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ABSTRACT In the context of autonomous driving, the existing semantic segmentation concept strongly
supports on-road driving where hard inter-class boundaries are enforced and objects can be categorized
based on their visible structures with high confidence. Due to the well-structured nature of typical on-
road scenes, current road extraction processes are largely successful and most types of vehicles are able to
traverse through the area that is detected as road. However, the off-road driving domain has many additional
uncertainties such as uneven terrain structure, positive and negative obstacles, ditches, quagmires, hidden
objects, etc. making it very unstructured. Traversing through such unstructured area is constrained by a
vehicle’s type and its capability. Therefore, an alternative approach to segmentation of the off-road driving
trail is required that supports consideration of the vehicle type in a way that is not considered in state-of-
the-art on-road segmentation approaches. To overcome this limitation and facilitate the path extraction in
the off-road driving domain, we propose traversability concept and corresponding dataset which is based on
the notion that the driving trails should be finely resolved into different sub-trails and areas corresponding to
the capability of different vehicle classes in order to achieve safe traversal. Based on this, we consider three
different classes of vehicles (sedan, pickup, and off-road) and label the images corresponding to the traversing
capability of those vehicles. So the proposed dataset facilitates the segmentation of off-road driving trail
into three regions based on the nature of the driving area and vehicle capability. We call this dataset as
CaT (CAVS Traversability, where CAVS stands for Center for Advanced Vehicular Systems) dataset and is
publicly available at https://www.cavs.msstate.edu/resources/downloads/CaT/CaT.tar.gz.

INDEX TERMS Traversability, autonomous driving, semantic segmentation, off-road, dataset.

I. INTRODUCTION
Either from the point of research or from the point of its
applicability in fields such as robotics, surveillance, military,
etc., autonomous driving in off-road environment is gain-
ing increased attention nowadays. In off-road environments,
semantic segmentation [1]–[4] is often used for understand-
ing of scenes around the vehicle. Per-pixel segmentation
assigns labels to each pixel in a frame of data according to
detection and classification of objects in the scene. In the
case of on-road driving, there are clear boundaries for the
road. The segmented road is equally drivable by all on-road
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vehicles irrespective of their specific types and capabilities.
However, for off-road driving, the off-road trail presents
many challenges such as obstacles, ditches, quagmires, logs
across the road, and more. A vehicle’s ability to negotiate
these challenges is dependent on numerous factors of the
vehicle’s design. The traversability of a trail is still uncertain
without the consideration of the vehicle’s capabilities. Thus,
the driving decision - whether to drive through the specific
area or not - should be made on the basis of the maneuvering
vehicle type and its capability.

With the advent of deep learning (DL), highly accurate
output can be easily achieved from scene understanding
algorithms. Such algorithms are data-driven and typi-
cally need very large training datasets. To fulfill the data
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requirements, several datasets for autonomous driving have
been proposed. However, most publicly available datasets
are targeted for on-road vehicles in well-structured environ-
ments [5]–[10]. There are very few datasets for unstructured
environment [11], [12] despite potential applications such as
rural driving [13], robot-based forestry studies [14], surveil-
lance [15], etc. The available datasets have been labeled
using standard pixel segmentation that identify classes of
objects in a scene but do not consider the relationship between
types of challenges on off-road trails and the capabilities of
different vehicles. To address these limitations, we propose
a segmentation approach, and corresponding dataset, that is
based on the concept of traversability that is mediated by class
of vehicle.

In the context of traversability assessment of the off-road or
other unstructured area, several works can be noted. Gresenz
et.al in [16] provide roughness-based road area classification
dataset generated from GPS (Global Positioning System),
IMUs(Inertial Measurement Units), and wheel rotation sen-
sor. However, this lacks the image-based human judgmented
dataset. A traversability analysis in aerial imageries with
height assisted dataset has been proposed in [17] targeted for
three different types of robots (wheeled, tracked, and legged).
However, we believe it would give a very rough estimation
of traversability only from height since there could be some
objects that can be easily overrode even though their height
is above some threshold. Camera images-based traversabil-
ity assessment of the construction area is proposed in [18].
However, this dataset considers the only one type of excavator
and is not applicable for driving scenes. Different from these
contributions, our CaT dataset is based on expert-level human
driver’s visual judgement of the trails. Furthermore, it corre-
lates the diverse trail area to the capability of the vehicle that
is quantified and verified by their overriding force.

