back-APE trains to mini-
mize the following objective function with a given dataset
D = {〈xsrc, y, xmt 〉}n (cf. Equation (4)):

L(θ ) = −
1
|D|

∑
D

Tmt∑
j=1

log
(
P(xmtj | x

mt
[j−1], x

src, y)
)
. (5)

4Note that such modeling makes a difference from our previous work in
which back-APE was constructed in the form of (src, ref)→ mt. Assuming
that back-APE (src, ref)→ mt is trained until convergence, the results are
expected to be very similar to the originalmt and thus may not be meaningful
(since the results may not reduce the edit distance from ref drastically). Thus,
our previous study relied on empirical observations to determine its training
stop point, leading to inefficient learning.

28276 VOLUME 10, 2022



W. Lee et al.: RESHAPE: Reverse-Edited Synthetic Hypotheses for Automatic Post-Editing

Thus, whereas APE outputs a minimally ‘corrected’ text (pe)
from mt while considering the meaning of src, back-APE
outputs a minimally ‘corrupted’ text (mt) from pe conditioned
on src (Fig. 4), i.e., back-APE can be interpreted as learning
to produce mt that is likely to correspond with the given src
and pe.
Accordingly, when supplying a bitext (src, ref) to back-

APE at inference time, we expect back-APE to produce m̃t
whose error patterns (distribution) are influenced by gen-
uine APE data and also expect that m̃t and ref follow the
minimum-correction principle. Subsequently, by using back-
APE’s output (m̃t) and its input bitext, we construct a new set
of synthetic APE triplets 〈src, m̃t, ref 〉 RESHAPE (Fig. 5).
Note that letting src and ref serve as src and pe respectively
can be reasonable because each side of parallel corpora is
supposed to be error-free and semantically equivalent to each
other; likewise, src and pe of a genuine APE triplet have the
same relation.

IV. DECODING STRATEGIES FOR BACK-APE
A. MAXIMUM-A-POSTERIORI DECODING
Besides the back-APE training, we consider several decoding
strategies to discover which produces synthetic samples that
provide the most significant learning effect. First, we can
typically consider maximum-a-posteriori (MAP) decoding
strategies, which find the most likely sequences by maximiz-
ing the model probabilities, i.e., MAP yields

xmt = argmaxP(xmt[T ] | x
src, y)

= argmax
T∏
t=1

P(xmtt | x
mt
[t−1], x

src, y). (6)

However, the complete MAP decoding is almost intractable
due to its inevitably vast search space O(|V |m), where V is
the vocabulary set, and m is the maximum sequence length.
Therefore, MAP is usually approximated by beam search
or greedy search. Beam search is a best-first search algo-
rithm that traces only the B most likely prefixes Xmt

t−1 =

{xmt[t−1],b}
B
b=1 (where B and t denote the beam size and the

decoding time step, respectively). In detail, at every time
step t , every possible token xmtt ∈ V is added to each
prefix in Xmt

t−1, advancing to X̂mt
t =

{
xmt[t−1],b ∪ xmtt |

∀ b ∈ [1,B], xmtt ∈ V
}
, and then, top-B prefixes for the next

time step are selected as

Xmt
t = argmax

X⊂ X̂mt
t

|X |=B

∑
xmt[t]∈X

P(xmt[t] | x
src, y) (7)

reducing the search space to O(|V |Bm). Meanwhile, greedy
search simply picks the t-th token with the highest model
probability:

xmtt = argmaxP(xmtt | x
mt
[t−1], x

src, y) (8)

at every time step t . Under the assumption that the prob-
ability assigned by the model increases as the quality of
the output increases, they are commonly used for many

sequence-generation problems; thus, we can consider adopt-
ing them for back-APE as well.

