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ABSTRACT We have previously developed an ambulatory electrode set (AES) for the measurement of
electroencephalography (EEG), electrooculography (EOG), and electromyography (EMG). The AES has
been proven to be suitable for manual sleep staging and self-application in in-home polysomnography (PSG).
To further facilitate the diagnostics of various sleep disorders, this study aimed to utilize a deep learning-
based automated sleep staging approach for EEG signals acquired with the AES. The present neural network
architecture comprises a combination of convolutional and recurrent neural networks previously shown to
achieve excellent sleep scoring accuracy with a single standard EEG channel (F4-M1). In this study, the
model was re-trained and tested with 135 EEG signals recorded with AES. The recordings were conducted
for subjects suspected of sleep apnea or sleep bruxism. The performance of the deep learning model was
evaluated with 10-fold cross-validation using manual scoring of the AES signals as a reference. The accuracy
of the neural network sleep staging was 79.7% (κ = 0.729) for five sleep stages (W, N1, N2, N3, and R),
84.1% (κ = 0.773) for four sleep stages (W, light sleep, deep sleep, R), and 89.1% (κ = 0.801) for three sleep
stages (W, NREM, R). The utilized neural network was able to accurately determine sleep stages based on
EEG channels measured with the AES. The accuracy is comparable to the inter-scorer agreement of standard
EEG scorings between international sleep centers. The automatic AES-based sleep staging could potentially
improve the availability of PSG studies by facilitating the arrangement of self-administrated in-home PSGs.

INDEX TERMS Ambulatory EEG, automatic scoring, deep learning, electroencephalography, sleep staging.
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I. INTRODUCTION
Current guidelines defined by the American Academy of
Sleep Medicine (AASM) divide sleep into five stages:
wake (W), N1, N2, N3, and rapid eye movement (R) [1].
The stages are identified based on electroencephalography
(EEG), electrooculography (EOG), and chin electromyo-
graphy (EMG) signals recorded during polysomnography
(PSG). PSG is usually conducted in a sleep laboratory (type I
PSG), as the standard 10-20 system EEG electrodes (Fig. 1c)
require pre-application by a trained expert and standard
type II PSG EEG electrodes are too complex to be fully self-
administrated in a home environment.

To overcome this shortcoming of the PSG, various types
of headbands and electrode sets have been developed for
EEG measurement [2]–[4]. Moreover, we have previously
introduced an ambulatory electrode set (AES) enabling the
recording of the EEG, EOG, and EMG during sleep [5].
The Ag/AgCl electrodes in the AES are screen-printed on a
flexible polyethylene terephthalate (PET) film that attaches
easily to the skin with a self-adhesive hydrogel membrane
and medical foam. The design of the AES and illustrated
instructions help to achieve consistent placement of the elec-
trodes. The AES has 1.5 mm touch-proof safety socket con-
nectors suitable to be used withmost modern EEG amplifiers.
The EEG and EOG electrodes are located around the face,
near the hairline, as presented in the Fig. 1b. The EEG mea-
sured with AES has been shown to be suitable for manual
sleep staging [6] and the success rate and technical quality
of the EEG, EOG, and EMG channels in self-applied AES
recordings have been shown to be comparable to conventional
type II in-home PSGs [5], [7].

In addition to the complex measurement setup used in a
standard type I PSG, the sleep staging process requires time-
consuming manual analysis of the recordings by experienced
sleep technicians. However, recent advances in deep learning
have brought a surge of automated sleep staging applications
[8]–[11]. These deep learning applications have achieved
excellent sleep staging accuracies and compare well with the
inter-scorer agreement between experienced manual scorers
from international sleep centers [12]–[14].