A. TRAVERSABILITY AND ITS NECESSITY
In this work, we refer the drivability of a given off-road trail
based-on the vehicle capability as traversability. So, the deci-
sion regarding whether a vehicle-type can traverse through an
off-road trail with minimum or no-damage is defined under
traversability concept [19]. Further, if the given vehicle can
pass the trail with minimum or no-damage, we call the trail
as a traversable, and if not, it is non-traversable for that
vehicle. The area that is non-traversable for one vehicle-type
could be traversable for the other. So, traversability solely
cannot be defined as a function of the nature of driving-trail.
It also depends on the type of corresponding manuevering
vehicle as different vehicle-class have different traversing
capability. Be it for on-road or off-road environment, the
existing datasets consider that the parts of the segmented
scene assigned as the road/track are equally drivable irre-
spective of the road nature and vehicle type. This consid-
eration holds strongly in case of the on-road autonomous
vehicles. However, for the off-road case, the road (or driv-
ing trail) is not uniform and is full of irregularities due to
uneven terrain, ditches, steep slopes, logs, bushes, shrubs etc.

FIGURE 1. Example of traversability assessment in camera images. Left:
original image, right: traversability labels overlayed onto the image where
red, green and blue colors correspond the traversable areas by off-road,
pickup, and sedan type vehicles. In this specific example, due to the
absence of other irregularities on the road, the only difference between
the road parts that could be traversed by each vehicle type is in-terms of
the extent on two sides of the road it can travel.

FIGURE 2. Vehicle-types considered for the traversability labels.

Due to such irregularities, the capability of the running vehi-
cle to traverse-through is skeptical. Such capability to traverse
through the adverse scenarios on the off-road environment is
subjective to the type of the vehicle. For example, A pickup
could traverse through the road overriding a medium-sized
log (considered as an obstacle) that cannot be overrode by a
sedan. Similar scenariomay arise in case of shrubs and bushes
that usually invade the part of driving trail from both sides.
So, in this paper we propose that for the road segmentation
in off-road driving environment, the extraction of road tracks
that are based on the existing segmentation datasets do not
correlate the nature of the unstructured driving. However, the
fine partitioning of the road-based on the traversing capa-
bility of several vehicles would be helpful for the success-
ful driving. To demonstrate and strengthen the concept, this
paper includes several experiments and assessments to define
whether the camera imagery could be used to define the
traversability for three different types of vehicles.

To demonstrate the above concept and help the research
community, we propose a new dataset for semantic road
segmentation with fine partitioning of off-road autonomous
driving trail based on the traversing capability of three dif-
ferent vehicles. We call it the CaT dataset. From the road
segmentation point of view, the proposed dataset is compa-
rable to Kitti [5] dataset where only the road in the image
is labelled leaving other parts of the scenes -for example,
forest, vegetation, sky, etc.- unlabelled. However, the road
extraction problem is not formulated on the basis of binary
classification as the road-parts themselves are to be classi-
fied into various sub-classes to correspond the traversability
concept. Such sub-classes are dependent on vehicle type
(e.g. sedan, pickup or off-road) traversing along that partic-
ular part of the off-road area. While doing so, we consider
the vehicular strengths and their traversing nature in-terms
of overriding any unintended obstacles, shrubs, bushes etc.
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FIGURE 3. Data collection map. Note that the acronyms representations
as: TVA: Tennessee Valley Authority. Best viewed in color.

Also it should be ensured that the vehicle is undamaged after
traversing through that area. As shown in Figure 1, the edge of
red color represents the extent which off-road vehicle could
traverse through, green color represents that for a pickup, and
the blue color represents that for a sedan at both ends. The
corresponding vehicle-types (Sedan,1 Pickup,2 Humvee3) for
these levels are shown in Figure 2.
In Figure 3, we show our data collection sites located in

front of HPCC (High Performance Computing Colaboratory,
a Mississippi State University’s research extension) building.
We basically collect our data from three trails namely the
main trail, the powerline trail, and the brownfield trail that
are highlighted by yellow, blue, and green colors respectively.
These three trails have the approximate lengths of 0.4 miles,
0.51 miles, and 0.13 miles, respectively. The images are
collected with the consideration of dark and enhanced light-
ing condition with different camera filters possible with the
Sekonix SF3325-100 camera model [20]. All the images
are labeled as per the traversability concept with following
assumptions:

• All the assigned labellers can accurately delineate the
driving reasons based on the difficulty level correspond-
ing to the vehicle capability of driving as per the rule:
Off-road > Pickup > Sedan.

