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ABSTRACT Maritime traffic routes by ships navigation vary according to country and geographic
characteristics, and they differ according to the characteristics of the ships. In ocean areas adjacent to coasts,
regulated routes are present, e.g., traffic separation scheme for ships entering and leaving; however, most
ocean areas do not have such routes. Maritime traffic route research has been conducted based on computer
engineering to create routes; however, ship characteristics were not considered. Thus, this article proposes a
framework to generate maritime traffic routes using statistical density analysis. Here, automatic identification
system (AIS) data are used to derive quantitative traffic routes. Preprocessing is applied to the AIS data, and
a similar ship trajectory pattern is decomposed into a matrix based on the Hausdorff—distance algorithm and
then stored in a database. A similar pattern makes the AIS trajectory simple using the Douglas—Peucker
algorithm. In addition, density-based spatial clustering of applications with noise (DBSCAN) is performed
to identify the waypoints of vessels then create routes by connecting waypoints. The width of maritime routes
created based on a similar ship trajectory is subjected to kernel density estimation analysis (KDE). Then,
waypoints evaluation of the main route is performed from the results of KDE 75% and 90% considering
the statistical in the total maritime traffic, and the results applied to the targeted ocean area are compared.
Finally, the result of KDE 90% of maritime traffic with framework analyzed the safety route, which can be
a basis for developing routes for maritime autonomous surface ships.

INDEX TERMS ALIS data, clustering algorithm, DBSCAN, kernel density estimation, framework, maritime

traffic route.

I. INTRODUCTION

As a result of developments in information and communi-
cation technologies and cloud computing technologies, the
amount of real-time data is increasing rapidly. In the maritime
transportation field, large amounts of automatic identification
system (AIS) data are accumulated in real time, and research
using such data is being conducted [1].

The shipping industry is the most effective means of
transporting goods over long distances, and greater than 80%
of the world’s merchandize ships use the oceans [2], [3].
Therefore, with the expansion of the shipping industry, the
demand for maritime transportation is increasing rapidly,
which has resulted in increased ship sizes [4]. Thus, national
organizations recommend or enforce route design standards
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for safe operation of ships and prevention of maritime
accidents [5]. Maritime traffic routes for ships navigation
vary by country and geographic characteristics. In ocean
areas adjacent to the coast, there are prescribed routes that
ships must use to enter and leave ports. In addition, the traffic
separation scheme is used to guide ship traffic. Moreover,
maritime autonomous surface ships (MASS) are expected in
future [6]; thus, the need to create maritime traffic routes
is increase, even in ocean areas where such routes do not
currently exist.

A ship’s trajectory data can identify the ship’s operating
environment from the ship’s past motions and patterns. AIS
data include various information, e.g., global positioning
system information, speed over ground (SOG) information,
course over ground (COG) information, ship type, length
of all, breadth, time, and place of arrival. In addition, a
ship’s AIS data are exchanged data with adjacent ships and
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AIS stations [7], [8]. The International Maritime Organi-
zation (IMO) requires cargo ships with gross tonnage of
300 tons or more engaged in international voyages, ships
with gross tonnage of 500 tons or more not engaged in
international voyages, and all passenger ships to be equipped
with AIS [9]. These regulations form part of Chapter V of
the Safety of Life at Sea (SOLAS) 3rd convention [10]. This
AIS is connected to other navigation equipment, e.g., the
electronic navigation chart display and information system
and the automatic radar plotting aid, to prevent collisions
and facilitate safe navigation [1]. In addition, according
to the literature [9], the large-scale AIS data are also
used to extract maritime routes and analyze ship motion.
Thus, AIS data are used to research improved maritime
routes by combining various ship information and computer
technologies. Son et al. [11] explained the width of sailing
ships from a reliability-based statistical perspective and
conducted a study within a harbor. However, to the best of
our knowledge, no previous study has considered density
analysis based on statistics in maritime routes or maritime
traffic networks using AIS data and route width information.
Navigable areas differ depending on the size of the ship;
however, this problem has not been considered in previous
studies. Therefore, maritime traffic routes are extracted in
wide ocean areas considering ship characteristics, and route
width values and the main route are calculated according to
statistical-based density analysis.

