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ABSTRACT Field sampling should be devised to preserve the information required for the knowledge of the
radiation of an antenna. In this paper, we introduce a sampling scheme based on an inverse source problem
approach to the far field radiated by a conformal current source. The regularized solution of the problem
requires the computation of the Singular Value Decomposition (SVD) of the relevant linear operator, leading
to introduce the Point Spread Function in the observation domain, which can be related to the capability of
the source to radiate a focusing beam. Then, the application of the Kramer generalized sampling theorem
allows introducing a non-uniform discretization of the angular observation domain, tailored to each source
geometry. The nearly optimal property of the scheme is compared with the best approximation achievable
under a regularized inversion of the pertinent SVD. Numerical results for different two-dimensional curve
sources show the effectiveness of the approach with respect to standard sampling approaches with uniform
spacing, since it allows to reduce the number of sampling points of the far field.

INDEX TERMS Conformal antennas, electromagnetic scattering inverse problems, inverse source problem,
far field sampling, number of degrees of freedom, singular value decomposition.

I. INTRODUCTION
The question of the selection of the optimal sensor location
in imaging problems has not only a mathematical relevance
but also practical interest because it may reduce the cost of
any sensing equipment and the time to achieve field data.
While in [1] a statistical framework including general con-
straints is adopted for a linear operator, convex optimiza-
tion algorithms are also employed as, for instance, in [2].
Microwave imaging may involve a huge amount of data
and require different approaches such as the ones based on
projection methods [3]. In any case, a model-driven strat-
egy, founded on the mathematical properties of the kernel
of the relevant imaging operator and on a priori knowledge
about the investigation domain may lead to more effective
results.

The same problem arises for the discretization of the fields
radiated by a source in antenna measurement and diagnostics
techniques [4]–[7]. In fact, the latter relies on collecting the
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field on a prescribed surface surrounding the source over
a set of observation points and on a subsequent suitable
numerical inversion method to search for the source current
(or a functional of it). Since the mechanical scanning of the
field dominates the overall measurement time, it is apparent
that, to comply with a prescribed accuracy of the source
reconstruction, measurement time can be saved if the probing
points are reduced to a minimum.

For a planar geometry, the optimal discretization step
is determined by the application of the Shannon sampling
theorem due to the Fourier transform relationship between the
current source and the corresponding Plane Wave Spectrum.
For a volumetric ellipsoidal current source, a suboptimal far
field sampling scheme has been devised in [8], with uniform
elevation step and uniform azimuth step, though the latter is
different for each elevation observation circle. This approach
can be applied for a full solid angle observation domain and
allows to consider any surface source geometry, provided
it is included within the ellipsoid. Therefore, it is apparent
that taking explicitly into account the source shape may
improve the efficiency of the sampling scheme, by reducing
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the number of sensing points to a minimum, within a prefixed
angular sector.

Other strategies [9] heuristically increase the sampling
rates where the probed field exhibits fast variations. On the
other hand, the compressive sensing paradigm [10] has been
applied to near-field measurements but it seems difficult to
predict the number and the location of the discretization
points.

The goal of this paper is to investigate the possibility
to devise an optimal discretization scheme of the far field
radiated by a scalar 2D source current, supported on a convex
curve of the plane, when the observation domain lies on the
same side of the convexity of the curve. This geometry is
chosen for the sake of the illustration of the approach, which
is founded on the solution of the corresponding inverse source
problem. In particular, the focus of the paper is to show how
exploiting the a priori information about the source geometry
affects the choice of the sampling points and how possibly
the required number of samples is reduced as compared to a
uniform sampling strategy. The approach can be extended to
linear inverse scattering problems whenever a priori informa-
tion about the shape of the spatial support of the targets can
be available.

When an inverse problem must be solved, the solution
algorithm should necessarily cope with the unavoidable
uncertainties on data, which can make results completely
unreliable. In such circumstances, the evaluation of the Sin-
gular Values Decomposition (SVD) of the relevant operator
can provide a solution algorithm by exploiting the concept
of the Number of Degrees of Freedom (NDF). This can be
defined as the number of independent pieces of information
necessary to represent the radiated field or, equivalently,
the dimension of the subspace of the radiated field provid-
ing reliable solutions to the diagnostic problem. The NDF
depends on the support of the source and the field observa-
tion domain [11], but, unfortunately, it cannot be evaluated
in closed form for general source and observation domain
geometries. In [12] the NDF is estimated according to the
maximum dimension of the source, which implicitly means
considering the circular (or spherical in 3D) convex hull
containing the source and assuming the NDF as related to
such a convex hull. This approach clearly does not take into
account the actual support of the source and can lead to an
overestimation of the NDF. Therefore, hereafter we suppose
to know them by the numerical computation of the Singular
Values (SVs) of the corresponding operator.

In any case, the NDF is not related in a simple way to
the samples of the radiated field themselves, except for very
special cases. Therefore, we are interested in examining a
strategy able to search for optimal sampling points’ posi-
tions whose number must be the same as the NDF of the
field radiated by the source over the assigned observation
domain. This enables to obtain the minimum number of
samples.

The strategy is based on the evaluation of the Point Spread
Function (PSF) [13] and the application of the Kramer gener-

alized sampling theorem [14]. In general, the PSF is related
to the achievable resolution [15], i.e., to the capability of
the solution algorithm to reconstruct two close point-like
sources [16]. Hereafter, we adopt the same definition and
refer it to the far zone observation domain. In this case, the
PSF can be related to the capability of the source to radiate
an ideal delta-like focusing beam pointing at a given direction
and, again, it can be computed numerically once the SVD of
the operator is known.