• The traversability labels are to be assigned solely based
on the camera images. To accurately delineate the
regions, images should be zoomed such that it helps
to precisely notice the possible uncertainties and tell

1Image accessed from https://www.caranddriver.com/features/
g22344863/full-size-sedans/?slide=7

2Image accessed from https://cars.usnews.com/cars-trucks/best-pickup-
trucks

3Image accessed from https://www.autoweek.com/news/future-
cars/a34549967/kia-will-beef-up-its-military-lineup-with-humvee-style-
models/

whether they are traversable or not by the corresponding
vehicle class.

• It is considered that the vehicle corresponding to the
traversability label can pass the corresponding region
with negligible or no damage.

The major contributions of this paper are as follows:

• A new traversability concept regarding segmentation of
off-road trails is proposed in order to assess the drivabil-
ity of the area using visual imageries.

• A new type of dataset, called the CaT dataset, is pro-
posed based on the concept that whether the driving
trail is actually drivable for the corresponding vehi-
cle. We consider different vehicle classes and label the
driving trail based on which part is drivable by which
vehicle-type.

• We verify our labelled dataset with real-field experiment
assisted by some calculations using the vehicle spec-
ifications regarding their overriding strengths, and the
amount of force that a vegetation/tree can exert on the
vehicle. That means, we make sure that the force exerted
by the vegetation is lower compared to the overriding
strength of the corresponding vehicle in order to be
traversable.

• As the several environmental factors and locations affect
the performance of segmentation algorithms, we con-
sider this fact strongly while collecting images. We con-
sider two different weathers (winter of 2018 and summer
of 2019), different time of the day and different geo-
graphical location such that our dataset captures as large
variations as possible.

II. RELATED WORK
A. SEMANTIC SEGMENTATION IN ON-ROAD/OFF-ROAD
ENVIRONMENT
With 20 different classes for segmentation corresponding
to indoor and outdoor objects like birds, tables, airplanes
etc., the pascal-VOC [6] dataset sets a good practical bench-
mark. For the autonomous driving application, [5] provides
the real-world dataset for road detection in structured road
environment. In [7] and [8], city-driving-environment based
complete datasets are proposed with classes like buidings,
roads, vehicles, poles, etc.

Even though there are several popular datasets available
for semantic segmentation based on-road driving, very few
dataset are available for unstructured off-road case. In [11],
the off-road semantic segmentation dataset are provided that
are collected at 20Hz with 1024× 768 pixel images on three
different days and variable lighting conditions. The images
provided are in the different formats such as RGB, NIR, and
depth-images. Six different classes are considered: Obstacle,
Trail/road, Sky, Grass, Tree, and Vegetation. A multimodal
dataset with LiDAR and camera images annotations for seg-
mentation in off-road domain is provided in [12] that presents
challenges to existing algorithms for class imbalance and
environmental topography. In terms of targeted problem and
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nature of the domain, our data overlaps to some extent with
both of these datasets. However, as our proposed dataset is the
first of its’ type, it has several differences conceptually and
technically. First, this dataset is based on the assumption that
the off-road semantic segmentation should be modeled as the
function of the driving trail’s nature and the capability of the
manuevering vehicle. Second, we focus only on the road for
segmentation and ignore the background scenes and objects
in the image. Furthermore, the road itself is partitioned into
three different levels based on the extent to which each vehi-
cle could traverse.

B. VEGETATION OVERRIDING
Studies regarding vehicle maneuverability in non-ideal ter-
rain have been performed for decades [21], [22] and have
matured to provide a comprehensive understanding of vehicle
physics a variety of areas and terrains [23]. Despite modern
navigation algorithm’s sophistication, it might not always be
possible to plot a route that avoid collisions with tall bush and
small trees. However, from the vegetation override formula
and terrain surveys of bio-types and densities, [24] states that
it can be possible to calculate the force override needed for
a ground vehicle to traverse through. A vehicle’s capability
to traverse through an area is not the sole concern when
optimizing a vehicle for its terrain. Terrain analysis can also
allow for a control system to account for the vehicle’s velocity
traveling though areas providing an addition optimization
when route planning [25].