In this study, the AIS data of ships passing through the
Southern Sea of Korea were targeted. The Korean Ministry
of Oceans and Fisheries collects the AIS data of the ships
passing through the ocean near Korea and provides these
data for the General Information Center on Maritime Safety
and Security data. The raw AIS data are preprocessed
due to the data loss rate according to the distance and
inaccuracy of the data [12]. Trajectory clustering differs
from point clustering; thus, the trajectory should not deviate
from generality and should include similar characteristics.
Using the Hausdorff—distance algorithm, which considers
the shape difference between two different sets of points,
and the trajectory is clustered effectively [13]. Numerous
course adjustment movements are performed in an actual ship
trajectory to proceed to the course set by a vessel’s autopilot,
which increases the complexity of a ship’s trajectory. Here,
the Douglas—Peucker (DP) algorithm is used to simplify the
trajectory [14]. A simple trajectory effectively represents
waypoints that change a ship’s course. In other words, it is
possible to create a vertex point and clusters the vertices
generated in a specific part to select a waypoint for a
maritime traffic route. Here, density-based spatial clustering
(DBSCAN) is applied to point clustering, and its use has
been proven in the traffic route extraction and anomaly
detection (TREAD) method [13]. A maritime traffic route in
consideration of the characteristics of the trajectory’s motion
and ship size is created by connecting waypoints. Then,
the kernel density estimation (KDE) of the line is analyzed
to calculate the statistical route width and the calculated
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value of the main route [15]. KDE is limited in that it gives
different results depending on the setting value and search
range. However, KDE was used to quantitatively calculate
the route width and was applied as a method to evaluate
the performance of the maritime route. KDE identifies an
efficient maritime traffic route by setting the search range
from an arbitrary trajectory and analyzing routes as 75%
and 90% of the total maritime traffic using a statistical
method [4], [5]. Therefore, it is possible to create a maritime
traffic route based on density analysis, and the result of
density analysis can have a unique shipping area in a wide
ocean area. This is expected to be applicable to autonomous
ships based on a simplified main route, and it is applicable to
anomaly detection based on routes [16]. In addition, create
a maritime traffic route to protect the ocean environment,
promote navigation safety of ships and crews, create marine
spatial planning (MSP), and apply to the MASS [17]-[19].

Il. RELATED STUDY AND MOTIVATION

As large amounts of AIS data are collected, the data should
maximize public interest by linking methodologies in other
research fields with the maritime industry. AIS data can
be used to extract maritime traffic routes, and scientific
techniques, e.g., deep learning, can be applied to real-time
maritime traffic networks [1], [20]. Moreover, AIS data are
applied to navigation technology for MASS by combining
the collision risk of ships with the International Regulations
for Preventing Collision at the Sea [21]. In addition,
another study analyzed ship traffic in Singapore Strait using
spatial-temporal analysis. Here, dense areas were divided
into hotspots [22], and maritime traffic was measured by
local hotspots and cold spots via spatial autocorrelation
analysis [8]. In addition, AIS data are a key element in
the analysis of a ship’s operation pattern. Thus, AIS data
analyzes the ship’s COG, SOG, Rate of Turn data and Voyage
Data Recorder information with a clustering algorithm. From
the past data, it is possible to understand the ship’s engine
order and rudder use to prevent ship accidents [23]. Further,
various machine learning techniques were used to predict
the safety berthing velocity of ships. The algorithm with the
best performance was derived through the receiver operating
characteristic curve. This study aims to protect port facilities
and the environment by presenting guidelines for large ships
to dock safely at ports [24]. Therefore, AIS data can be fused
with various algorithms and obtain desired results. In this
study, a method for detecting main maritime traffic routes
based on vast trajectory data is proposed. After detecting the
maritime route, used the proposed a method to select the
width of the route, and furthermore, propose a framework to
represent the safety of the route.

A. RESEARCH ON MARITIME ROUTE EXTRACTION

Three methods are used to extract maritime routes, i.e.,
density-based analysis, clustering-based route extraction, and
TREAD. Lee et al. [5] extracted density-based routes by
analyzing 90% of maritime traffic with KDE based on a
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FIGURE 1. Maritime traffic route framework using the clustering algorithm and statistical density analysis.

geographic information system (GIS). The Maritime route
boundary was extracted using the Otsu binary analysis
method and the Canny algorithm, which is an edge extraction
method, for the density analysis results [25], [26]. The
superiority of the previously set route was explained through
image processing.

Liang et al [27] aimed to achieve reliable mining results
for massive vessel trajectories for efficiently computing the
similarities between different vessel trajectories. Liu et al [28]
predicted the vessel trajectory for improving smart maritime
traffic services with deep learning. This work proposed an
AIS data-driven trajectory prediction framework based long
short term memory network.

Wang et al [29] used the Douglas—Peucker algorithm
to simplify the ship trajectory, and the Hausdorff—distance
algorithm was used in the matrix. In addition, hierarchi-
cal density-based spatial clustering of applications with
noise (HDBSCAN) was used to cluster trajectory according
to hierarchical. Wang et al [29] compared results of the
K-means, spectral, DBSCAN, and HDBSCAN clustering
analysis methods and found that HDBSCAN had the best
clustering performance.

