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ABSTRACT In this paper, we investigate the robust maximum-minimum eigenvalue (MME) detection
problem caused by this uncertainty of geometric configuration. Firstly, according to the proposed novel
concept of spaceborne cluster flight netted radar (SCFNR) integrated cluster flight spacecraft with netted
radar recently, we define the robust detector for the uncertainty of geometric configuration due to themobility
in SCFNR and give the condition about robust MME detector. Using the channel gain matrix in one CPI,
the closed-form of the lower bound on the test statistic under the presence of target return, and the upper
bound under the absence of target return are given respectively. Secondly, using the mobility model about
transmitter-receiver pairs in SCFNR, we give the constraint on the bounded relative distance for robust MME
detector in SCFNR. Finally, the effectiveness of the proposed constraint is validated through numerical
calculations. The results show also that controlling the orbit elements about the transmitter and receiver
platforms in SCFNR can make sure the robustness of MME and the relative distance bounded.

INDEX TERMS Maximum minimum eigenvalue (MME), spaceborne cluster flight netted radar (SCFNR),
robust MME detector.

I. INTRODUCTION
As a distributed space multi system, the spaceborne cluster
flight netted radar (SCFNR) is composed of several spatially
separated, mutually independent and cooperative transmitters
and receivers of radars in space, which can maintain bounded
relative distances between tens or hundreds of kilometers
and to keep loose geometry for the entire mission lifetime,
so that orbit controlling and relative position sensing for
the spacecraft can be performed well [1]–[3]. The netted
radar has many inherent advantages. For example, the spatial
distribution of the transmitters and receivers can be assigned
to specific application of interest. Also, the netted radar can
increase sensitivity to improve the detection, tracking and
cognition performance [4], [5]. On the other hand, com-
pared with the traditional radar, spaceborne netted radar has
advantages of high flexibility, reliability, and anti-stealth abil-
ity [6]–[8]. In addition, it also has the advantage of being
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all-weather, wide coverage, and satisfying specific coverage
requirements due to its location in outer space [9], [10].
Hence, we have proposed the novel concept of SCFNR inte-
grated cluster flight spacecraft with the spaceborne netted
radar [11], [12].

Target detection is a fundamental component of radar sys-
tem and is a critical issue in low SNR environment. Similar
to spectrum sensing methods of cognitive radio (CR), a lot
of algorithms including the energy detection, the matched
filtering (MF) and Neyman-Pearson test have been applied
to target detection of radar system [13], [14]. Also, many
researchers have investigated robust sensing schemes that
achieve higher probability of detection and lower probability
of false alarm in the presence of noise uncertainty. In this
sense, the eigenvalue-based detection techniques outperform
most of the other sensing schemes [15], [16]. Recently, the
largest eigenvalue-based detector, also known as generalized
likelihood ratio test (GLRT) detector also, has been used to
detect radar target [17]–[19]. However, these algorithms are
susceptible to the noise power uncertainty, because they rely

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 23605

https://orcid.org/0000-0002-7891-2451
https://orcid.org/0000-0001-7582-5291


M. Xia et al.: Constraint on Bounded Relative Distance for Robust MME Detection in SCFNR

on the knowledge of accurate noise power. In practice, there
is little priori information about the return signal or the noise
power in the target system. In a low-SNR environment, the
return signal becomes even more difficult to detect. By con-
trast, the uncertainty of the noise power does not adversely
affect the maximum minimum eigenvalue (MME) detector’s
performance in CR network [20]–[22]. So, inspired by MME
in CR network, we appliedMME detection to target detection
in SCFNR systems.

However, for SCFNR, the high-speed flight of platform
increases the uncertainty of geometric configuration of radar
systems. In [12], we have given the mobility model for
bistatic radar pair in SCFNR with twin-satellite mode. This
means that the target robust detection will face new chal-
lenges due to the uncertainty of geometric configuration in
SCFNR caused by the mobility of transmitters and receivers.
Therefore, this paper is addressed to analyze the robust MME
detection caused by the uncertainty of geometric configura-
tion in SCFNR.

To the best of our knowledge, this is the first paper to
investigate the robust MME detection problem caused by the
uncertainty of geometric configuration in SCFNR. The main
contributions of our work are summarized as follows:

(1) Based on the proposed novel concept of SCFNR inte-
grated cluster flight spacecraft with netted radar, a system
model for analyzing the robust MME detector is further pre-
sented. Establishing a channel gain matrix, a robust detector
for the uncertainty of geometric configuration is defined.
Using the lower bound of the test statistic under the presence
of target return and the upper bound under the absence of
target return respectively, the condition for a robust MME
detector is given.