The same inverse problem approach has been adopted
to conformal source diagnostics [17]–[19], where the main
question is to establish the set of source current functions that
can be reconstructed reliably in presence of uncertainties on
data. The evaluation of the NDF of the source, in connection
with its geometry, [17] allows to fix the relevant dimension
of this set. For a full angle observation domain, the NDF is
related only to source electrical length and the correspond-
ing PSF in the source domain is space invariant, that is
independent of the point-like source position. As a practical
consequence of the analysis, the maximum number of ele-
ments of a conformal array that can be reliably diagnosed
is also provided by the NDF. The limited angle case [18]
provides a different behavior of the PSF. In fact, in [19] we
numerically find that the optimal positions of the elements of
a conformal array are non-uniformly located along the curve
source support. Therefore in [18], we investigate the case
of a circumference source since it is possible to provide an
analytical approximation of the PSF in the source domain.
A heuristic procedure is set up to provide the optimal non-
uniform spacing between them.

On the other hand, the actual novelty of the paper consists
in the application of the Kramer generalized sampling the-
orem, which provides the way to introduce a discretization
scheme for a linear operator more general than the Fourier
transform one, under broad mathematical conditions. The
sampling functions depend on the kernel of the operator,
but the choice of the sampling points is not always simple.
However, in this paper, the mathematical properties of the
PSFs are sufficient to determine the sampling points, which
are deployed according to a non-uniform angular step.

Hereafter the SVD is not used for imaging purposes, but
as a tool to establish the sampling criterion. More in detail,
finding the sampling criterion is cast as the determination of
the semi-discrete operator whose singular spectrum (i.e., the
singular values) approximates the one of the continuous radi-
ation operator. This is because the SVD is an extremal set of
functions, which means that it provides the finite dimensional
approximation of the range of the radiation operator (i.e.,
of the radiated field) with the minimum representation error.
In particular, the connection between the sampling points and
the operator is established through the Kramer theorem and
the PSF, which in turn is related to the singular functions.

The paper is organized as follows. Section II recalls the
relevant mathematical detail about the operator and its SVD.
Section III introduces the application of the Kramer theorem
to the sampling of the far field of a conformal source and high-
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lights how a non-uniform rate is achieved. In Section IV, for
the sake of comparison, the results about a possible uniform
sampling scheme are recalled. Section V is devoted to show-
ing several numerical results demonstrating the increased
efficiency of the proposed approach in terms of the number
of sampling points. The practical interests of the approach
may concern the optimal sampling of the radiated field for
antenna measurement and diagnostics purposes. Therefore,
Section VI deals with an application to the reconstruction of
a current source showing the enhanced diagnostics perfor-
mances of the present approach with non-uniform samples
tailored to each source geometry, since it provides better
accuracy for the same number of samples with respect to a
standard uniform angular step. Conclusions end the paper in
Section VII.

II. MATHEMATICAL PRELIMINARIES
In this paper, a 2D scalar TMy geometry is consid-
ered. An y−invariant current density function J

(
r′
)

is
supported over a curve 0 laying in the x− z plane,
whereas the radiated field is observed in far zone at sin-
gle frequency. By assuming the time dependence ejωt and
neglecting an unessential factor, the radiated field and the
source current density are linked by the following integral
operator,

E (θ) =
∫
0

J
(
r ′
)
ejβr

′
·r̂(θ)ds = AJ

(
r ′
)

(1)

where β = 2π/λ is the free-space wavenumber, λ the
wavelength, ds is the differential arc length, r ′ε0 and r̂ (θ) =
(cos θ, sin θ) is the unit vector pointing at the observation
direction θ ∈ [−θmax , θmax] (see Fig. 1).

FIGURE 1. Depiction of the geometry and its parameters. Green dots
represents uniform sampling points whereas the red crosses the one
retunred by the proposed approach.

Equation (1) defines the radiation operator

A : J ∈ L20 → E ∈ L2[−θmax ,θmax ] (2)

which links the space of finite energy source functions sup-
ported over 0 to the space of radiated fields observed within
the angular interval [−θmax , θmax].

In the discussion to follow, the NDF and the PSF
play a major role and are linked to the SVD of A, i.e.
{σ n, vn

(
r ′
)
, un (θ)}, where the σn are the SVs, the vn

(
r ′
)
and

un (θ) the right and left singular functions [20].
The NDF [21] is the number of independent parameters

needed to represent the radiated field with a given degree of
accuracy [22]. It is related to the SVs behavior and provides
the dimension of the subspace of the source currents that can
be reliably reconstructed in presence of uncertainties on data
by invertingA [23]; equivalently, it gives the dimension of the
corresponding Ẽ (θ) radiated field space. Moreover, operator
(2) is a Hilbert-Schmidt integral operator and, hence, com-
pact. Accordingly, its SVs cluster to zero, and the NDF can
be identified as the number of SVs greater than a threshold
depending on the uncertainties on data [24]. In the case at
hand, the SVs present a critical index beyond which they
abruptly decay. Therefore, the NDF can be identified as the
number of SVs preceding such a critical index.