TREAD which is commonly used for the maritime traffic
extraction task, was proposed by Pallotta et al [13]. The AIS
data were used to understand, classify, and predict maritime
traffic patterns in order to automatically detect anomalies in
vessel operation patterns.

B. MARITIME TRAFFIC NETWORK

A method to create a maritime traffic network using the
TREAD method was proposed by Arguedas et al. [30].
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This method automatically generates a synthetic maritime
traffic network based on the historical positioning data of
ships. Here, waypoint and route detections are based on
the TREAD method and DBSCAN algorithm. In addition,
TREAD uses the Hausdorff-distance algorithm for route
decomposition and the Douglas—Peucker algorithm to detect
breakpoint detection. The created route is unsupervised, and
the learning result is displayed as performance evaluation.
A maritime traffic network includes connected nodes that are
created by extracting routes. Here, a node represents a ship’s
navigation waypoint, and the method used to extract the node
is approached in a scientific way.

Forti et al. [31] used AIS data to generate graph-based
maritime traffic network, and they proposed an unsupervised
approach to extract the patterns of ships [32], [33]. Here,
the Ornstein—Uhlenbeck mean-reverting stochastic process
was applied to describe the application of graphs to detect
and connect waypoints via ship motion modeling [34], [35].
This creates a network and realizes maritime traffic pattern
detection and statistical characterization.

Yan et al. [9] proposed a maritime traffic network based
on the framework of the ship trip semantic object (STSO).
Here, STSO describe a network creation methodology that
finds and connects stop point and waypoint using the
ordering points to identify the clustering structure clustering
algorithm [36].

Based on the study by Wang et al. [37], this study extracted
a maritime traffic network and proposed a different maritime
traffic network creation method. The method included how
to create the lane boundaries, lane centerlines, and junctions.
The route was created by applying the image processing
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technique based on the KDE density analysis. The outside
of the route was extracted as a lane, and the bumpy
lane was smoothed out. Further, by applying the Delaunay
triangulation model, attribute values according to adjacent
triangles were assigned. Finally, nodes and segments were
created and the centerline connected to them was presented
as a maritime traffic network.

lll. MATERIALS AND METHODS

To generate a maritime traffic route, it is necessary to
understand ships’ movement patterns and operational factors.
Generally, ship trajectories are created to reduce travel
distance and maintain safety; thus, most merchant ships have
similar trajectories. This means that AIS data can be used
to generate maritime traffic routes [38]. In this study, route
width and the main route are also considered by applying
statistical density analysis to differentiate existing maritime
traffic networks. Therefore detecting the maritime traffic
route in the vast trajectory data is crucial [27]. In addition,
for a vessel to sail safely, an appropriate width of route is an
essential condition. The selecting appropriate width of route
was presented as a new method by performing a simplified
trajectory-based density analysis. Furthermore, safety of the
route is a key factor. To execute the sailing plan without
the ship grounding, the reliability of the detected maritime
traffic route must be guaranteed. To solve this problem,
a novel statistical density analysis was applied. Further, the
median center was used to express one waypoint that appears
as clustering to detect maritime traffic routes. As a whole,
a vast amount of trajectory data was concisely collated and
efficiently analyzed. The proposed maritime traffic route
framework is illustrated in Fig. 1.

A. DATA MINING AND PREPROCESSING AIS DATA
Currently, the AIS database (approximately 950 GB) stores
data for all ships that passed through waters near Korea from
2018 to 2020. However, the raw AIS data are unsuitable for
analysis. The AIS data comprise both static and dynamic
data. Thus, to understand and interpret the data accurately,
the data must be combined. Combining the data was is
performed based on the maritime mobile service identifier
(MMSI), which has the same information. After being
combined, the AIS data include static data comprising the
MMSI, name, type, IMO number, draft, tons, and length,
and the dynamic data include date (year-month-day-time),
latitude, longitude, SOG, ship’s heading, and COG. The
MMSI comprises nine numbers and attempts to make it easy
to identify a vessel. In addition, the ship type consists of
numbers from 1 to 99 [39].

After data combining, data preprocessing was performed.
To perform data analysis efficiently, the data were divided
into daily data, and then the analysis area was divided into
16 areas and stored in the database. In addition, data analysis
may yield different results depending on a vessel’s type and
characteristics. Therefore, the types of ships were divided into
cargo, tanker, passenger, and towing ships, and the length of
the ship was divided as > 60 m.
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FIGURE 2. AIS data plot from March 1, 2018 to March 7, 2018, (a) cargo
ships and (b) tanker ships, completely different from tanker ship
(c) towing ships and (d) passenger ships.