(2) The robustness ofMMEdetector with the uncertainty of
the transmitter-target and receiver-target distances in SCFNR
is analyzed. Using the channel gain matrix in one coherent
pulse interval (CPI), the closed-form of the lower bound of
the test statistic under the presence of target return, and the
upper bound under the absence of target return are given
respectively.

(3) Using the mobility model about transmitter- receiver
pairs in SCFNR, we derive the interval between the upper
bound of transmitter-receiver distance and the lower bound
in SCFNR for robust MME detection. Then we give the
constraint on the bounded relative distance for robust MME
detector in SCFNR. We validate the effectiveness of the
proposed constraint through numerical calculations also.

The rest of the paper is organized as follows: Section II
reviews the systemmodel for the robustMMEdetection prob-
lem caused by the uncertainty of geometric configuration in
SCFNR, including the mobility model for bistatic radar pair,
signal model, channel gain matrix, the definition of robust
detector, etc. Section III focuses on the detecting robustness
due to the uncertainty of geometric configuration in SCFNR.
Section IV verifies the effectiveness of the proposed robust
MME detector with numerical calculations. Finally, we con-
clude the paper in Section V.

II. THE SYSTEM MODEL
Generally, netted radar has the following three cases: a
group of bistatic radars, a single transmitter with several
receivers, and a single receiver with several transmitters [12].
In this paper, we adopt SCFNR with bistatic radar pairs. It is
assumed that one-to-one pairing method is taken by SCFNR
in any slot of the orbital hyper-period [22]. So, we assume
that each pair of transmitter and receiver can potentially form
a bistatic radar. We further assume that orthogonal transmis-
sions are used for interference avoidance. In view of this,
we assume that one transmitter can only be connected to one
receiver, and the corresponding bistatic radar is formed in any
slot of the orbital hyper-period [12], [22].

In this paper, we focus on the robust MME detection prob-
lem caused by the uncertainty of the geometric configuration
in SCFNR. The uncertainty of the geometric configuration is
caused by the mobility model of the transmitter-receiver pair
in SCFNR. Therefore, it is necessary to analyze the mobility
model of SCFNR and describe the signal model in SCNR
first.

A. THE MOBILITY MODEL FOR BISTATIC RADAR PAIR
To accomplish the cluster flight model within bounded dis-
tance, the twin-satellites model is adopted to study the mobil-
ity model for bistatic radar pair. As shown in Figure 1, the
transmitter or receiver position is uniformly distributed on
sphere within R = (M − m) /4. M is the upper bound of
transmitter-receiver distance in SCFNR, and m is the lower
bound.

FIGURE 1. The mobility model for bistatic radar pair.

Based on orbit dynamics theory, the orbital hyper-period
can be divided into (t0, t1, · · · , tT ) times for fractionated
spacecraft [2], [23]. So, there are T time slots in one orbital
period. The orbital hyper-period is H = (tT − t0), σk =
[tk−1, tk ), (k = 1, 2, · · · ,N ). So, the mobility model M(t)
for bistatic radar pair can be defined as follows:
Definition 1: In Earth-centered inertial (ECI) coordinates,

if the position set of N transmitter-receiver pairs in SCFNR
is S(0) = {S1(0), S2(0), . . . , SN (0)} at initial time t0,
the position set is S(k) = {S1(k), S2(k), . . . , SN (k)} at
time tk , and the positions are uniformly distributed within
sphere B(Sp(0),R), (p = 1, 2, . . . ,N ), where Sp(0) and R =
(M − m)/4 are center and radius of the sphere respectively.
Moreover, positions among all transmitters and receivers
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are mutually independent and independent of all previous
locations.

B. SIGNAL MODEL
Considering the SCFNR scenario as shown in Figure 2. Let
T be the transmitter set, R be the receiver set. The transmit-
ters and receivers are located at different locations. We use
TR to denote all transmitter-receiver pairs. If transmitter
Tp ∈ T and receiver Rq ∈ R select the same channel, then
the bistatic radar TpRq ∈ TR is formed by Tp and Rq(p, q =
1, 2, · · · ,N ). And different channels can be considered as
orthorhombic channels to avoid interference. Without ambi-
guity, in any time slot of orbital hyper-period for SCFNR, the
positions of transmitter and receiver are denoted by SpT and
SqR respectively.