Nevertheless, inadequacies of theMAP decoding have also
been reported [13]–[15]. Because MAP determines its output
by taking just the modes in the model distribution, MAP may
not reproduce various other statistics of the training data,
resulting in conservative, generic, and/or relatively uninfor-
mative outputs. In addition, favoring high sentence scores,
MAP tends to underestimate the sentence length. Although
such phenomena are known to be particularly problematic for
tasks that aim to generate human-like texts, such as dialogue
generation [13] and story generation [14]–[16], we speculate
that such downsides could also be problematic for back-
APE because favoring only the top-scoring texts may result
in highly homogeneous outputs and thus restrict the diverse
error patterns (statistics) found in genuine APE data. Con-
sequently, the lack of diversity in synthetic data can lead to
biased learning effects.

B. SAMPLING METHOD
Sampling methods, in which each output token is determined
stochastically according to the model distribution, are known
to better represent various statistics of the training data into
the output; sampling methods preclude the model from taking
only the modes of its distribution and estimate the targeted
distributionmore completely thanMAPmethods.When sam-
pling is adopted in back-APE in the decoding stage, themodel
selects the t-th token randomly at every decoding time step
with weight given by the model distribution, i.e.,

xmtt ∼ P(xmtt | x
mt
[t−1], x

src, y). (9)

For back-APE, it appears promising to use sampling meth-
ods to yield synthetic training data that reflects various statis-
tics of genuine APE data. Sampling methods are expected to
generate m̃t by considering all possible error patterns that
are likely to appear in the given input bitext based on the
learnt statistics, so the generated samples will provide diverse
learning patterns to APE models. In some cases, however,
sampling methods may produce arbitrarily poor outputs that
are inconsistent and/or context-independent if they are fre-
quently drawn from the tails of the model distribution where
tokens are assigned relatively low, but non-zero, probabilities.
Therefore, certain measures that help bound the error of
model outputs are required.

C. RESTRICTED SAMPLING METHOD
Restricted sampling methods [14], [15] have been proposed
to rectify the unboundedness problem that arises from sam-
pling methods by excluding the unreliable tails of the model
distribution. Especially, top-k sampling [14], a straightfor-
ward but powerful scheme, has recently become a popular
method to obtain high-quality texts in many human-like text
generation tasks [14]–[16]. Top-k sampling samples within
the k most likely tokens at each decoding step, presuming
that the tokens not ranked as the top-k are unreliable; top-
k sampling can be regarded as a compromise between MAP
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and pure sampling. Thus, at every time step, the model dis-
tribution is trimmed to contain only the probabilities of the
top-k tokens.

Provided that we apply top-k sampling to back-APE, the
original model distribution will be re-scaled to P̃(·) at every
decoding step t referring to the top-k vocabulary V k

t ⊂ V .
Specifically,

P̃(xmtt | x
mt
[t−1], x

src, y)

=


P(xmtt | x

mt
[t−1], x

src, y)∑
xmtt ∈V

k
t
P(xmtt | x

mt
[t−1], x

src, y)
if xmtt ∈ V

k
t

0 otherwise,

(10)

where

V k
t = argmax

V k⊂V
|V k |=k

∑
xmtt ∈V k

P(xmtt | x
mt
[t−1], x

src, y). (11)

The t-th token will be subsequently sampled from the follow-
ing re-normalized distribution

xmtt ∼ P̃(xmtt | x
mt
[t−1], x

src, y). (12)

We expect that applying top-k sampling to back-APE will
reduce the noise from pure sampling yet still allow the outputs
to reflect the properties of the error distribution of the training
data.

V. EXPERIMENT
A. SETTINGS
1) EVALUATION METRIC
As in the WMT APE shared task [2], [3], we used the
de-facto standard evaluation metrics: TER5 [5], a primary
metric that measures the edit distance from the model
hypotheses to its target; BLEU6 [20], a secondary met-
ric that measures the degree of n-gram match between the
model hypotheses and its target. All of our evaluations are
case-sensitive.