During data preprocessing, missing values were removed,
and all inaccurate characters and symbols were deleted.
In addition, due to the characteristics of the ships, the
SOG is nearly zero during berthing, anchoring, and drifting
conditions; thus, SOG is unsuitable for determining maritime
traffic routes. Due to the characteristics of merchant ships,
there are no data with SOG of 25 kn or greater; thus, SOG was
selected as 3 kn or more and 25 kn or less. For COG, which
indicates the ship’s moving direction, all values other than 0
° — 360 ° were deleted. As shown in Fig. 2, the operation
pattern differs depending on the type, length, and breadth of
the vessel, and the route appears differently. Therefore, the
AIS data should be analyzed by categorizing ship types.

B. CLUSTERING ALGORITHM

Ship trajectories are clustered to identified similar trajecto-
ries. Merchant ships exhibit similar trajectories according to
the route selection purpose, and it is necessary to cluster
appropriately [38]. The Hausdorff-distance algorithm can
represent a similar ship trajectory as a matrix [29]. If the
Hausdorff—distance is a subset of a non-empty metric space,
where T, represents trajectory a, and T}, represents trajectory
b, dy (T,, Tp) in the Hausdorff space is expressed as follows.

dH (Ta’ Tb) = max {d (Taa Tb) ’ d (Tbv Ta)} (1)
Here, T denotes the trajectory, T, = [a1, a2, - , ay—1, an]
denotes the trajectory of ship a, and T =

[b1, b2, - - -, bp—1, by] denotes the trajectory of ship b. Given
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FIGURE 3. Conceptual diagram of the Hausdorff-distance and process to
calculate the similar trajectory.

two sets of points 7, and Tp, the Hausdorff—distance in one
direction is obtained as follows.

d(T,, Tp) = max{min{|a; — b;||}} 2)
d(Tp, T,) = max{min{|b; — a;||}} 3)

Here, ||a; —ij and ||bj —a;|| use the Euclidean—distance to
define two trajectory points as the Hausdorff—distance [40].
An example of the Hausdorff—distance based on the ship
trajectory is shown in Fig. 3.

Fig. 3 shows that the shortest distance from 7, to T}
is d (a3, b3), and the shortest distance from 7p to T, is
d (bs4, aq). In other words, the Hausdorff—distance calculates
the largest distance among all distances from a point on one
trajectory to the nearest point on another trajectory.

These connected distances can be clustered by the matrix
of the past trajectory. This study approaches from a statistical
perspective and extract the main route in consideration of
route width. Therefore, to cluster similar trajectories, a value
of 0.1 or less for each MMSI is used as one clustering.
After clustering, the vessel changes points to lines in over
time based on the MMSI number. Thus, the trajectory line is
performed as a line-based analysis rather than a point-based
analysis.

C. SIMPLIFICATION OF SHIP TRAJECTORY

Owing to the complexity of a ship’s operation, the ships do
not continuously maintain a certain course. Ships operation
includes continuously resisting the external force conditions
of the ship, e.g., wind, waves, and dynamic factors, and
continuously steadying the course based on the course setting
value set by the autopilot system. Therefore, clustering
trajectories that maintaining natural motion is performed
first, and trajectory simplification is performed on the
clustered result. Here, the Douglas—Peucker algorithm is
used [29], [30], [41]. This algorithm maintains the threshold
points to maintain the essential shape of the line.

The Douglas—Peucker algorithm begins by connecting one
end of the line to the trend line, and the distance between
the trend line and the trajectory is measured vertically. Here,
vertices that are closer to the trend line than the threshold
are removed. This procedure is performed until all vertices
are removed while dividing the trend line [42]. In this study,
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FIGURE 4. Simplifying the ship trajectory using the Douglas-Peucker
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FIGURE 5. Extracted to the vertex point of the ships trajectory.

the Douglas—Peucker algorithm first creates trend lines of
P, P>, ---,P,_1, P, and sets the threshold value d. Then,
dimax exceeding threshold d is selected, and the maximum
value is expressed as P,,,. Therefore, when d,,,,, > d, the
procedure is divided into two parts with the corresponding
boundary point P,,,, and then repeated (Fig. 4).

D. WAYPOINT DETECTION IN MARITIME TRAFFIC ROUTE
A clear waypoint can be calculated by simplifying the
trajectory of each ship. However, even if the trajectories of all
ships are similar, the waypoints will differ slightly. Therefore,
to extract the waypoints of all trajectory lines, all vertex points
(where one trajectory line meets another trajectory line and
creates a certain angle) are extracted. An example is shown
Fig. 5.