Recently, we introduced a deep learning model for the
automatic identification of sleep stages [15]. The model
achieved an accuracy of 82.9% (κ = 0.77) by utilizing only
a single EEG channel (F4-M1) extracted from type I PSGs.
To further enhance the diagnostics of sleep disorders and
facilitate the arrangement of type II PSG studies, we aim to
utilize a similar model [15] for sleep staging based on signals
acquired from AES recordings. Building on the recent results
on deep learning-based automatic scoring [15] and the feasi-
bility of theAES formanual sleep scoring [6], we hypothesize
that deep learning can be utilized for accurate automatic
AES-based sleep staging. Furthermore, electrode malfunc-
tions and other EEG artifacts appear as high amplitude vari-
ations in the signals. Thus, we present a novel method for
eliminating electrode-originated noise in the neural network

input. We hypothesize that the automatic scoring accuracy
can be increased by using the variance of the concurrent
EEG epochs as a simple metric for selecting the input for
the deep learning model. In addition, we investigate which
AES channel derivations provide the most accurate results to
advance the development of the AES. Successful implemen-
tation of automatic AES-based sleep staging could potentially
enhance the clinical usability of the AES and improve the
availability of PSG studies by facilitating the measurement
of self-administrated type II PSG recordings.

II. MATERIALS AND METHODS
A. PATIENTS AND DATA
Related to the development and clinical validation of the
AES, we have tested it in several small cohorts, some of these
being currently under analysis and some already published
[5], [7]. Three separate datasets were utilized in this study
(Table 1). The first dataset consists of 80 home sleep apnea
tests (HSAT) supplemented with AES that were conducted
at Kuopio University Hospital (Kuopio, Finland) and City of
Helsinki Unit of Specialized Oral Care in the Metropolitan
Area and Kirkkonummi (Helsinki, Finland) for 50 subjects
with suspected sleep bruxism [16] in 2015–2017 (bruxism
dataset). The second dataset consists of 33 in-lab poly-
graph recordings supplemented with AES that were con-
ducted at Kuopio University Hospital (Kuopio, Finland) for
suspected sleep apnea patients in 2016–2019 (sleep apnea
dataset 1). The third dataset consists of 22 in-lab PSGs sup-
plemented with AES that were conducted for suspected sleep
apnea patients at the Princess Alexandra Hospital (Brisbane,
Australia) in 2019 (sleep apnea dataset 2). The collection and
processing of the datasets were given a favorable statement
by The Research Ethics Committee of the Northern Savo
Hospital District (215/2015 and 126/2016) and The Institu-
tional Human Research Ethics Committee of the Princess
Alexandra Hospital (HREC/16/QPAH/668). Informed con-
sent was acquired from all patients prior to the recording.

In all datasets, the AES signals were recorded with a Nox
A1 PSG monitor (Nox Medical, Reykjavík, Iceland). The
AES data comprised four EEG (Af8-T9, Fp2-T9, Fp1-T10,
and Af7-T10), two EOG (F8-T9 and F7-T10), and four EMG
(S1-SF, S2-SF, MassL, MassR) channels (Fig. 1a). EEG,
EOG, and chin EMG channels are used for manual scoring
of sleep stages, whereas MassL and MassR are for the identi-
fication of sleep bruxism episodes. In addition, each electrode
of the AES was also recorded against the common ground to
enable the acquisition of non-standard channel derivations.
The sleep staging was initially performed manually by four
experienced scorers according to the latest AASM guide-
lines [1] based on EEG, EOG, and EMG signals recorded
with the AES. Two individual scorers took part in the scoring
of the bruxism dataset in Finland, sleep apnea dataset 1 was
scored by one scorer in Iceland, and sleep apnea dataset 2 was
scored by one scorer in Australia.
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FIGURE 1. (a) The electrode locations in the ambulatory electrode set (AES), (b) the AES worn by a volunteering researcher, and (c) standard 10–20
system electrode locations for comparison.

TABLE 1. Patient demographics of the datasets.
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FIGURE 2. The architecture of the utilized neural network. The input
sequence consists of 100 epochs that are fed separately to a
convolutional neural network with a time distributed layer. The global
average pooled feature maps of individual epochs of the sequence are
then fed to a long short-term memory (LSTM) layer. The output of the
LSTM is then transformed into a sequence of sleep stages with time
distributed fully connected layer with a softmax activation function.