Right and left singular functions, instead, represent basis
sets for the operator domain and range, respectively. In par-
ticular, the subset of radiated fields corresponding to the
source currents that can be reconstructed in a stable way, say
A ⊂ L2[−θmax ,θmax ], is spanned by the first NDF left singular
functions, that is

Ẽ (θ) =
NDF∑
n=1

enun (θ), (3)

where the expansion coefficients are

en =< E (θ) , un (θ) > (4)

and < ·, · > stands for the scalar product on the proper
angular interval. We point out that (3) provides the projec-
tion of the radiated far field onto A, and represents the best
finite NDF dimensional approximation, unless further a priori
information [25] is available. As such it can be used as a
reference result, in particular to approximate the PSF.

In detail, the PSF (in the observation domain) is defined
as the impulsive response of the system made up by the
cascade of the (regularized) inverse operator and the forward
one, that is

PSF (θ, θ0) = AA−1δ
(
θ ′ − θ0

)
, (5)

where A−1 is the regularized inverse of the radiation opera-
tor (1) achieved by truncating the SVD expansion as in (3),
and δ

(
θ ′ − θ0

)
represents the impulsive function centered in

θ0. From a physical point of view, it defines the source capa-
bility to radiate a focusing beam with a maximum pointing at
the direction θ0. It is also connected to the source directivity
as a function of the maximum direction θ0 [26].

Generally speaking, the PSF is an oscillating sinc-like
function, with a main lobe of variable width and many
side lobes, that changes for each maximum direction θ0 and
depends on the source geometry.

By resorting to the Truncated SVD (TSVD) algorithm for
the inversion ofA [20], and, hence, removing the components
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corresponding to the smaller SVs, one obtains that

PSF (θ, θ0) =
NDF∑
n=1

un (θ) u∗n (θ0), (6)

namely, the PSF is a combination of left singular functions.

III. A PSF-BASED NON-UNIFORM DISCRETIZATION
PROCEDURE
In this Section, the PSF in the observation domain and its
connection with the Kramer generalized sampling theorem
are examined to devise a discretization procedure for the field
data. To this end, let us start from (3) which defines the
projection of the radiated field onto subset A corresponding
to the NDF. In particular, by making the coefficients explicit,
(3) becomes

Ẽ (θ) =
NDF∑
n=1

(∫ θmax

−θmax

E
(
θ ′
)
u∗n
(
θ ′
)
dθ ′
)
un (θ). (7)

Then, exchanging summation and integration yields

Ẽ (θ) =
∫ θmax

−θmax

E
(
θ ′
) [NDF∑

n=1

u∗n
(
θ ′
)
un (θ)

]
dθ ′, (8)

which can be written in terms of the PSF (6) as

Ẽ (θ) =
∫ θmax

−θmax

E
(
θ ′
)
PSF

(
θ, θ ′

)
dθ ′. (9)

In virtue of the Kramer theorem (see Appendix A), applying
(A.3) to the PSF kernel in (9), one obtains

Sn (θ) =

∫ θmax
−θmax

PSF
(
θ, θ ′

)
PSF∗

(
θn, θ

′
)
dθ ′∫ θmax

−θmax
|PSF (θn, θ ′)|2 θ ′

, (10)

which, after substituting (6), writes as

Sn (θ)

=

∫ θmax
−θmax

∑NDF
k=1 uk (θ) u

∗
k

(
θ ′
)∑NDF

l=1 u∗l (θn) ul
(
θ ′
)
dθ ′∫ θmax

−θmax

∑NDF
k=1 uk (θn) u

∗
k (θ
′)
∑NDF

l=1 u∗l (θn) ul (θ
′) dθ ′

.

(11)

In turn, by exchanging summation and integration and by
exploiting the orthonormality property of the right singular
functions, (11) becomes

Sn (θ) =

∑NDF
k=1 uk (θ) u

∗
k (θn)∑NDF

k=1 uk (θn) u
∗
k (θn)

=
PSF (θ, θn)
PSF (θn, θn)

, (12)

which is just the normalized PSF. Therefore, in order to apply
the Kramer’s generalized sampling theorem to (9), one should
search for a set of N points {θn}, possibly non-uniformly
spaced, such that the finite set of functions (12) provides
an orthonormal set. This leads to introduce the following
interpolation summation

Ẽ (θ) =
N∑
n=1

Ẽ (θn) Sn (θ). (13)

In more detail, the Sn should satisfy the condition∫ θmax

−θmax

Sn (θ) S∗m (θ)dθ = δnm, (14)

where δnm is the Kronecker symbol. By substituting (12), this
translates in∫ θmax

−θmax

PSF (θ, θn)
PSF (θn, θn)

PSF∗ (θ, θm)
PSF∗ (θm, θm)

dθ = δnm. (15)

By resorting again to (6), exchanging summation and integra-
tion and exploiting the orthonormality property of the right
singular functions, (14) finally leads to

PSF (θm, θn)
PSF (θn, θn)PSF∗ (θm, θm)

= δnm. (16)

Finding a countable set {θn} so that (14), and hence (16),
is satisfied and the {Sn} functions provide a complete orthog-
onal set on L2[−θmax ,θmax ], is usually a very difficult task.
However, Eq. (16) provides the way to find one possible
set {θn}. In fact, for (16) to hold, it is required that all
the pertinent PSFs share the same set of null points, which
cannot be demonstrated yet and should be verified by an
unpractical direct inspection. Therefore, one can disregard the
exact condition and choose the set {θn} in order to assure a
certain degree of orthonormality among the PSFs. Of course,
the resulting sampling expansion is no longer exact, since
Kramer theorem is not exactly verified, but approximately
expresses the field as a PSFs expansion.