As the ships have a similar route owing to the operational
characteristics of the ship, the DBSCAN algorithm is used
to find the position where many vertex points (representing
a waypoint) are derived. The DBSCAN algorithm is an
unsupervised machine learning technique that is widely
used in point information-based research [23]. For waypoint
detection in a maritime traffic network, waypoints have been

23359



IEEE Access

J.-S. Lee et al.: Maritime Traffic Route Detection Framework Based on Statistical Density Analysis

Noise Point

O

Border Point

‘ *0.'g
£ e o
O ® g
® o
’ .
® g minPts =N
o 0.
Core Point
® [

@
l : ;
FIGURE 6. DBSCAN works process and create the cluster.

extracted using DBSCAN from TREAD and the STSO,
which is also considered in this this study [8], [14]. Two
parameters are required to use DBSCAN, i.e., epsilon (¢) is
a factor that determines the minimum distance between all
data points, and the minimum point (minPts), which is the
minimum number of data that must be included within the &
minimum distance [43]. As shown in Fig. 6, when there are
many minPts inside ¢, the DBSCAN algorithm is initiated
and expands in the direction of the data that satisfies the same
conditions adjacent to each other.

Here, if the dataset is defined as D, the vertex point is
represented by p and the ¢ neighborhood area of point is
defined as N and follows Eq. (4).

N (p) ={q € D|dist (p,q) < ¢ “

where p follows Eq. (5), which constitutes the minPts of the
DBSCAN algorithm.

IN(p)| = minPts Q)

In addition, a boundary point is a point that is close to the core
point but less than minPts from the ¢ neighborhood, and noise
is defined as a point other than the core and boundary points.
In waypoint detection using the DBSCAN algorithm, several
points appear as individual clusters, and the exact center point
must be found. As a measure of the central tendency of the
dataset, DBSCAN is suitable for detecting outliers and has the
characteristic of minimizing multiple waypoints to only one
waypoint. Therefore, an example of extracting the DBSCAN
median center is shown in Fig. 7, and the equation is given as
follows.

df =X =X+ (=YY + G- 2P @)

Here, X;, Y;, and Z; are the coordinates for feature i,
and 7 is equal to the total number of features. The median
center is used to search for effective and integrated waypoints
of different merchant ships, and weights can be assigned
according to the attribute values of these points. Therefore,
when waypoints 1 and 2 are connected, a leg of a single
maritime route is created. In addition, the start and end
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FIGURE 7. Median center selection based on the DBSCAN cluster results
of vertex point.

points can be extracted using the same method, and the final
maritime traffic route is created when the start point, end
point, and all waypoints are connected.

E. KERNEL DENSITY ESTIMATION OF MARITIME TRAFFIC

ROUTE WIDTH

When the extraction of maritime traffic routes is completed
by connecting the waypoints to each other, KDE analysis
is performed on the trajectory the vessel has followed
to create the route width. Lee er al. [5] analyzed the
KDE analysis to calculate route width with trajectory point
data. However, this study is based on the trajectory line.
Because when the ships were docked in a port for a long
period of time, there is a limit to an accurate analysis
because there are many trajectory point data. The density
analysis method estimates the characteristics of random
data variables. The most effective method to achieve this
involves drawing a histogram. A histogram is parametric and
suitable for visualizing only simple frequencies. However,
such a method is discontinuous at the boundary of each
histogram bin and has different disadvantages depending
on the width of the bin. In addition, KDE is effective
for estimating nonparametric density functions for data
following nonparametric distributions. The KDE equation is
given in Eq. (7).

N 1
fan==3 Kpt—x) )

Here, x is a random variable, and x; is an observation.
In addition, £ means bandwidth and kernel width; smoothing
parameter as a parameter for adjusting the kernel. The
kurtosis of the kernel is determined according to the size of
£. Here, K is divided by the sum of the observations with the
kernel function applied to the number of observations [44].
In this study, trajectory line data were used to perform KDE
analysis. The grid cell visually representing the analysis result
was set to 100 m. The search radius used to calculate the
density of adjacent lines in one random trajectory line was set
to 500 m. According to Article 60, paragraph 5 of the United
Nations Convention on the Law of the Sea (UNCLOS),
an artificial island and a maritime facility installed in the
exclusive economic zone is determined as a safety zone
at least 500 m from the maritime structure [45]. Finally,
as a determining factor of route width, 75% and 90% of
the total maritime traffic are represented using the quantile
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method. Due to recent developments in offshore wind farms,
research is being conducted to define the minimum separation
distance to ensure the safe passage of ships. Here, 90% of
the maritime traffic is arranged by configuring the safety
distance between the offshore wind farms and ships [46].
In addition to ocean energy development, 90% of marine
traffic is applied to MSP, which considers various entities
using different ocean spaces [47]. However, density analysis
when 90% of maritime traffic is applied represented that
even if only one vessel passes through the space of the
ocean, there is a limit to representing all the space of the
ocean as the passage of ships, and to make other marine
uses sustainable to reduce the width of the route. Therefore,
in this study, 75%, i.e., range of 20, was also analyzed
according to Chebyshev’s inequality. Chebyshev’s inequality
is more general, stating that a minimum of 75% of values
must lie within two standard deviations of the mean and
88.89% within three standard deviations for a broad range of
probability distributions [48]. The route width created in this
study from a statistical perspective is shown in Fig. 8.