III. DATA COLLECTION AND LABELLING PLATFORMS
We provide the brief overview of collection methodologies,
the hardware setup for data collection alongwith the introduc-
tionwith the labeling platform. As our proposed traversability
concept is based on the camera images only, we limit the
description of camera only, even though we have a full sensor
setup.

A. VEHICLE
The vehicle we used in our data collection platform along
with the sensors placed over it is as shown in Figure 4.
We chose the Polaris Ranger crew XP100 due to its’ good
ground clearance and stronger chassis with full-body skid
plate that is quite favourable for off-road driving. All the sen-
sors are placed on a special wooden structure which we call
’Ranger hat’. In Ranger hat, the lidar and Global Navigation
Satellite System/Inertial Navigation System (GNSS/INS)
modules are placed vertically up and down. Two cameras are
placed on both the sides of GNS/INS module symmetrically.
A zoomed-in view of the Ranger hat is as shown in Figure 4.

B. CAMERA
As shown in Figure 4 (b), two white modules on both
the sides of yellow IMU unit on the ranger hat are the
camera sensors we used. These are Sekonix SF3325-100
model with RCCB (Red-Clear-Clear-Blue) color filters and
AR0231 CMOS image sensor with an active-pixel array

FIGURE 4. Vehicle used for data collection and sensors position. Top:
Ranger with sensors placed on it. Bottom: zoomed-in view of the sensor
setup.

FIGURE 5. Our data collection pipeline with connection details. ETH =
Ethernet. SSD = Solid State Drive. A0 and A1 are PX2 camera input ports.

of 1928 × 1208 with a LED Flicker Mitigation (LFM). With
IP69k rating these cameras are capable to resist the effect
of adverse environmental conditions like high temperature,
dust, and high water pressure. The serialized input-output
is supported with MAX96705 GMSL serializer [20]
with 27MHz.

C. DRIVE PX 2
Nvidia’s Drive PX2 also holds special position in our collec-
tion platform. As shown in Figure 5, PX2 module resides in
between cameras output and network. Drive PX2 provides a
powerful and easy platform for the autonomous driving-based
algorithms and are mostly used in Tesla’s enhanced autopilot
vehicles [26].

D. COLLECTION PIPELINE
The overall collection pipeline along with the connection
detailing is shown in the Figure 5. As shown in the figure,
both of the cameras are connected to the ROS (Robotic
Operating System) nodes available on the Drive PX2.
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The output of the camera is transferred over the network
through PX2 and are finally saved in the collection computer.
All the dataset are collected in rosbag formats whichwe trans-
fer to the CAVS servers for the final storage. Representative
images from each of the trail are selected from the rosbag
extractions and provided to the labelers to annotate with the
traversability labels.

IV. FIELD ASSESSMENT FOR TRAVERSABILITY
In this section, we explain the experiment performed in
real driving trail in order to assess the traversability before
handing over the labeling task to the labelers. For this assess-
ment, we conduct two experiments: measuring the tree den-
sity and calculating the overriding force, based on which
the traversability labels are assigned as per the strength and
driving capability of each type of vehicle. Overriding force
refers to the amount of force required to pass through an
area without avoiding the obstacles, tree-logs, trees, etc.
In other words this is the force that a tree-trunk exerts
on the vehicle that needs to overcome and pass-through.
Note that, the overriding force cannot be defined for all
type of obstacles/uncertainties. For example, even though
there is no such study to define quantitatively, the overriding
force for a tall and wide tree-trunks cannot be defined and
hence the traversability concept is valid for only the area
around it.

The movement of a vehicle down a forested trail is
restricted based on the weight, width, and type of vehicle.
Measurements of tree diameter and spacing along the length
of a traverse were made to objectively estimate traversabil-
ity of a section of trail, based on the vehicle type. With
the collected measurements, we generate the ground truths
for certain regions with vegetation overriding force equa-
tions. After generalizing the outcomes of the experiment
performed in this section, the labelers were instructed to
assign the traversability labels for each vehicle type with high
confidence.