The crucial observation in determining the {θn} points
concerns the above mentioned general sinc-like behavior of
the PSFs, with a main principal lobe and smaller side lobes,
and how it affects the evaluation of (14). To this end, we con-
sider one PSF at a time. Let us choose, say, θn = 0 as a
starting point and center in it the n-th element of the set {θn}
to be found. If we consider θn+1 in correspondence of the
first null of the pertinent PSF (θ, θn), then PSF (θn+1, θn) =
0 and (16) is satisfied exactly for the couple of functions
PSF (θ, θn) and PSF (θ, θn+1). The subsequent n + 2-th
point is chosen in correspondence of the first null of the
PSF (θ, θn+1) and so on, considering one PSF at a time,
instead of all of them together. After sweeping over half the
observation domain through adjacent PSFs, the other half is
obtained by symmetry, if both the source and the observation
domains are symmetric with respect to the z-axis. In this way,
(14) is surely verified for each couple of adjacent PSFs with
m = n + 1 and a set of points {θn} determined.
On the other hand, for m 6= n + 1 this does not hold

true rigorously. However, the integrand in (14) turns to be
an oscillating function, as the product of two sinc-like func-
tions with non-overlapping main lobes, and the result of
the integration is expected to be very small. Accordingly,
expansion (14) holds approximately. In virtue of (16), the
validity of this approximation can be confirmed by observing
whether PSF (θk, θn) ' 0 in correspondence to a generic
point θk 6= θn+1. Therefore, all PSFs are (approximately)
mutually orthonormal.
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In Section V, in order to verify the effectiveness of this
approach, we compute the Frobenius norm of the matrix
S = {snm}, where

snm =
∫ θmax

−θmax

Sn (θ) S∗m (θ)dθ, (17)

for various test cases; the orthonormality condition is verified
if S resembles the identitymatrix, that is, if ‖S‖F '

√
N , with

N being the number of sampling points.
We can point out that, in general, the resulting sampling

points are non-uniformly distributed along the assigned
observation interval and depend on the source geometry.
Moreover, they are not unique since they depend on the
choice of the starting point of the procedure, but to start
from θn = 0 allows to obtain a symmetric set of points for
a symmetric curve source. Hence, here this choice has been
preferred.

Indeed, the Kramer-like field expansion (13) is different
from (3). Therefore, it is worth investigating how (3) and (13)
are related. To this end, we substitute (12) into (13) first, and
exchange the resulting summations, then, it follows

Ẽ (θ) =
∑NDF

k=1
e′kuk (θ), (18)

where

e′k =
N∑
n=1

E (θn) u∗k (θn)

PSF (θn, θn)
. (19)

Now, the comparison between (19) and (4) reveals that the
interpolation (18) is still a field expansion in terms of the
right singular functions, as (3), but with different e′n coeffi-
cients, resulting by an optimal discretization of the integral
in (4). Therefore, the Kramer-like sampling field expansion
basically approximates the expansion (3), and hence the field
still belongs to set A. Accordingly, its comparison with (3)
can provide a useful assessment of its optimality. Moreover,
it follows that in (13) N ' NDF , since both the set of
the right singular functions {un (θ)} and the (approximately)
orthonormal set of {Sn} functions span the same subspace A
of far fields.

We end the Section by the observation that the
above-introduced set of {θn} points can be used to define the
semi-discrete operator

En =
∫
0

J
(
r ′
)
ejβr

′
·r̂(θn)dc = DNUJ

(
r ′
)
, (20)

which maps the source functions J ∈ L2[0] into the vectors
ENU ∈ C

N whose entries areEn = E (θn)with n = 1, . . . ,N,
and its SVD is denoted by the triple

{
σNUn , uNUn , vNUn

(
r ′
)}
.

For a general set of {θn} points, the SVDofDNU is different
from the one of the operator A. Therefore, the discretization
achieved through (13) can be considered effective if the SVs
of DNU succeed in approximating the first ones of A, or,
at least, return the sameNDF of the corresponding continuous
operator. This would mean that collecting the field samples
at the angles {θn} and inverting DNU is sufficient to reliably

recover the source functions belonging to a subspace of the
same dimension as the continuous case. In this way, it can
be concluded that the radiated field can be discretized at the
minimum number of points N = NDF needed to reach a
prescribed accuracy.

IV. UNIFORM DISCRETIZATION
In absence of an optimal strategy of the far field sampling,
a typical way to discretize the angular observation domain
involves a constant step. Therefore, for the sake of compari-
son of the results of Section III, let us choose θm = −θmax +
m1θ with 1θ = 2θmax/ (M − 1) and m = 1, . . . ,M . Then,
the following semi-discrete operator

Em =
∫
0

J
(
r′
)
ejβr

′
·r̂(θm)dc = DUJ

(
r′
)

(21)

can be defined. This operator establishes a further mapping
between the source functions J ∈ L2[0] and the vectors EU ∈
CNDF of components En = E (θm), whose SVD is given by
the triple

{
σUn , u

U
n , v

U
n
(
r ′
)}

and, in general, is different from
the one of DNU .
A uniform discretization step can be envisaged for the

field radiated by a general circle source of radius R and
observed over a full-angle domain. In this case, the SVD can
be derived in closed form [27], with the left singular functions
being expressed as angular Fourier harmonics. The equivalent
sampling expansion then arises by using periodic Dirichlet
functions as interpolating functions. The number of field
samples coincides with the NDF [28] of the source, which
amounts to NDF = 2 [βR]+ 1 ([·] stands for floor operator),
as the corresponding SVs vanish very rapidly beyond that
index.