IV. CASE STUDY

A. DATA MINING AND PREPROCESSING FOR AIS

In this study, the analyzed area was the Southern Sea of
Korea, where many cargo and tanker ships pass through.
In addition, many passenger ships are present in these waters
due to the nearby islands. The analysis area is from latitude
33.70 ° north to 35.05 ° north, and longitude 127.60 ° east to
128.75 ° east. The analysis area is shown in Fig. 9.

The data used for analysis were for cargo ships and tanker
ships that have passed through the target area. It is impossible
to target all ship types to select a maritime traffic route
because many types of ship, e.g., towing ships, passenger
ships, and fishing ships, exhibit irregular and nonuniform
traffic patterns. Thus, towing ships, passenger ships and
fishing ships were omitted from the analysis because of
industrial activities, e.g., maritime work, fishing activity,
and cable installation, rather than maintaining a constant
track according to vessel characteristics. Table 1 shows the
data collected from March 1, 2018 to March 7, 2018, with
319 cargo ships and 136 tanker ships passing through the
target area.

In addition, the detailed data statistics of the ships are
shown in Tables 2 and 3. Maritime traffic routes were created
based on the data of 319 cargo ships and 136 tanker ships.

The 319 cargo ships that passed through the target area
were navigating at an mean of 11.85 kn, and the maximum
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TABLE 1. Counting analysis point data and traffic data according to ship
type.

Ship type Total points Total ships

Cargo ship 545,779 319

Tanker ship 236,866 136

Total 782,645 457
TABLE 2. Statistical analysis result of cargo ships.

Cargo SOG COG Length Breadth
ship (kn) ( °) (m) (m)
Mean 11.85 167.96 168.28 23.72
Std. 3.48 98.53 83.20 11.68
Min. 3.00 0.00 64.00 10.00
25% 9.40 68.90 104.00 15.00
50% 11.60 176.00 148.00 20.00
75% 14.30 244.00 199.00 32.00
Max. 22.30 359.90 399.00 62.00

TABLE 3. Statistical analysis results of tanker ships.

Tanker SOG COG Length Breadth
ship (kn) ( °) (m) (m)
Mean 10.96 178.10 141.42 25.71

Std. 2.89 98.99 67.61 10.76
Min. 3.00 0.00 60.00 9.00
25% 9.10 77.00 90.00 17.00
50% 11.30 184.00 119.00 24.00
75% 13.20 254.80 183.00 32.00
Max. 20.10 359.90 336.00 60.00

SOG was 22.30 kn. The mean vessel length was 168.28 m,
and the longest vessel length was 399.00 m. The mean
breadth of the vessel was 23.72 m, with a maximum breadth
of 62.00 m.

The 36 tanker ships passed through the mean SOG at
10.96 kn, and the maximum was 20.10 kn. The mean vessel
length was 141.42 m, and the largest vessel was 336.00 m.
In addition, the mean breadth of the vessels was 25.71 m,
and the maximum breadth was 60.00 m. There was a slight
difference in COG between cargo and tanker ships because
the purpose of operation is different according to the type of
ships.
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B. RESULTS OF SHIP TRAJECTORY CLUSTERING AND
WAYPOINT DETECTION

Clustering similar ship trajectories was selected according to
the Hausdorff—distance algorithm. It calculates the distance
between ships MMSI, and as the numerical value of distance
appears as closer to zero, each trajectory means similar.
Conversely, dissimilar trajectories have large numerical
value.

In this study, the range of + 20 was calculated from
the mean value, and a similar trajectory was selected as
0.1, which is less than —20, as shown in Fig. 10 and
Fig. 11. Fig. 10 and Fig. 11 shows the Hausdorff—distance
calculations of a cargo and tanker ships, respectively.

The calculations average values of cargo and tanker ships
are 0.72 and 0.77, respectively, and the —2¢ values are
0.13 and 0.15, respectively. Thus, a value of 0.1 was selected
as a reference value by rounding down. Fig. 12 shows the
clustering of similar trajectories of cargo and tanker ships,
where the number of clusters of similar tracks is 23.

Fig. 13 shows the process of extracting the waypoints
of similar ship trajectories. Here, Fig. 13(a) shows the ship
trajectory clustering results. The Douglas—Peucker algorithm,
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which simplifies complex trajectories, was applied to the
trajectory created by clustering, and the results are shown in
Fig. 13(b). Fig. 13(c) shows the detection of vertex points
where one trajectory line meets another trajectory line, and
Fig. 13(d) illustrated the results of DBSCAN algorithm based
on the extracted vertex points. Here, the parameter values of
DBSCAN were ¢ = 1000 m and minPts = 50 pieces.