2) DATASETS
We started with the WMT English–German (EN–DE) APE
dataset, which is the de-facto standard APE benchmark, com-
ing from the IT domain [2], [3]. The WMT data were used
to train both back-APE and APE, and to evaluate the APE
performance. We also used EN–DE eSCAPE (1) to train
back-APE due to the small size of the WMT dataset; (2) to
construct RESHAPE by feeding its (src, ref ) into the trained
back-APE model for a fair comparison; and (3) to train one
of the baseline APE models. All of our APE data are also
categorized by their subtasks: whether mt has been produced
by either a phrase-based statistical MT (PBSMT) system
or a neural MT (NMT) system; detailed data statistics are
presented in Table 1. We tokenized words into subword units
by using SentencePiece.7

5https://github.com/jhclark/tercom
6https://github.com/moses-smt/mosesdecoder
7https://github.com/google/sentencepiece

TABLE 1. Statistics of the WMT and eSCAPE datasets on the PBSMT and
NMT subtasks. The WMT dataset contains three different testsets for the
PBSMT task yet contains only one testset for the NMT task.

3) MODEL CONFIGURATION
We used OpenNMT-py8 to implement the aforementioned
dual-source architecture (§II). We adopted the ‘‘base Trans-
former settings’’ [17] for all the models: specifically, 512 for
all the hidden dimensions including the embedding dimen-
sions, 2048 for the feed-forward layers, 6 layers, 8 attention
heads, a dropout probability of 10%, a label smoothing value
of 0.1, the Adam [21] optimizer with β = (0.9, 0.998),
and 6,000 warm-up steps followed by an inverse square root
decay of learning rate. For the back-APE and APE training,
we pre-trained the models with a batch size of 48K tokens
on the combination of the synthetic data (either eSCAPE or
RESHAPE) and the WMT data and subsequently fine-tuned
themwith a batch size of 1024 tokens by using only theWMT
data. To evaluate the APE models, we used beam search with
a beam size of 6 to obtain their hypotheses.

B. BACK-APE TRAINING AND RESHAPE CONSTRUCTION
We used eSCAPE both to pre-train back-APE and to con-
struct RESHAPE, so we applied the ‘n-fold cross-generation
technique’ (adapting n-fold cross-validation) to back-APE to
avoid producing biased outputs for which the inputs have
already been used during training. Specifically,

1) Split eSCAPE into n = 4 folds: {di}4i=1.
2) For each of n back-APE models {Mi}

n
i=1, construct a

training datasetDi with n− 1 folds:Di =
⋃4

j=1 dj \ di.
3) Pre-train Mi using the combination of Di and the

WMT training set, and then fine-tune Mi only on the
WMT training set until the validation loss on theWMT
development set converges.

4) Obtain 〈src, m̃t, ref 〉 ∈ RESHAPEi by supplying the
model Mi with input bitexts (src, ref) in the corre-
sponding held-out fold di, to obtain m̃t .

5) Finally, construct RESHAPE =
⋃

i RESHAPEi.

When generating m̃t , we used a beam size of 6 for beam
search decoding; in the case of top-k sampling, we attempted

8https://github.com/OpenNMT/OpenNMT-py

28278 VOLUME 10, 2022



W. Lee et al.: RESHAPE: Reverse-Edited Synthetic Hypotheses for Automatic Post-Editing

TABLE 2. Comparison of decoding methods in generating RESHAPE. Each row represents the evaluation results of the APE models trained on RESHAPEs,
each of which is generated by a different decoding method. ‘Test Avg.’ in the PBSMT task refers to the average of the evaluation results for all testsets.

TABLE 3. The evaluation results of the APE models trained on different training-data configurations. ‘Test Avg.’ in the PBSMT task refers to the average of
the evaluation results for all testsets. ‘†’ indicates that the model’s improvement upon the eSCAPE baseline (the strongest baseline) is statistically
significant (p ≤ 0.05). The last two rows are current top models. The best result among our models in each column is in bold type.

various k values to investigate the training effect of m̃t at
different k values.