Things are more complex when the field of a circle source,
of radius R, is observed over a limited angular interval
[−θmax , θmax]. In this case, asymptotic reasoning can be
invoked and they lead to the following NDF upper-bound
estimation (see Appendix B)

Nc = 2M+ 1, with M =
[
βRθmax
π

]
. (22)

This result, indeed, leads to use Nc harmonics to represent
the field or, equivalently, Nc Dirichlet kernels with Nc sam-
ples, that is

Ẽ (θ) =
∑M

m=−M
E (θm) sindM (θ − θm). (23)

where sindM (θ) =
sin
(

Ncπ
2θmax

θ
)

Nc sin
(

πθ
2θmax

) and θm = m 2θmax
Nc

.

Indeed, (23) holds for any curvilinear source 0 belonging
to the circle of radius R, provided R is the radius of the
minimum circumference enclosing the curvilinear source.
Accordingly, a uniform discretization scheme can be intro-
duced for every source defined by (1) and is employed as a
reference in the following Sections.
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FIGURE 2. Discretization points of the observation domain obtained by
the PSF-based procedure when the source is a semi-circumference of
radius R = 9.55λ. (For symmetry reasons only half of them are displayed).

V. NUMERICAL EXAMPLES
In this section, some numerical examples are used to sup-
port the theoretical discussion of Sections III and IV and to
highlight the peculiar features of the PSF-based discretization
scheme and its performances.

In particular, since the field discretization points over the
same observation interval are generally non-uniformly dis-
tributed and depend on the source geometry too, the first
aim is to show that the semi-discrete operator (20) has the
same NDF as the continuous one (1). This means that, though
the pertinent SVDs can be different, the dimension of the
corresponding subspaces of current functions is the same,
so that the continuous and the discrete operators can be
assumed equivalent from this point of view. In addition,
we can show that this feature does not hold for the semi-
discrete operator (21), with N = M, i.e., when the number
of discretization points is the same at both uniform and non-
uniform steps.

The second aim, then, is to show that the same set of
points can be used to effectively discretize the field (namely,
to reduce the number of samples to be collected) and to
provide a good approximation of it. Therefore, we compare
the results of different field approximations with the exact
evaluation E (θ) of the field radiated by a prescribed source
current by the operator (1).

To this end, three error metrics

el =

∥∥∥E (θ)− Ẽl (θ)
∥∥∥

‖E (θ)‖
(24)

are considered, which measure the misfit between the actual
field and its approximation provided by (3) (l = 1), by (13)
(l = 2) and by (23) (l = 3), respectively. In this way, we can
appreciate to what extent the radiated field belongs to the
subspace of the first NDF left singular functions (by (3)),
how the presently introduced non-uniform sampling scheme
allows to approximate it (by (13)) and, finally, how a standard
uniform sampling expansion (by (23)) achieves the same goal
but with a higher number of samples.

Even though the whole discussion applies to an arbitrary
convex geometry with an arbitrary parametrization, hereafter
we consider three source shapes, i.e., the semi-circumference,
the parabolic arc, and the angle geometry. Moreover, in all
examples θmax = π/2, the geometrical parameters of the
sources are chosen to achieve approximately the same value
of the NDF = 51 and the considered source current provides

FIGURE 3. Behavior of the normalized SVs σn (solid blue line), σNU
n

(dashed red line) and σU
n (dotted yellow line), when the source is a

semi-circumference of radius R = 9.55λ.

a field E (θ)focusing at θ0, so that

J
(
r′
)
= e−jβr

′
·r̂(θ0), (25)

This current compensates the different path lengths of the
radiation from the source current elements to a reference
plane orthogonal to the maximum direction [29].

A. SEMI-CIRCUMFERENCE SOURCE
When a semi-circumference source of radius R is considered,
the integral operator (1) writes as

E (θ)= R
∫ π/2

−π/2
J (φ)ejβ R cos(θ−φ)dφ = AJ (26)

with the angular variable φ ∈ [−π/2, π/2]. The semi-
discrete operators (20) and (21), instead, are denoted by
DiJ (φ), where the subscript i becomesNU orU , respectively,
depending on whether a PSF-based or a uniform discretiza-
tion is used.

In order to achieve 51 significant SVs for A, R has been
set equal to 9.55λ. The set of points the PSF-based procedure
returns is displayed in Fig. 2, and it is clearly non-uniform.
Moreover, the value of ‖S‖F = 7.17 is very close to the ideal
one, and thus it shows the orthonormality properties of the
sampling functions.

Instead, we numerically compute and display the SVs per-
tinent to the three operators, in Fig. 3. As can be noticed, the
PSF-based discretization of the observation domain returns
a semi-discrete operator DNU with the same number of sig-
nificant SVs (NDF) as the continuous operator A, whereas
a uniform discretization of the observation domain with the
same number of points returns a semi-discrete operator DU
whose SVs decay before the ‘‘knee’’ of the continuous case.
This means that the corresponding subspace of currents has
a lower dimension than the former ones and, consequently,
encompasses a reduced number of sources.

The smallest circle including the source has the same
radius of the source and, for the choice R = 9.55λ, the
maximum number of samplesNc = 59 according to (22), that
is 16% more than the minimum number of samples required
by (13). In Figs. 4-6, we compare the approximated field
expressions with the actual ones for different focusing angles,
while the corresponding errors are reported in TABLE 1: the
interpolation series (13) based on the PSFs functions returns
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FIGURE 4. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively The source is a semi-circumference with R = 9.55λ fed by
(25) when θ0 = 0.