The vertex points of individual ships represent waypoints;
thus, the median center value was extracted (Fig. 13(e)) to
extract a single accurate waypoint. If these waypoints are
connected with lines, they form a maritime traffic route. As a
result, as the data before applying the proposed framework,
871 waypoints were extracted, but performing the proposed
method, 43 waypoints were extracted. In addition, as a result
of analysis based on the framework, it was reduced from
457 ships to 195 ships, and the number of vertex points
decreased from 271,626 to 8,683, as shown in Table 4.

A large amount of data went through the proposed
framework, and the result show that the number of vertex
points was reduced to 96.9%. These points are selected as
waypoints by DBSCAN, and the waypoints can be decreased
up to 95.2%. Based on these results, KDE analysis can be
performed, and the route width can be accessed from a
statistical perspective. Thus, the KDE analysis result of the
main route can be obtained.

C. APPLYING KDE ANALYSIS RESULT AND CALCULATING
ROUTE WIDTH BASED ON STATISTICS

Similar tracks were collected by clustering ship trajectories,
and waypoints were extracted by clustering vertex points.
If data preprocessing and clustering of similar tracks are not
performed, detected routes can be in the all ocean space.
Note that merchant ships sail to the next port, and related
economic and safety factors are included; thus, they have
similar appearances. Therefore, a high density (red area) is
shown in a lot of traffic, and the low density (green area) is
shown with little traffic. Here, Initial maritime traffic route
(IMTR)-KDE-90% means maritime traffic route of initial
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TABLE 4. The compared results for number of waypoints, total ships, and
vertex points.

Categorization Waypoint Total Vertex points
ships
Initial AIS 871 457 271,626
data set
Clustered AIS 43 195 8,083
data set
Performance of 95.2% 70.0% 96.9%
reduction rate

AIS data set. In the initial AIS data, where the clustering
algorithm is not applied, 90% of the total maritime traffic
volume is expressed by KDE. Clustered maritime traffic route
(CMTR)-KDE-75% represents the maritime traffic route of
clustered AIS data set. Based on the data applied with the
framework of this study, 75% of the total maritime traffic
volume is expressed as KDE. In addition, CMTR-KDE-90%
is the result of KDE representing 90% of the total maritime
traffic volume based on the data applied with the framework
of this study.

Fig. 14 shows the KDE analysis results obtained with
and without the proposed framework, where KDE analysis
was performed based on the 90 percentage of total maritime
traffic. Fig. 14(a) shows the KDE results for 90% total
maritime traffic without the proposed framework, and it
appears that most of the analyzed area was traversed by ships.
Fig. 14(b) shows the KDE results for 75% total maritime
traffic with the proposed framework, and Fig. 14(c) shows
the KDE results applied to 90% of the total maritime traffic
volume. In addition, the total length of the maritime traffic
route is approximately 930 km, and the total number of legs is
17. The biggest reason for applying density analysis is that the
route width can be calculated quantitatively from a statistical
perspective; therefore, to calculate a navigable area, a random
route is selected. The result of the route width in south-eastern
bound WayPoint = 5 - 4 — 3 — 2 — 10 is shown in
Table 5.

The south-eastern route has the mean width of 2,061.6 m
when the proposed framework was applied with 90% of the
total maritime traffic. This demonstrate a lot of difference
compared to the when the proposed framework was not
used. This method can prevent excessive navigation area in
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(d) Executed DBSCAN (d) Calculated Median Center

TABLE 5. Results of ship’s route width calculation.

Maritime Way- Way- Way- | Way- Way- Mean
Traffic point point point point point (m)
Route 5 (m) 4 (m) 3(m) | 2(m) | 10 (m)

IMTR- 4,005 2,114 3,711 3,438 3,080 3,269

KDE-90%

CMTR- 1,980 1,276 2544 2,616 1,892 2,061

KDE-75%

CMTR- 1,832 1,118 2,015 | 2,554 1,064 1,716

KDE-90%

ocean space and avoid friction with other maritime users.
In addition, this proposed framework can be applied to
the waypoint and cross track limit of MASS because the
framework has the advantage of being clearly extracted as a
maritime traffic route.

D. EVALUATION BASED ON KDE ANALYSIS

The density-based traffic route creation can visually identify
areas where maritime traffic is and is not concentrated. The
area with the highest density, i.e., the largest legend (red area),
is the main traffic route traveled by many ships. However,
it is difficult to understand the main flow because the passage
pattern is broken or dispersed in various parts of the main
route.