B. NEURAL NETWORK ARCHITECTURE
We developed a deep learning model in a previous study,
which achieved a sleep staging accuracy of 82.9% (κ = 0.77)
based on a single standard EEG channel (F4-M1) using a
dataset comprising 891 PSG recordings [15]. The same neural
network architecture was used without modifications in the
present study. The architecture comprises a combination of
a convolutional neural network (CNN) and a recurrent neu-
ral network (RNN) (Fig. 2). The CNN is used for epoch-
wise feature extraction and the RNN for the learning of the
sequential characteristics of the sleep stages. The input for
the neural network is a sequence of a hundred consecutive
30 s EEG epochs and the output is a sequence of the cor-
responding sleep stages. The sequence length was set to one
hundred as a compromise betweenmemory preservation, data
augmentation, and sufficiently long sequences for capturing
sleep cycles.

The CNN comprised three convolutional blocks with each
including two convolutional layers and a pooling layer. The
first two blocks end with a max pooling layer with a size
of 2 and the last block ends with a global average pooling
layer. In the first block, the number of kernels was 128 and
the kernel size was 21 data points. The first convolutional
layer had a stride size of 5 to reduce the amount of data, and
all later convolutional layers had a stride size of 1. In the
latter two blocks, the number of kernels was 256, and the
kernel size was 5. Each convolutional layer was followed by
a batch normalization layer. After the convolutional neural
network, a Gaussian dropout was applied. The data was then
fed into a bidirectional long short-term memory (LSTM)
neural network. The LSTM had 256 units, a dropout value
of 0.3 and a recurrent dropout value of 0.5. The last layer of
the neural network was a fully connected dense layer with
softmax activation, which can be interpreted as a probability
for each sleep stage.

C. DATA PREPARATION
The EEG and EMG signals were zero-phase filtered with
Butterworth bandpass filter (0.3–32 Hz) and downsampled
from 200 Hz to 64 Hz as the deep learning model was origi-
nally developed for 64Hz signal [15]. To unify the scale of the
signals, each signal was z-score normalized. After the signal
processing, the signals were divided into 30 s epochs and
the epochs were set to sequences of 100 consecutive epochs.
In the training and validation sets, these sequences were
generated with 75% overlap between adjacent sequences to
multiply the amount of the training data whereas test set
sequences had no overlap. In accordance with previous stud-
ies [10], [15], [17], we included a maximum of 30 minutes
of wake EEG signal before and after sleep whenever excess
signal was recorded. Furthermore, to mimic AASM guide-
lines of switching to contralateral channels in case of poor
signal quality, we also created new combination channels.
The combination channels were constructed by calculating
the variance of concurrent EEG epochs of the opposite EEG
channels (e.g., Fp1-T10 and Fp2-T9) and adding the epoch
with lower variance to the combination channel. With this
method, we can ideally select the side with less high ampli-
tude electrode-based noise from the opposite EEG channels.
These combination channels are later referenced as Fp1/Fp2
and Af7/Af8 combination channels.

D. TRAINING OF THE NEURAL NETWORK
The 10-fold cross-validation was used to test the performance
of the network to reduce the bias caused by the relatively
small dataset. The three datasets were divided into 10 equal-
sized folds so that each fold had a constant number of
recordings from each dataset. One of the folds was used for
testing, one for validation, and the remaining eight folds were
used for training. Ten different models were then trained
so that each fold was used once in the validation set and
once in the test set. Each model was trained for a maximum
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TABLE 2. The neural network 5-stage sleep scoring accuracies.

of 200 cycles or until the value of the validation loss func-
tion had not decreased during 20 consecutive cycles. All
calculations were conducted on a server with 32-core AMD
Ryzen Threadripper 2990WX, 128GB of RAM, andNVIDIA
GeForce RTX 2080. With our server setup, the training of a
single model takes approximately 2–4 hours and evaluation
of a single patient data with a trained model takes only a
few seconds.