FIGURE 5. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively The source is a semi-circumference with R = 9.55λ fed by
(25) when θ0 = π/4.

a lower error with respect to the interpolation by Dirichlet
kernels (23), and it is closer to expansion (3) in terms of the
left singular functions.

FIGURE 6. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is a semi-circumference with R = 9.55λ fed by
(25) when θ0 = 1.38 rad.

TABLE 1. Normalized errors (24) for a semi-circumference source. The
source is fed by the current density function (25) for different focusing
angles.

B. PARABOLIC SOURCE
A parabolic arc with semi-latus rectum p and focus at the
center of the reference system can be parameterized as

γ (φ) :

{
x (φ) = r (φ) sinφ
z (φ) = r (φ) cosφ,

(27)

where φ ∈ [−π/2, π/2] and

r (φ) =
p

1+ cos (φ)
. (28)

Then, the radiation operator (1) writes

E (θ) =
∫ α

−α

J (φ)ejβr(φ)cos(θ−φ)r (φ)

×

√
1+

(
sinφ

1+ cosφ

)2

dφ = AJ (29)

whereas the semi-discrete operators are defined in a similar
way. In order to achieve 51 significant SVs for A, p has been
set equal to 11.54λ.

The PSFs-based discretization of the observation domain
returns, again, a non-uniform distribution of points (Fig. 7),
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FIGURE 7. Discretization points of the observation domain obtained by
the PSF-based procedure when the source is a parabolic arc with
p = 11.54λ. The distribution of points over the remaining part of the
domain is obtained for symmetry.

FIGURE 8. Behavior of the normalized SVs σn (solid blue line), σNU
n

(dashed red line) and σU
n (dotted yellow line), when the source is a

parabolic arc with p = 11.54λ.

TABLE 2. Normalized errors (24) for a parabolic source. The source is fed
by the current density function (25) for different focusing angles.

however different from that of the semi-circumference case
and again ‖S‖F = 7.18 is very close to the ideal one.

Moreover, these points return the same number of signifi-
cant SVs of the continuous case, whereas when the 51 points
are uniformly spaced, the knee of the SVs of operatorDU sig-
nificantly precedes the knee of the continuous curve (Fig. 8).
Therefore, again, the non-uniform discretization is optimal
with respect to a uniform one with the same number of
samples, since it allows to achieve the same currents subspace
dimension of the continuous case.

The smallest circle including the source has the radius
R = p, which requires Nc = 73 samples for the field approxi-
mation by (23) (43%more than the samples needed for (13)).
The different field expressions are compared in Figs. 9-11 and
the corresponding errors are reported in TABLE 2.

C. ANGLE SOURCE
An angle source consists of two linear sources arranged under
an angle shape as in Fig. 12, with φ02 = 360◦ − φ01, the
middle point of each side satisfying x02 = −x01 and z01 = z02
and the same length a2 = a1 = a.
The two rectilinear sources support the electric currents J1

and J2 and radiate the field

E (θ) = A1J1 +A2J2, (30)

FIGURE 9. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively The source is a semi-circumference with R = 9.55λ fed by
(25) when θ0 = 0.

with

AkJk =
∫ a

−a
Jk (s) ejβ[xk (s)sinθ+zk (s)cosθ ]ds (31)

for k = 1, 2, where s represents the arc length variable,
xk (s) = x0k − s sinφ0k and zk (s) = z0k − s cosφ0k are
the rectilinear coordinates of the source points expressed as
a function of the arc length s ∈ [−a, a]. For the examples
below, in order to achieve once again NDF = 51, the value
of a is chosen equal to 8.5λ.

As far as the choice of the angle is concerned, in [30] it was
found that φ01 = 2.68 rad assures an omnidirectional cover-
age, since it returns an almost spatially invariant PSF in a 2π
observation interval. Even though here the observation sector
is limited, the PSF preserves an invariant behavior, and the
PSF approach introduced in Section III is expected to return
a uniform discretization of the observation domain. Fig.13,
where the result of the PSF-based discretization procedure is
reported, confirms this issue.

In this case, it can be computed ‖S‖F = 7.17, which is
very close to the ideal one.

For this particular source, as expected, there is no relevant
difference between the NDF returned by the SVs of operators
DNU and DU (see Fig. 14).
The smallest circle including the source has a radius R =

a/cosφ01 = 9.51λ and the number of samples Nc = 59 to be
employed in the Dirichlet kernels interpolation series is 16%
greater than those needed for the PSF-based one. Besides,
the corresponding field interpolation scheme provides the
highest error. A confirmation is given by the different field
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FIGURE 10. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is parabolic arc with p = 11.54λ fed by (25) when
θ0 = π/4.

FIGURE 11. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is parabolic arc with p = 11.54λ fed by (25) when
θ0 = 1.38 rad.

expressions compared in Figs. 15-17 and by the correspond-
ing errors summarized in Table 3.

VI. APPLICATION TO SOURCE RECONSTRUCTION
In this Section, the practical relevance of a correct choice of
the discretization step of the radiated field is highlighted with
reference to an example of source reconstruction. We con-
sider, again, a parabolic arc with p = 11.54λ and suppose to

FIGURE 12. Angle source geometry.

FIGURE 13. Discretization points of the observation domain obtained by
the PSF-based procedure when the source is an angle source with
a = 8.5λ and φ01 = 2.68 rad. The distribution of points over the
remaining part of the domain is obtained for symmetry.