FIGURE 2. The SCFNR scenario.

Considering the ith bistatic radar of SCFNR to trans-
mit L pulses in one CPI, and the received data forms an
L-dimensional vector is called a snapshot after sampling. The
snapshot can be given as:

xi = [xi(0), xi (1), · · · , xi(L − 1)]H (1)

where the subscript H denotes the complex conjugate.
So, for target detection of bistatic radar, two scenarios are

considered as follows:
Hypothesize H1: H1 denotes the presence of the target,

and the sample outputs xi at the receiver can be represented
as follows:

xi = Gisi + ui (2)

where ui = [ui(0), ui (1), · · · , ui(L − 1)]H is a L × 1
disturbance vector, si = [si(0), si (1), · · · , si(L − 1)]H is a
L × 1 transmitted signal vector, G is a L × L channel matrix
from transmitter to receivers.

HypothesizeH0:H0 denotes the absence of the target, and
the sample outputs xi at the receivers can be represented as
follows:

xi = ui (3)

For convenience, we make the following assumptions for
the above scenarios.

1) The disturbances vector ui is distributed according to
circularly symmetric complex Gaussian noise with zeromean
and variance σ 2

u , i.e., ui ∼ CN
(
0, σ 2

u
)
.

2) The power of transmitted pulse signal of radar is
assumed to be σ 2

s .
3) si and ui are independent of each other.
Considering the fact that both the signal and the distur-

bance are zero-mean, the statistical covariance matrices can
be obtained as

Rsi = E
[
sisHi

]
Rui = E

[
uiuHi

]
Rxi = E

[
xixHi

]
= GiRsiGH

i + Rui (4)

Due to the small sample interval in the CPI, for conve-
nience, it can be assumed that the Doppler shift of each sam-
ple is the same. Based on this, in the CPI, the autocorrelation
function of the transmitted signal can be given by (5):

Rii(k) =
1
2T

∫ T

−T
[si(t)si(t ± k)] dt

≈

 σ 2
s

(
1−

k
L

)
, if |k| ≤ L

0, else, k = 0, 1, · · · ,L − 1
(5)

where T is the period of the pulse signal.
So, the covariance matrix Rsi can be expressed as:

Rsi = σ
2
s


1 L−1

L · · ·
1
L

L−1
L 1 · · ·

2
L

...
...

. . .
...

1
L

2
L · · · 1

 (6)

Then, for N pairs of bistatic radars in SCFNR, x, s and u
are expressed respectively as:

x = [x1, x2, · · · , xN ]H

s = [s1, s2, · · · , sN ]H

u = [u1,u2, · · · ,uN ]H (7)

Since xi and ui(i = 1, 2, · · · ,N ) of different bistatic radars
are independent and identically distributed in both spatially
and temporally, x has a N × L dimensional joint complex
Gaussian distribution that can be expressed as

x =

 CN
(
0, σ 2

u I
)
, ⇒ H0

CN
(
0,GRsGH

+ σ 2
u I
)
, ⇒ H1

(8)

The received signal vector x obeys the complex Gaussian
distribution with the covariance matrices R0

x and R1
x at the

hypothesesH0 andH1, respectively. The covariance matrices
R0
x and R

1
x can be expressed as:

R0
x = E

[
xxH | H0

]
= σ 2

u I

R1
x = E

[
xxH | H1

]
= G + σ 2

u I (9)

where G = GRsGH.
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C. CHANEL GAIN MATRIX
The Eq. (9) shows that the sample covariance matrix R1

x is
determined by channel gain matrix G if keeping Rs and σ 2

u
fixed. And the entries of G are modeled by the target ampli-
tude times. Furthermore, the independence of the snapshots
from different bistatic radars also implies that G has a block-
diagonal structure as follows:

G =


G1 0

G2
. . .

0 GN


LN×LN

(10)

Gi (i = 1, 2, · · · ,N ) is a symmetric matrix due to the
correlations between pules in the CPI. If the correlations are
not considered, Gi is a diagonal matrix, and the diagonal
entry of Gi represents the power transforming coefficient in
accordance with the target reflectivity, the antenna gain, and
the channel propagation effects of the bistatic radar.