VI. RESULTS
A. EXAMINATION OF BACK-APE DECODING SCHEMES
We prepared four RESHAPE datasets, each by using one
of the back-APE decoding schemes (beam search, greedy
search, sampling, and top-k sampling). To compare their
learning effects to each other, we have trained APE models
on each RESHAPE and then evaluated their performance
(Table 2); in the case of top-k sampling, among various k
values (Fig. 6), we only report the best one in Table 2.

Firstly, we observed that making use of sampling methods
(either pure sampling or top-k sampling) results in consistent
improvements in the APE performance over those of MAP
decoding methods. Among the sampling methods, top-k sam-
pling led to better APE performance than pure sampling in
most cases. However, we found that pure sampling is com-
petitive with top-k sampling in the NMT task, although top-k
sampling consistently yields better TER than pure sampling.
Our speculation on this phenomenon is that the edit-distance
distributions of the two tasks have different skewnesses.
In contrast with the PBSMT dataset, the edit-distance dis-
tribution of the NMT dataset is drastically skewed (Fig. 2):
most of the samples have only a small number of errors, and
therefore the output probabilities of back-APE are likely to
be concentrated on just a few candidates, possibly making not
much different distribution between pure sampling and top-k
sampling.

B. QUANTITATIVE APE EVALUATION
According to the previous subsection, we adopted RESHAPE
created by applying top-k sampling to the back-APE as

FIGURE 6. The effect of k for top-k sampling. y-axis represents the
evaluation result of the APE model that is trained on RESHAPE using the
top-k sampling decoding method where k = x . The evaluation was
conducted on the WMT testsets (three TER results were averaged for the
PBSMT task). The k that records the best performance is marked with a
color (k = 40 for the PBSMT subtask and k = 30 for the NMT subtask).

our final result for new synthetic training APE data.
To evaluate the APE performance, we considered three
baselines:

• NO EDIT: a standard baseline formed by the evaluation
of the raw mt, which has not yet been post-edited, in the
test datasets, indicating the initial margin for improve-
ment to be achieved by APE.

• WMT only: an APE model trained solely on the WMT
data.

• eSCAPE: an APE model trained on the WMT data
augmented with eSCAPE, which can be regarded as our
main baseline.

The evaluation results (Table 3) demonstrate that our
approach surpasses the first two baselines (i.e. NO EDIT
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FIGURE 7. D(P ‖ Q) (with natural logarithms) where P and Q are
edit-distance distributions; P is for the WMT data, and Q is for either
RESHAPE or eSCAPE.

and WMT only) by a substantial margin, indicating that
augmenting gold APE data (the WMT data) with RESHAPE
is remarkably beneficial. More importantly, we observed
that our approach outperformed the eSCAPE baseline
in all the test cases, even achieving a statistically sig-
nificant gain in most cases. This result suggests that
RESHAPE is more advantageous than eSCAPE to APE
learning.

Our approach also outperformed the state-of-the-art
APE models: CopyNet-APE [9] and BERT-APE [10].
Both are Transformer-based APE models and were trained
on eSCAPE; CopyNet-APE adds CopyNet [22] layers,
and BERT-APE adopts BERT [23] weights for the APE
architecture. It is particularly noticeable that our APE
model trained on RESHAPE even outperformed BERT-APE,
which contains a larger number of model parameters
and was pre-trained on tens of millions of monolingual
data.

VII. DISCUSSION
Our quantitative results reveal that RESHAPE is better
than eSCAPE. Beyond that, we further discuss and ana-
lyze our results from the various perspectives on whether
RESHAPE is more similar to human-made APE data than
eSCAPE is.