If the ocean area set as a waypoint shows a large
difference according to the KDE calculation result, the
reliability of the route of a vessel moving in a certain
direction will be reduced. Therefore, the KDE calculation
result can be described as a main traffic route when it is
kept constant without significant differences depending on
the route. In other words, if the KDE calculation results with
waypoints show a lot of difference, these results should not
be used to create a route. Therefore, the density calculation
results of the waypoint ocean area were compared and
evaluated. Fig. 15 shows the KDE calculation result of
waypoint—detection. IMTR-KDE-90% showed the largest
value at 8,584.6 (trajectory line/km?) and the smallest value at
588.54, with an average of 1,893.83. CMTR-KDE-75% was
3,037.1 at maximum, 714.45 at minimum, and 1,656.24 on
average. In addition, CMTR-KDE-90% was 2,698.76 at
maximum, 740.5 at minimum, and 1,382.30 on average.
Therefore, the KDE analysis result of 90% of maritime traffic
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FIGURE 15. Waterfall graph visualization results according to the KDE calculation result obtained with the proposed framework.

obtained using the proposed framework with the smallest
difference between the maximum and minimum values was
found to be the best. The density-based evaluation was
performed to select the main route. Generally, this area was
investigated to prove that it is unique in terms of ship passage.
In addition, there is a limit to selecting potentials all areas as
traffic routes; thus, 75% and 90% of the total maritime traffic
volume were applied, and the route width was indicated.
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V. DISCUSSION

Unlike urban road traffic, maritime traffic involves larger
spaces, various environmental factors, and irregular maritime
traffic characteristics. To solve this problem, the ship’s
operation pattern should be considered for extracting mar-
itime traffic routes based on ship type and geographic
characteristics. Density-based extraction analysis to detect
maritime traffic routes and networks, automatic anomaly
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detection in ship navigation patterns, graph-based extraction
analysis, application of the Ornstein—Uhlenbeck process,
method of STSO, and detected centerline [8], [15], [31], [38].
In common, the studies related to maritime route network
were a method that uses a vast amount of AIS data from
large ocean space, detects maritime routes, finds waypoints,
and finds networks that connect them. The maritime route
connected by lines plays an important role in the design of
routes and safety diagnosis by finding networks. However,
as ships increase in size, they cannot use all routes and
similar routes. Therefore, the safety route should be based on
the appropriate water depth and route width, and the routes
connected by waypoints should be connected without a large
difference in the KDE calculated values.

This study deviated from the method of detecting an overall
network in large ocean space and focused on detecting a
traffic route near a specific large port. In addition, it evaluated
whether the extraction routes were well connected. As shown
in Fig. 14(a), the KDE analysis of initial AIS data appears to
have almost passed in the ocean area. Generally, it is possible
to determine which ocean area ships can pass; however, it is
difficult to find the main route between dispersed routes.
Therefore, Fig. 14(b) shows the KDE analysis of 75% of
maritime traffic with the proposed framework, and Fig. 14(c)
is the KDE analysis result of 90% of the maritime traffic. The
main route was extracted by clustering similar tracks, and
waypoint detection via DBCSAN obtained a more concise
and accurate route. From a route width perspective, the larger
the width, the better; however, in coastal waters, if the route
width is excessive, it may overlap with navigational obstacles,
which induce unsafe navigation.

In addition, if the routes connecting waypoints are broken
or disconnected, route reliability will be reduced. Therefore,
as shown in Fig. 15, the most stable route is evaluated as
the difference between the maximum and minimum density
values is smaller based on the KDE calculation results.

Therefore, this study selected the result of
CMTR-KDE-90% with the smallest difference. The ocean
space is used by not only merchant ships, but also various
entities, e.g., fishing activities, resource extraction, military
districts, and marine energy development. If an accurate
shipping area is selected first, operation safety and marine
environment protection can be promoted, and if a waypoint
is created, it will be applied effectively to MASS. As a result,
future maritime routes can be created automatically based on
highly reliable waypoints.

VI. CONCLUSION AND FUTURE WORK

In this study, the maritime traffic route framework has been
proposed. The proposed framework represents a new route
detection method that considers both total maritime traffic
and statistics to calculate ship routes, including route width.
Based on a vessel’s movement pattern, the vertex points are
extracted to identify the waypoints of a vessel. In addition,
the route evaluation through the KDE analysis result indicates
that the created route is considered according to the type and
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size of the ship. To represent the main traffic route, proposed
framework can effectively represent the navigational area
of a ship, and it can be applied to route design and safety
diagnosis. In addition, the framework can build a maritime
transport network at the national level beyond a specific
port. In future, when generating a maritime traffic network,
it will be necessary to subdivide the network according to
the purpose, type, and size of each vessel, and it will be
necessary to create guidelines for selecting the correct route
width. Further, combining the extraction of maritime traffic
route and density analysis will contribute to the development
of the MASS technology.
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