E. DATA ANALYSIS
The performance of the deep learning model was evaluated
as the test set accuracies across all the 10 folds. Furthermore,
the inter-scorer agreement between automatic scoring and
manual scoring was evaluated with Cohen’s kappa coeffi-
cient (κ). Performance was calculated for complete test sets
(all datasets included) and independently for each dataset
by extracting the corresponding patients from the test sets.
The confusion matrices were drawn for 5-stage, 4-stage, and
3-stage scorings across all folds including patients from all
datasets. The samemodel was used for the 4-stage and 3-stage
scorings and confusion matrices were derived by combining
N1 and N2 to light sleep (4-stage), and N1, N2, and N3 to
NREM (3-stage).

To further assess the usability of the AES in clinical use,
total sleep time (TST) and wake after sleep onset (WASO)
were calculated for the automatic and manual scorings. The
results are reported as medians, interquartile ranges, and
Bland-Altman plots with mean difference and 95% confi-
dence interval. Furthermore, the time spent in each sleep stage
was calculated for each dataset for manual and automatic
scoring. The statistical significance between manually and
automatically acquired sleep parameters was evaluated with
Wilcoxon signed-rank test using p < 0.001 as the limit for
statistical significance.

III. RESULTS
The performances of the neural network-based sleep stag-
ing with different channel derivations are presented in
Table 2. The highest accuracy was achieved with the Fp1/Fp2

combination channel, outperforming the Fp2, Fp1, and Fp2-
GND channels by 2.2%, 0.7%, and 1.9%, respectively. The
lowest accuracy was acquired either with Fp1/Fp2 combina-
tion channel accompanied with S2-Sf EMG channel or when
using all EEG and EOG channels. However, when consid-
ering all datasets, the overall accuracies with every tested
input were close to each other, and the difference between
the highest and the lowest accuracy was only 2.9%.

The accuracies of the individual datasets show the largest
differences in the sleep apnea dataset 2, where the highest
accuracy with Fp1/Fp2 combination channel was 80.5% and
the lowest accuracy with all EEG and EOG channels was
72.3%. Themost consistent performance throughout the three
datasets was achieved with Fp1/Fp2 combination channel.
However, adding S2-SF EMG channel to the input with
Fp1/Fp2 combination channel slightly worsened the accu-
racy, especially in the sleep apnea 2 dataset.

The confusion matrices of the most accurate Fp1/Fp2 com-
bination channel are presented in Fig. 3a-c for the 5-stage,
4-stage, and 3-stage predictions. The 5-stage neural network
model achieved high accuracy in the W, N2, N3, and R
stages. However, it struggled to identify the N1 stage. When
the N1 and N2 stages were combined into light sleep, the
overall accuracy increased from 79.7% to 84.1% (κ =

0.773). Scoring to only 3 stages (W, NREM, R) further
increased the accuracy to 89.1% (κ = 0.801). Furthermore,
the sensitivity, specificity, and F1-score for each sleep stage
with 5-stage scoring based on Fp1/Fp2 combination chan-
nel in all datasets are presented in the Table 4. In gen-
eral, sensitivity and specificity are high in all sleep stages
except N1.

Optimal sequence length was also tested with the best
performing Fp1/Fp2 combination channel. The accuracies for
sequence lengths of 25, 50, 75, 100, and 125 were 78.5%,
79.0%, 79.6%, 79.7%, and 79.4%, respectively. Thus, opti-
mal sequence length was 100 epochs also used in the previous
study by Korkalainen et al. [15].

The total sleep time (TST, Fig. 4a, Table 3), wake after
sleep onset (WASO, Fig. 4b, Table 3), and time spent in
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FIGURE 3. Confusion matrix for the (a) 5-stage, (b) 4-stage (wake (W), light sleep (N1 + N2), deep sleep (N3), rapid eye movement (R)), and (c) 3-stage
(W, non-rapid eye movement (NREM), R) neural network sleep scoring based on Fp1/Fp2 combination channel recorded with ambulatory electrode set
(AES). The results are calculated across all test sets in 10-fold cross-validation including patients from all datasets (n = 135).