A. MEASURING TREE DENSITY
A survey of three trails on the CAVS proving grounds was
performed at several locations selected to represent the veg-
etation for that area of the trail. These surveys collected data
on the diameter of any vegetation at 36’’ from the ground
(approximately waist level) via calipers. Note that the vege-
tations with height more than this reach beyond the vehicle’s
height and are exempted from traversability definition. The
surveys took place in a 12’x12’ grid on both the left and
right sides of the data collection vehicle since the vegetation
beyond this was dense and mostly exceeding the height of
36’’. The thickness of any vegetation at least one meter tall
was recorded at one meter off the ground and recorded into a
grid referenced away from the corners of the data collection
vehicle. An example of this assessment can be visualized in
second row of Figure 6. This process was repeated to collect
data at 9 separate and diverse locations.

B. OVERRIDING THE VEGETATIONS AND VERIFICATION
OF TRAVERSABILITY LABELS
Equation 1 gives the maximum force (F) to override a tree
of diameter (d) and (h) is the height of the bumper or push-
bar [24], [27]. The mass of the vehicle and velocity are
compared to this force to determine the override. Note that
the unit of d and h are inches and that of F is Kilo-newtons.

F = (10.86− 0.0534h)d3 (1)

The average force to override vegetation, as defined in
equation 2 [27], is a motion resistance summed with other
resistance forces such as slope.

F = 2.62 ∗ d3 (2)

Utilizing the tree diameter over the course of the entire
traverse, the maximum force override was computed for each
tree diameter using equation 1. In the third row of Fig. 6
the illustration of the distance from the edge of the road
and the average force required for overriding is demonstrated
in graphical form. Each of the three vehicle systems are
presented in an effort to objectively quantify the maximum
traversing capability in both the sides of the trail as a function
of the vehicle-type.

V. LABELING
Four undergraduate and one graduate student were assigned
for the labeling task. An exploratory tour of the collection site
was taken by all the labelers. The labelers were experienced
in driving sedan and pickup types and were able to judge
what level of difficulty could a vehicle can override in the
driving trail. Compared to sedan and pickup, the undergrad-
uates labelers were less experienced with off-road vehicle.
They were given a test drive around the data-collection site
and special instructions about it and nature of the areas it
can cover while driving. Furthermore, the actual concept of
traversability as we define in this paper was made available
before starting the labeling process.

As an annotating tool, BasicAI [28] was used as it pro-
vides easy handling for a group of labelers as per the team
administrator assigning which members are responsible for
which image. In this platform, the administrator can check the
individual’s work and give instant feedback. A single expert
with the deeper understanding of all three vehicle-types
and sufficient off-road driving experience was assigned to
audit all the labelled images. Each image in the released
dataset is checked and verified by the auditor for quality and
consistency.

As we consider three different vehicles, we pose this
dataset as a three-class dataset. The classes of vehicles con-
sidered are: Sedan type (front-wheel drive sedan with stan-
dard wheels and tires), Pickup type (4× 4 pickup truck with
standard wheels and tires), off-road vehicle type(side-by-side
all terrain vehicle that have all-wheel drive, off-road wheels
and tires). In figure 7, we show some examples of images
and corresponding traversability labels. Each class label and
the corresponding RGB values assigned to it is as shown in
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FIGURE 6. Visualization of tree density plot and corresponding force required to override the area. (a) is from main trail and (b) is from brown field.
Further, note that the first row is the original images towards the left (labeled as i) and right (labelled as ii) side of the off-road trails, second row
shows the graph representing the observed tree density on either side of the trail (note that the bold circles represent the measurable tree location
and are not to scale), and third row is the demonstration of required amount of force needed to override the terrain with respective ground vehicle.

FIGURE 7. Example images and annotations from the proposed dataset. Best viewed in color. Note that each vehicle-type includes several vehicles
with generalized features defined as: sedan: front-wheel drive with standard wheels and tires, pickup: 4× 4 trucks with standard wheels and tires,
off-road: side-by-side all terrain vehicle that have all-wheel drive with off-road wheels and tires.

the color chart. Each label corresponds to the area that could
be covered by each vehicle type. It is worthy to note that
the traversability labels are assigned based on the traversing

capability of each vehicle defined by the hierarchy: off-road
> pickup > sedan. So the part of the trail labeled with lower
rank in the hierarchy is also traversable by the vehicle in
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FIGURE 8. Comparing traversability labels by different labelers. First
column is the images given to each labeler and each columns represent
the labelled images by each labelers with name on the top.

higher level. That is, the one with the blue label is traversable
by all three vehicle type, the one with the green label is
traversable by both pickup truck and off-road type, and the
one with red label is only traversable by the off-road-type
only.