We have pointed out at the beginning (§I) that eSCAPE
and the WMT data differ greatly in terms of the edit-
distance distribution (Fig. 2), so we first examined whether
RESHAPE helps reduce such discrepancy. For this pur-
pose, we compiled the TER statistics for the WMT data,9

eSCAPE, and RESHAPE in the same manner as in Fig 2,
then measured the KL-divergence of the TER distributions
of eSCAPE and RESHAPE against the WMT data. As a
result, RESHAPE showed a smaller divergence than eSCAPE
(Fig. 7); this result indicates that the edit-distance distribution

9The entire WMT dataset. i.e., the union of the training, development, and
test datasets.

TABLE 4. The k-nearest neighbor results with varying k. We count the
number of neighbors of each data point in the WMT data, which are
k data points in either RESHAPE or eSCAPE.

of RESHAPE is more similar to that of the WMT data,
compared to the eSCAPE’s distribution.

Apart from the edit distance, we verified how similar
RESHAPE is to the WMT data in various aspects. We empir-
ically designed 14 features to characterize an APE triplet as
follows:

• A TER score and the rates of four editing operations
(insertion, deletion, substitution, and shift) in the TER
calculation.

• Lengths of each triplet element.: Tsrc, Tmt ,Tpe.
• Length ratios between two elements which have an
‘input-output’ relation: Tmt/Tsrc,Tpe/Tsrc,Tpe/Tmt .

• Language-model scores of each triplet element. Each
element was scored by its corresponding language
model (LMsrc,LMmt ,LMpe), each of which is a 5-gram
Kneser-Ney language model [24] trained on the corre-
sponding elements in the WMT data.

We then represented all triplets included in RESHAPE,
eSCAPE, and the WMT data as 14-dimensional vectors with
these features, excluding triplets that are represented as the
same feature vector for both RESHAPE and eSCAPE as
no comparison is possible. Finally, for each WMT triplet,
we used the k-nearest neighbor algorithm (calculated by
Euclidean distance, after normalization of each feature) to
search for the k closest synthetic triplets, either in RESHAPE
or eSCAPE; we then counted how many come from each.
We found that the k-nearest neighborhoods that belong to
RESHAPE outnumbers those of eSCAPE (Table 4); this
result supports our speculation that RESHAPE is capable to
capture various characteristics of genuine APE data better
than eSCAPE.

Finally, we present some examples from RESHAPE and
eSCAPE (Table 5). We found that mt in eSCAPE tend to
undergo an excessive number of corrections, much more
than the expected number of corrections for the WMT data,
whereas mt in RESHAPE require fewer corrections, which is
in turn similar to that of the WMT data.
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TABLE 5. Examples of synthetic triplets. src and pe are shared by eSCAPE and RESHAPE. Boldface words in mt need to be corrected to match pe. TER in
the mt rows are calculated with regard to pe.

VIII. CONCLUSION
In this article, we introduce a new synthetic APE dataset,
RESHAPE, derived from parallel corpora.We summarize our
research findings as follows:

1) We propose the back-APE method, which adapts the
back-translation technique for APE, to produce syn-
thetic data that captures inherent characteristics of gen-
uine APE data, and this method is a refined version
from our previous study [11].

2) We investigate several decodingmethods for back-APE
and conclude that sampling methods, top-k sampling
especially, are superior to MAP decoding methods.

3) Through our quantitative and qualitative evaluation,
we observed that compared to the existing method,
eSCAPE, our method produces more synthetic samples
containing similar characteristics to genuine APE data,
including the edit-distance properties, which in turn
contribute to improving the APE performance.

4) Finally, we believe that our findings present the impor-
tance of reflecting the characteristics of genuine data in
synthetic data.

Considering that this is the first attempt at adapting back-
translation for APE, we believe that our findings suggest
further research directions. First, because this work is simply
employing one APE architecture without any modification
for back-APE, several extensions such as modifying the train-
ing objective function or the architecture in itself will be
meaningful future studies. Second, we found that although
back-APE helps produce triplets similar to gold APE data, the
edit distances of RESHAPE and the WMT data (Fig. 7) still
differ. Therefore, a useful study would be to explore a way to
control the quantity of the errors to be injected, by following
the error distribution of genuine data.
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