FIGURE 4. Bland-Altman plots of the (a) total sleep time (TST) and (b) wake after sleep onset (WASO) calculated from the difference of manual and
automatic scoring. The results are calculated with all test sets in 10-fold cross-validation including patients from all datasets (n = 135).

different sleep stages (Table 3) were calculated from the
manual scoring and the predictions made with the Fp1/Fp2
combination channel. TST and WASO show only minor dif-
ferences between medians of manual and automated scor-
ing (Table 3). Furthermore, the number of each sleep stage
and unscored epochs based on manual scoring are presented
in Table 5. The deep learning model slightly overestimates
the time spent in N2 and underestimates the time spent
in N1 (Table 3), which can also be seen from the 5-stage
confusion matrix (Fig. 3a). Based on the Bland-Altman
plots, the constant bias of the TST and WASO is minimal
(Fig. 4).

To better illustrate the performance of the automatic scor-
ing algorithm, hypnograms of the automatic and manual

scoring of a subject with median scoring accuracy were
plotted (Fig. 5). By visual inspection, the automatic scoring
manages to identify the ultradian rhythm well. The manual
scoring, however, has more rapid sleep stage transitions.
Furthermore, a Sankey diagram of the scored sleep stages
between manual and automatic scoring was plotted (Fig. 6).
From the Sankey diagram and confusion matrix (Fig. 3a)
sleep stage pairs that rarely get mixed up (e.g., REM-N3) and
pairs that sometimes cause confusion (e.g., N1-N2 or N2-N3)
can be identified.

IV. DISCUSSION
In this study, we utilized a previously developed deep learning
model [15] for sleep staging based on frontal EEG, EOG,
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TABLE 3. Sleep parameters and time spent in different sleep stages based on the manual and automatic scorings.

FIGURE 5. An example hypnogram of manual and automatic scoring for a subject with median accuracy.

TABLE 4. Sensitivity, specificity, and F1-score of different sleep stages for
5-stage automatic scoring using all datasets.

and EMG data measured with an ambulatory electrode set
(AES). When considering all datasets, the highest automatic
scoring accuracy 79.7% (κ = 0.729) was achieved with
Fp1/Fp2 combination EEG channel. The accuracy was only

TABLE 5. The number of each sleep stage in the datasets based on
manual scoring.

3.2% lower than that achieved with the same deep learning
model trained with a nearly 7 times larger PSG dataset [15].
The accuracy is also comparable with the inter-scorer agree-
ment of standard EEG between individual scorers, in which
kappa values have been reported to be between 0.58–0.76
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FIGURE 6. A Sankey diagram of the number of sleep stage epochs in manually and automatically scored recordings.

[12]–[14], [18]. The accuracy also exceeded the 76.1% man-
ual inter-scorer agreement previously reported for the AES
recordings [6]. Furthermore, the overall accuracy was similar
in each of the three datasets, which indicates that the neural
network generalizes well to different datasets with distinct
recording environments (home, sleep lab), and different inde-
pendent scorers in multiple international centers.

The most accurate EEG derivation was the Fp1/Fp2 com-
bination channel. This confirms the hypothesis that the auto-
matic scoring accuracy can be slightly increased by using
the variance of EEG epochs as a simple metric to choose
the optimal input for the deep learning model. The rationale
behind this metric is to mimic the AASM scoring rules that
recommend switching the scoring from the F4-M1, C4-M1,
a O2-M1 channels to F3-M2, C3-M2, and O1-M2 channels in
the case of an electrode malfunction [1]. Electrode malfunc-
tions and other EEG artifacts appear as high amplitude vari-
ations in the signal. Furthermore, typical electrode-related
artifacts appear only in single channels with the AES [5].
Thus, calculating the variance of the epochs from the opposite
EEG channels can be used to select the epoch from the
opposite channels with less noise induced by poor electrode
contact.

In addition, the scoring accuracy of the neural network
was the most consistent across the different datasets when
using the combination channels. The differences between
datasets were negligible when using combination chan-
nels, the accuracies being within 0.9% with the Fp1/Fp2
combination channel and 1.1% with the Af8/Af7 combina-
tion channel. With single bipolar channels, the differences
between datasets were slightly larger. This, however, could be

explained by electrode-based artifacts or other types of noise
in single channels.