On the basis of traversing area and each vehicle-type-
capability, we set the following common guidelines to be
followed by each labeler:
• Draw each vehicle’s complete traversable area. The
labeling polygons may or may not overlap.

• Assume the sedan is capable of driving on smooth
ground, gravel roads, etc.

• Assume that the off-road vehicle is capable of driving
over brush up to three feet high.

• Trace around trees and other obstacles if they are not
traversable.

• Labeling should be performed at approximately
150-200% zoom level so as to avoid confusion over the
boundaries as much as possible.

A. HOW CLOSE ARE OUR LABELERS?
In case of off-road scenario, driving is more subjective task
that depends upon the various aspects like driver’s judge-
ment, their experience in-terms-of time and vehicle type, and
their driving habits which could be categorized as a rough
or smooth driver. Based on this, even though we provided
the detailed labeling guidelines with site tour, the labeling
task for traversability concept is influenced by the individual
perception that varies among the labelers. In this section,
we briefly assess and visualize how closely the environment
had been judged by our labelers who have different driving
experiences.

As seen in the Figure 8, our labelers have the common
judgement of the driving environment and they agree upon
the traversability labels when the areas are fairly far from the
probable class-boundaries. However, as per the experience
and personal judgement of each labeler, slight differences
come around the boundaries. These differences are solely
due to the experience of the labeler and their driving nature.
We observed no other major differences in the labels. In order

FIGURE 9. Tree structure of the data storage directory.

TABLE 1. Summary of data statistics under CaT dataset.

to quantify the differences among the labelers, we calculate
some segmentation metrices that represent the pixel level
overlaps. While doing so we consider labels from one labeler
as reference or ground-truth and that of another as predicted
images. The average metrices based on global accuracy, class
average accuracy, and mean intersection over union [3] are
83.84%, 81.65%, and 68.90% respectively.

VI. DATASETS
A. FORMAT
The tree structure of our database is as shown in the
Figure 9. The ‘‘imgs’’ folder contains the original images and
‘‘annos’’ folder contains the corresponding annotations. The
‘‘masks’’ folder contains the same images inside ‘‘annos’’
folder but the background is masked. The ‘‘int_maps’’ folder
contains the integer label assigned images and are in png
format.

B. DATA GROUPING AND STATISTICS
The pool of 1812 images is separated into training and testing
set. Out of all the labelled images, 70% of the images are
grouped as training set and remaining 30% are grouped as
testing set.While selecting the testing set, we strictly consider
the variability among the images such that the testing images
also cover the general and special overview of all the trails
considered. Similar separation is also provided for each of
the driving trail -Brown Field, Main Trail, and Powerline-
such that users could train their model in one trail and test in
another trail to evaluate their model’s generalizing behaviour.
Table 1 shows the pixel percentage of each class in the
proposed dataset.
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TABLE 2. Currently assigned RGB values to each class for each dataset
items and suggested IDs for each class.

VII. DATABASE ACCESS AND USAGE
Our complete data-pack containing all the datasets described
above is available in https://www.cavs.msstate.edu/resources/
downloads/CaT/CaT.tar.gz. We provide this in the com-
pressed .tar file named as CAT.tar.gz and is open-sourced.
As shown in Table 2, we suggest to change the RGB values
of each class to corresponding grayscale values given by IDs
column to perform training. However, we also provide this
format inside the ‘‘int_maps’’ folder.

VIII. TRAINING WITH TRAVERSABILITY DATASET
In this section we explain the usage of proposed CaT dataset
with the details including pre-processing, training, and testing
results. Further, we analyze the areas where our model fails
to assign traversability labels accurately. Also, we test our
model with completely new scenarios to assess its’ general-
ization capability and present the visual results.