FIGURE 14. Behavior of the normalized SVs σn (solid blue line), σNU
n

(dashed red line) and σU
n (dotted yellow line), when the source is an

angle source with a = 8.5λ and φ01 = 2.68 rad.

TABLE 3. Normalized errors (24) for an angle source. The source is fed by
the current density function (25) for different focusing angles.

collect the 51 data over a π interval in far zone. Then we
compare the results of the source reconstructions obtained
by the non-uniform field sampling by the PSF-approach of
Section III with a uniform field data sampling scheme with
the same number of points. In addition, in order to show the
optimality of the sampling grid for each source geometry,
we add a further comparison with the case where the same
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FIGURE 15. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is an angle source with a = 8.5λ fed by (25) when
θ0 = 0.

FIGURE 16. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is an angle source with a = 8.5λ fed by (25) when
θ0 = π/4.

number of samples are arranged according to a non-uniform
data grid with a spacing pertinent to a different geometry, i.e.
a semi-circumference source with radius R = 9.55λ.
The source function obeys the same law as in (25) for

different focusing angles. The numerical results about the

FIGURE 17. Comparison between
∣∣E (θ)∣∣ (solid blue line) and

∣∣∣Ẽ (θ)∣∣∣
(dashed red line) by (3) (panel (a)), (13) (panel (b)) and (23) (panel (c)),
respectively. The source is an angle source with a = 8.5λ fed by (25) when
θ0 = 1.38 rad.

FIGURE 18. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with θ0 = 0)

and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected at the points of Fig. 7

(panel a), at the points of Fig. 2 (panel b), and at points uniformly spaced
(panel c).

source reconstructions are obtained by the inversion of (29)
via the TSVD algorithm as

J̃l (φ) =
∑N (ε)

n=1

< El, u
l
n >

σ ln
vln (φ), (32)

where l = 1 when the data are non-uniformly collected
according to the optimal grid of Fig. 7, l = 2 when the
data are non-uniformly collected following the grid of Fig. 2,
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FIGURE 19. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with θ0 = π/4

rad) and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected at the points of

Fig. 7 (panel a), at the points of Fig. 2 (panel b), and at points uniformly
spaced (panel c).

FIGURE 20. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with

θ0 = 1.38 rad) and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected at the

points of Fig. 7 (panel a), at the points of Fig. 2 (panel b), and at points
uniformly spaced (panel c).

and l = 3 when the data are collected at a constant step
1θ = 6.3 · 10−2 rad. The truncation level in (32) is set as
ε = −12 dB. In addition, the radiated field data are corrupted
by a complex white gaussian noise with zero mean so as to
provide a signal-to-noise ratio (SNR) of 20 dB.

FIGURE 21. Behavior of the normalized SVs of the radiation operator in
near zone σn (solid blue line), σNU

n (dashed red line) and σU
n (dotted

yellow line), when the source is a parabolic arc with p = 11.54λ.

FIGURE 22. Discretization points of the observation domain obtained by
the PSF-based procedure when the source is a parabolic arc with
p = 11.54λ and the field is observed in near zone. The distribution of
points over the remaining part of the domain is obtained for symmetry.

FIGURE 23. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with

θ0 = 0 rad) and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected in near

zone at the points of Fig. 22 (panel a), and at points uniformly spaced
(panel b).

The results of Figs. 18-20 show that the best performances
are obtained by the PSF-based sampling approach leading to
a non-uniform data sampling.

These conclusions are quantitatively supported by the
errors in TABLE 4 evaluated as

e′l =

∥∥∥J (φ)− J̃l (φ)∥∥∥
‖J (φ)‖

. (33)

Even though the proposed sampling scheme has been
referred to the far field, it can be extended to the near field
by properly adjusting the kernel of the radiation operator.
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FIGURE 24. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with θ0 = π/4

rad) and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected in near zone at

the points of Fig. 22 (panel a), and at points uniformly spaced (panel b).

FIGURE 25. Comparison between
∣∣J (φ)∣∣ (solid yellow line) (with

θ0 = 1.38 rad) and
∣∣∣J̃l (φ)∣∣∣ (dashed green line) from data collected in near

zone at the points of Fig. 22 (panel a), and at points uniformly spaced
(panel b).

TABLE 4. Normalized errors (33) for a parabolic source. The source is fed
by the current density function (25).

The singular system of the radiation operator is now dif-
ferent with respect to the far field case and even the number
of significant SVs could change. As a consequence, the set
of sampling points returned by the PSF-approach for the
near field is generally different from the far field case. For
instance, for the same parabolic arc of the previous example,
the number of significant SVs slightly increases to 55 for
a near zone observation (blue curve of Fig. 21) and the 55

TABLE 5. Normalized errors (33) for a parabolic source. The source is fed
by the current density function (25).

sampling points provided by the algorithm are shown under
Fig. 22, and again, they are non-uniformly distributed. Any-
way, the SVs σNU of the non-uniform sampling are closer to
the continuous ones than the SVs σUn of the uniform case, the
number of sampling points being equal.

Next, the same source reconstruction as before is repeated
from near field data by (32) with l = 1 when the 55 data
are non-uniformly collected according to the optimal grid of
Fig. 22 and l = 3when the data are collected at a constant step
1θ = 5.8·10−2 rad,. The truncation level in (32) is set as ε =
−12.5 dB and the radiated near field data are corrupted by a
complex white gaussian noise with zero mean so to provide
a signal-to-noise ratio (SNR) of 20 dB.