The largest difference between different inputs was seen in
sleep apnea dataset 2, in which the scoring accuracy increased
by 6.4% and 3.4% when comparing Fp2 and Fp1 channels to
the Fp1/Fp2 combination channel, respectively. Even though
the combination channels improved the accuracy compared to
single channels, adding more EEG, EOG, or EMG channel
derivations did not improve the accuracy. However, this is
not the first time this kind of behavior has been reported
[19], [20]. Several different deep learning models have been
shown to have only minor benefit or even performance degra-
dation from additional input signals [19], [20]. This may
be caused by the fact that adding possibly redundant input
increases the noise of the deep learningmodel’s input, making
it more difficult for the model to extract relevant information
from the signals.

When considering all datasets, the highest accuracy (88%)
was achieved when scoring wake. Furthermore, N2, N3, and
REM were predicted with high accuracy (81–84%). The
lowest accuracy (31%) was acquired when predicting the N1
stage. This was expected, as the N1 stage is also the most dif-
ficult sleep stage to scoremanually even for experienced scor-
ers. The inter-scorer agreement between experienced scorers
for N1 has been reported to be only κ = 0.31–0.46 [12],
[13], [18] based on standard EEG. In addition, the dataset
was slightly imbalanced (Table 5), and the N1 stage is the
least prevalent stage in all datasets, which further complicates
the feature learning of the N1. However, balancing the dataset
with sample weights had negative effect on the overall perfor-
mance based on preliminary tests. This indicates that despite
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the imbalance, there was enough information of each sleep
stage for reliable feature learning, and the low accuracy of
N1 is mainly caused by inconsistent manual scoring.

Based on the confusion matrix of the 5-stage scoring
(Fig. 3a), a slight bias towards the N2 stage can be seen.
This most probably results from the N2 stage being the most
prevalent sleep stage in the datasets (Table 2). An unequal
number of different sleep stages causes the loss function to
get its lowest value when uncertain epochs are scored as the
most prevalent one. This leads to a higher number of false
positive N2 identifications when compared with other sleep
stages. The bias could be corrected by using sample weights
inversely proportional to the number of the corresponding
sleep stage during the training. This would, however, have
a slight negative impact on the overall accuracy of the neural
network.

The medians and Bland-Altman plots for TST and WASO
(Fig. 4, Table 3) show only minor differences between the
automatic and manual scorings. Furthermore, the 95% con-
fidence intervals of the difference between the manual and
estimated parameters are fairly low. Only one extreme outlier
is present in the dataset, which is caused by significant ECG
artifacts in the EEG channels. The ECG artifacts cause the
deep learning model to score significantly more wake than
the manual scorer. Similar misinterpretations could be easily
avoided in clinical circumstances with a visual inspection
before feeding the signal to the neural network.

The achieved 79.7% (κ = 0.73) scoring accuracy com-
pares favorably to the recent advances in the deep learning-
based automatic sleep scoring presented in the literature.
Based on standard EEG recordings, several deep learning
models with different architectures have achieved an accu-
racy of 82.9–86.2% (κ = 0.77–0.80) [10], [15], [17], [21],
[22] with single-channel inputs. Furthermore, a random forest
classifier has been used to achieve 72.98% accuracy based on
a single frontal EEG channel [23]. There have also been other
studies using automatic sleep staging methods on signals
collected with different ambulatory EEG systems. Based
on signal measured with ear-EEG electrodes, random forest
classifier has been used to achieve scoring accuracies of
κ = 0.45–0.65 [24] and κ = 0.73 [25]. A fabric head-
band with forehead electrodes developed by Cognionics Inc.
(San Diego, CA, USA) has been recently used to achieve
74.0% deep learning scoring accuracy based on two-channel
data [26]. Furthermore, a commercially available device,
Dreem headband (Dreem Inc., Paris, France), has been used
to achieve 83.5% (κ = 0.748) accuracies with a deep
learning model that was trained with consensus hypnograms
of five experienced scorers [4]. However, the deep learning
models of these studies have not been published in detail. The
high accuracy based on consensus manual scoring highlights
the importance of the scoring quality and using data from
multiple different scorers to avoid unintentional and
unwanted bias in the learning process.