A. TRAINING DETAILS AND RESULTS
In order to demonstrate the road extraction in off-road driving
domain, we train models designed for semantic segmenta-
tion. Technically from the training point of view, the pro-
posed traversability concept and semantic segmentation align
closely to each other. So we can use the same deep-learning
architectures to train with traversability dataset as those used
for semantic segmentation. So while training, we consider
each class (sedan, pickup, and off-road) as independent class
to be segmented. Each pixel is mapped into a unique integer
value as shown in Table 2. So this training approach is an
alias of what is done in semantic segmentation. However,
considering the practical scenario, the output of the trained
model should be analyzed based-on the vehicle traversing
capability such that the part belonging to sedan class is also
traversable by both pickup and off-road.

We train different versions of pyramid scene parsing net-
work [30] (PSPNet) in order to monitor the performance on
the proposed traversability dataset. We train this network for
80 epochs with a initial learning rate of 0.01 decreased at
each epoch based on poly-learning rate schedule [31] using
SGD [32]. All the related training experiments are performed
in NVIDIA Quadro GP 100 GPU using PyTorch. As shown
in Table 3, we use Intersection over union (Iou) as a metric
to analyze the performance of the trained model in CaT test
set. Considering C be the total number of classes, nij be the
number of pixels from true class i that lie in predicted class j,
ni be the total number of pixels lying in true class i and n be

TABLE 3. Performance of PSPNet trained on CaT training set and tesed
on CaT test set. Note that the entries under sedan, pickup and off-road
header represent the class-wise IoU and mIoU represents the mean of all
three classes. The ‘‘Backbone’’ column represents the baseline network
on which the PSPNet is built upon. Further, Resnet-N represents
resnet [29] version with N number of layers.

FIGURE 10. Visualizations of test operation on CaT test dataset using
PSPNet-101 network. Best viewed in color.

the total number of pixels considering all the classes, the Iou
and its mean of it is defined as:

1) Iou: It is the measurement ratio of true positives to the
sum of true positives, false positive, and false nega-
tives. When it is calculated for each class it is called
Classwise IoU (CW IoU) and the mean of it is called
Mean Intersection over Union (mIoU). It is expressed
as: IoU =

∑
i

nii
ni+

∑
j nji−nii

.

In Table 3, the performance of different versions of PSPNet
[30] is shown. We can say that a very good value of mIOU
(=80.57%) is obtained for CaT testing set with PSPNet built
on top of Resnet-101 [29]. Analyzing the Class-Wise (CW)
IoU, comparing the sedan, pickup, and off-road class, the
recognition accuracy for pickup label is low, highest for
sedan and medium for off-road. The pickup-based pixels
correspond the intermediate region between smoother road
and rough trails with vegetations and bushes/shrubs. Due
to this, the network could incorporate these pixels towards
either sedan or off-road-based regions. Furthermore, this
class slightly shares the properties of both other classes that
may lead the classifier into confusion resulting into compro-
mised performance.

B. FAULTY PREDICTION SCENARIOS
In this section we analyze where the model trained
with proposed CaT dataset performs poorly while testing.
In Figure 11, we show some visual results and mark the
wrongly predicted area with a purple circle in both ground
truth images and predicted images. In the top row, we can
see the small tree branches laying across the road that are
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FIGURE 11. Visualizations of some cases where the CaT trained model
fails to perform good. Best viewed in color.

labelled as traversable by the pickup-type in ground-truth
images but part of the area is predicted to be traversable by
sedan-type. Similar types of scenario can be visualized in the
third row where a large log is around the edge of the road
which is assigned as traversable by the off-road vehicle only.
However. it is predicted as traversable by the pickup type.
In the image in second row, a densely-bushy area is labeled as
traversable by the off-road vehicle only, which is predicted as
traversable by the pickup-type vehicle. Furthermore, around
the class boundary, we can allocate minor mispredictions.
However, the mispredictions are common when there are
some confusing area about traversability that happens in case
of human-driver too. For example, the bushy areas -as in the
image in second row- may look like non-traversable at all
or traversable by off-road vehicle, however it may still be
traversable by pickup type due to the presence of very weak
bushy vegetations.

IX. DISCUSSION
In this section, we explain the basic intuition about
traversability in regarding to the model training, its’ con-
ceptual similarities and differences with current semantic
segmentation aspect, trustworthiness in the output of trained
model.