As can be appreciated from Figs. 23-25, the non-uniform
sampling returns, again, better source reconstructions, with
smaller reconstruction error (33) (see Table 5).

VII. CONCLUSION
A strategy for the discretization of the far field of a confor-
mal source is introduced by relying on an inverse problem
approach. The numerical computation of the SVD of the
relevant operator and the application of the Kramer gener-
alized sampling theorem allows the definition of a nearly
optimal sampling scheme whose angular non-uniform step
depends on the source geometry. In this way, the number of
sampling points is reduced to a minimum and coincident with
the NDF of the source over the assigned observation domain.
The required number of samples of the present scheme com-
pares favorably also with the results of standard sampling
approaches leading to uniform equatorial steps, as founded
on the general piece of information about the minimum cir-
cumference enclosing the source.

The present approach, aiming at the reduction to a min-
imum of the number of samples for the field interpolation,
once extended to near field measurements and to the 3D
case, paves the way to a large reduction of the testing time
of electrically large conformal arrays, whenever the overall
effort is dominated by the mechanical scanning. Also, it can
be useful while addressing more complex scenarios, such
as the case where the source radiates in proximity of some
reflecting plane [31]. However, while dealing with electri-
cally large 3D problems, the computation burden required
for the SVD computation can be a serious limitation of the
proposed method.

APPENDIX A
In this appendix, the theoretical foundations of the PSF-based
discretization procedure are provided, and expression (13) is
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derived. To this end, let us first recall the Kramer generalized
sampling theorem:
Lemma: Let I be an interval and L2I the class of square

integrable functions supported over it. Consider the following
linear operator

f (t) =
∫
I
K (t, x) g (x)dx, (A.1)

with g ∈ L2I . Furthermore, assume that K (t, x) ∈ L2I for
each real t and that there exists a countable set {tn} such that
{K(tn, x)} is a complete orthogonal set on L2I . Then

f (t) = lim
N→∞

∑
|m|≤N

f (tn) Sn (t), (A.2)

where

Sn (t) =

∫
I K (t, x)K

∗ (tn, x) dx∫
I |K (tn, x)|

2 dx
. (A.3)

Since the radiated field satisfies (9), and E (θ), and
PSFs

(
θ, θ ′

)
are square integrable over L2[−θmax ,θmax ], the pre-

vious theorem can be applied by considering K
(
θ, θ ′

)
=

PSF
(
θ, θ ′

)
.

APPENDIX B
Suppose to consider as source geometry a full circle of radius
R. The far field radiation operator is given by

E (θ) =
∫ R

0

∫ π

−π

J (ρ, φ) ejβρ cos(θ−φ)ρdρdφ = AJ , (B.1)

with φ ∈ [−π, π] and ρ ∈ [0,R], whereas the adjoint
operator, by definition [16], can be written as

A†E =
∫ θmax

−θmax

E (θ) e−jβρcos(θ−φ)dθ. (B.2)

Let us recall first the analytical results of the SVD of (B.1)
for θmax = π . Then [27], vn

(
r ′
)
= Jn (βρ) ejnφ/

√
2πcn,

un (θ) = jnejnθ/
√
2π , σn = 2π

√
cn, where cn =∫ R

0 J2n (βρ) ρdρ and Jn (·) is the Bessel function of first kind
of order n. Because of the asymptotic exponential decay of the
Bessel function for indexes much larger than its argument,
only 2N + 1 SVs are significant, with N = [βR]. This
provides the NDF of the source as the dimension of the space
of the current function that can be reconstructed in a stable
way in presence of uncertainties on data. It also provides the
dimension of the space of the corresponding radiated fields.

When θmax 6= π a closed form for the SVD of (B.1)
is not known in closed form. However, an upper bound
for its NDF can be found by the stationary phase argu-
ments applied to (B.2). In order to examine the left singular
functions, let us consider the set of orthonormal functions
{ejmπθ/θmax/

√
2θmax} and examine the image of each element

of the set by A†, i.e., the function∫ θmax

−θmax

ej
mπ
θmax

θ

√
2θmax

e−jβρcos(θ−φ)dθ. (B.3)

Then, the phase function of (B.2) is proportional to

g (θ) =
ρ

R
cos (θ − φ)+

mπ
θmaxβR

, (B.4)

and the stationary phase method can be applied provided
βR� 1. The stationary point θs, obtained by imposing

g′ (θs) =
ρ

R
sin (θs−φ)+

mπ
θmaxβR

= 0, (B.5)

belongs to the integration interval as long as

|m| <
θmaxβR
π

. (B.6)

since for φ ∈ [−π, π] and ρ ∈ [0,R], sin (θs − φ) and ρ
are at most equal to 1 and R, respectively. For m outside
the interval (B.6), the solution θs of (B.5) could be complex,
leading to a complex g (θ) and to an exponentially vanishing
contribution of the asymptotic expression of (B.2).

Accordingly, the maximum number of Fourier harmon-
ics providing a significant contribution to the far field is
Nc= 2M+ 1 with

M =
[
θmaxβR
π

]
. (B.7)

Therefore, although the above introduced set of functions,
with m = −M , . . . ,M , does not provide the left singular
functions of (B.1), Nc provides an upper bound of NDF,
because only a linear combination of them can be mapped
within the space of the current functions. In addition, the right
singular functions of (B.1) for θmax 6= π can be expressed
as the linear combination of at most Nc functions vn

(
r ′
)
=

Jn (βρ) ejnφ/
√
2πcn.
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