A minor limitation in this study is the size of the dataset
(n = 135). To compensate for this, we multiplied the number

of the EEG sequences in the training and validation sets by
overlapping consecutive sequences. Furthermore, we utilized
10-fold cross-validation to minimize the bias that could be
caused by a small test. Despite the relatively small dataset, the
model achieved good accuracy, and further increasing the size
or number of the AES datasets could increase the accuracy
of the automatic sleep staging even further. Furthermore,
the neural network was trained with three different datasets
analyzed in three different international sleep centers. The
automatic scoring accuracy would arguably be higher if the
used dataset were scored by one person. Considering this,
the achieved accuracy is excellent which indicates that the
algorithm is able to find the relevant signal features despite
differences in the scorer habits and recording environments.
In any case, the algorithm should be thoroughly validated
on large AES datasets preferably scored by multiple sleep
experts before advancing to routine clinical use.

Another factor that might limit the scoring accuracy is that
the AES has been designed to be used without skin abrasion
to allow easy self-application. This leads to higher electrode-
skin impedances when compared to a standard EEG setup
with cup electrodes accompanied with skin abrasion proce-
dure. The high electrode-skin impedance has been reported to
lead to noticeable sweat artifact [27], [28] in the delta wave
bandwidth (0.5–4.0 Hz), which is suggested to partly origi-
nate from the imbalanced impedances of the electrodes [29].
However, with further research and product development, the
signal quality of the AES could be enhanced to improve its
resistance to artifacts [27], [28]. This has the possibility of
simultaneously enhancing the sleep scoring accuracy of the
utilized deep learning model.

The transition from type I PSGs to type II in-home mea-
surements has been shown to improve the availability and
reduce the waiting times of the sleep studies in diagnostics of
obstructive sleep apnea [30]. Furthermore, the direct costs
of obstuctive sleep apnea management have been shown
to decrease because of the absence of hospitalization [30].
In addition to financial benefits, type II PSGs with accu-
rate automatic scoring algorithm could potentially produce
better quality sleep data, as the sleep efficiency has been
shown to be better and total sleep time longer compared to
type I PSGs since the patients can sleep in a familiar and
comfortable home environment instead of a sleep laboratory
[31], [32]. Self-applicable EEG electrodes with automatic
scoring could also enable easy and cost-effective multi-night
measurements, further improving the data quality by enabling
the consideration of the first-night effect and night-to-night
variability [2], [33], [34]. Therefore, type I PSG could be
replaced in some cases with self-administrated type II PSG
with AES to free up human resources, given due consider-
ation on the needs of the patient. In addition to facilitating
the type II PSGs, the AES could be useful when conducting
type I PSG recordings in cumbersome situations, such as for
patients with reduced mobility in stroke units where routine
screening for sleep apnea is uncommon [35]. Furthermore,
the AES together with the proposed automatic sleep staging

26562 VOLUME 10, 2022



A. Leino et al.: Deep Learning Enables Accurate Automatic Sleep Staging Based on Ambulatory Forehead EEG

model could also be used as a supplement inHSAT to improve
its diagnostic accuracy without a significant increase in the
costs or manual labor.

Our study also included subjects with possible sleep brux-
ism. Our previous study confirmed that home PSG with the
AES, recording at least 3 nights, can help to better capture
the oral behavior in a natural sleeping environment [7]. For
such extensive clinical studies to be possible, new wearable
technologies and automated analytical methods are needed.
The neural network-based sleep staging together with self-
applicable AES described in this study could also offer new
possibilities for the diagnosis of sleep bruxism. Our study
also showed that a very simple measurement solution might
be sufficient to perform reliable automatic analysis. This will
allow simplification of the current layout of the AES.

In conclusion, the previously developed deep learning
model [15] was successfully utilized for automatic sleep
scoring based on EEG recorded with an AES. The auto-
matic scoring reached an accuracy comparable to inter-
scorer agreement of standard EEG recordings [12]–[14], [18].
Therefore, the automatic scoring algorithm that can be used
with a self-applicable EEG electrode set could significantly
facilitate the arrangement of type II in-home PSGs.
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