A. TRAVERSABILITY AS A SPECIAL CASE OF SEMANTIC
SEGMENTATION FOR AUTONOMOUS DRIVING
Driving in off-road domain is not a straight-forward job
like that in on-road. Apart from general scene understanding
procedure, manuevering vehicle’s capacity and the nature
of the driving trail should be considered while designing
autonomous vehicles-based software. Semantic segmentation
is a general image/object classification concept in a pixel-
wise manner. In case of off-road driving, a range of obsta-
cles/uncertainties across the driving trail are prevalent which
then depends upon the manuevering vehicle’s strength. Based
on the existing concept of semantic segmentation for road
extraction the drivability of the detected trial is ignored. For
example, under semantic segmentation concept a log laying
across the road could lie in obstacle class no matter how

tall and big is it. Traversability concept can be taken as
the special case of semantic segmentation that is specific
to the autonomous driving for off-road environment which
considers important properties of the objects in driving area
from the view point of vehicle’s traversing capability. Taking
our previous example of log laying across the road, it is
possible to classify that part of the scene as a driving trail
for the vehicle whose strength is enough to pass over it.
Similarly, it is highly probable that, along with the actual
track bearing the characters of off-road, some part of the
vegetation and forest may come as a traversable path that
were to be classified into separate classes under semantic
segmentation concept.

B. COMPARING SEMANTIC SEGMENTATION WITH
TRAVERSABILITY
In this section, we discuss about the similarities and dif-
ferences regarding these two paradigms. The semantic seg-
mentation concept is a general aspect of scene-understanding
mechanism that classifies each pixel in the image based on
the learned properties of the objects in the scene. This concept
matches to the traversability concept based on classifying the
road-parts corresponding to the vehicle capability. However,
their exist the differences based on why traversability of a
road is to be determined before driving over it. Through
traversability concept, we are trying to establish the relation-
ship between vehicle’s driving capability with the nature of
the driving path. So it gives the information about which part
of the road is difficult by what degree and which vehicle this
degree corresponds to, so that the vehicle can traverse it with
near-zero damage. On the other hand, semantic segmentation
just tells us about which part of the scene belongs to which
class -for example: road, forest, obstacle, etc.- that are prede-
fined during the process and hence overlooks the correlation
between vehicle capability and trail-difficulty. So semantic
segmentation concept does not rely on the maneuvering vehi-
cle type, road/trail type, and possibility of passing through.
This is considered largely under the traversability concept.

X. LIMITATIONS OF THE STUDY
In this work, we propose the traversability concept for
off-road autonomous driving based on the camera images
and their labels verified by vegetation overriding and tree
density based mathematics using empirical data. Even though
the traversability labels are assigned by the experts, there
could be inherent flaw in camera images. For example, under
the dense vegetation, which looks traversable for an off-
road vehicle, there could be a quagmire where a vehicle gets
stucked and which thus should be non-traversable. There
could be several other such scenarios like hiding an obstacle
or a ditch under the tall grass, or the high degree of the soil
moisture. From camera images it is hard to tell precisely
about such scenarios. So, the traversability assessment only
with camera images may not provide the precise information
when such scenarios are encountered. Furthermore, we do not
consider the possible physical variations like slope changes,
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ditches, or open-fields within the dataset. So, a combination
of camera images and other sensors like lidar, radar, GPS, etc.
is desired to tell about the traversability of an area precisely.
For example, the radar returns from a hidden ditch would vary
greatly and based on which the corresponding part can be
labelled as non-traversable easily.

XI. CONCLUSION AND FUTURE WORK
In this paper, a conceptually new dataset called CAvs
Traversability (CaT) dataset is proposed. Due to the nature
of off-road autonomous driving, directly using the exist-
ing semantic segmentation concept could result in compro-
mised situation. So we propose a traversability concept-based
assessment of off-road trail along with CaT dataset con-
sidering three different vehicle types. We present different
arguments that are inherent with this concept and possibilities
of training the models.

As a part of future work, we will be creating the more
informative traversability dataset using not only the camera
images but with multiple sensors like lidar, radar, and GPS
such that the detailed in-depth knowledge of the driving envi-
ronment could be inferred more accurately and efficiently.
Further, we will be considering the effect of hanging tree
branches over the driving trail while assessing the traversabil-
ity as well as demonstrate the training feasibility and the
performances for broader spectrum of famous segmentation
models with more advance assessment methods.
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