For TpRq ∈ TR in SCFNR, the received power at the
receiver Rq is given as follows [25]:

Ppq =
PTKB∥∥SpTP∥∥2 ∥∥PSqR∥∥2 (11)

where KB = GTGRσλ2/(4π )3, PT is the peak power of the
radar transmitted signal, σ is the radar cross-section, GT and
GR are the gain of the transmitting and receiving antenna
respectively,

∥∥SpTP∥∥ and
∥∥PSqR∥∥ denote transmitter-target

and target-receiver distances, respectively. However, we are
not interested in the SCFNR physical-layer parameters, but
in transmitter-target and target-receiver distances. For con-
venience, we assume that the constant is identical for any
bistatic radar, i.e., homogeneous bistatic radar also.

In the CPI, let dp(s) =
∥∥SpTP∥∥ and dq(t) =

∥∥PSqR∥∥
(s, t = 0, 1. · · · ,L − 1) denote transmitter-target distance
at time s and target-receiver distance at time t respectively.
Then using (11), for the ith bistatic radars, the gain matrix Gi
is denoted by (12):

Gi =
√
KBdiag(

1∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ,
· · · ,

1∥∥dp(L − 1)
∥∥ ∥∥dq(L − 1)

∥∥ ) (12)

And substituting (6) and (12) into G = GRsGH ,
we get (13).

Gi = GiRsiGH
i = KBσ 2

s
(
aij
)
L×L (13)

where

aij = aji =
L + (i− j)

L
dij,

dij =
1∥∥dp(i− 1)

∥∥ ∥∥dq(i− 1)
∥∥ ∥∥dp(j− 1)

∥∥ ∥∥dq(j− 1)
∥∥ ,

1 ≤ i ≤ j ≤ L.

This means that the target detection performance depends
on the geometric configuration in SCFNR. And we can sub-
stitute the uncertainty set dij for uncertainty of geometric
configuration.

D. ROBUST DETECTOR IN SCFNR
According to section II.C, it is known that the target detec-
tion performance depends on the geometric configuration in
SCFNR. However, the high-speed flight of platform increases
the uncertainty of geometric configuration in SCFNR, which
makes the product of transmitter-target and target-receiver
distances dpq uncertain. So, how to evaluate the robustness
of target detection is critical in SCFNR. And this paper is
addressed to analyze the robustness caused by this uncertainty
of geometric configuration in SCFNR.

In this paper, we apply MME detection to the target detec-
tion in SCFNR, and the test statistics is composed of the
eigenvalues of the received signal’s sample covariance matrix
Rx at fusion center. The test statistic and its accompanying
decision rule in the mobility model M(t) are given by

0MME (x,M (t)) =
λmax (Rx)

λmin (Rx)

H′
≶
H∞

γ (14)

where λmax (Rx) and λmin (Rx) denote the largest and small-
est eigenvalue of the matrix Rx , respectively. γ stands for the
predefined decision threshold, andM(t) represents the mobile
model in Definition 1.

For SCFNR, the probability of false alarm and the proba-
bility of missed detection due to the uncertainty of geometric
configuration can be defined as:

Pfa (M(t)) = P (0MME (x,M (t)) ≥ γ |H0,M(t) )

Pmd (M(t)) = P (0MME (x,M (t)) < γ |H1,M(t) ) (15)

However, for SCNFR, the uncertainty of the geometric
configuration in SCFNR due to the mobility of the trans-
mitter and receiver further leads to the problem of robust
target detection. Inspired by [24], we can define whether
the detector is robust by a pair (Pfa,Pmd ) consisting of a
target false alarm probabilityPfa and a target missed detection
probability Pmd if it satisfies{

Pfa(M(t)) < 0.5
Pmd (M(t)) < 0.5

(16)

So, we can define the robust detector for the uncertainty of
geometric configuration in SCFNR as follows:
Definition 2: A detector is called robust in SCFNR,

if the false-alarm and missed-detection probabilities are both
smaller than 1/2.
For H1 and H0 test statistics, if there is a H0 mean that is

below one of the H1 means, no matter what value is chosen
for the threshold, either Pfa(M(t)) or Pmd (M(t)) is always less
than 0.5 [15]. So, we can find a lower bound 0̄lo

MME,H1
on the

test statistic 0MME(x,M(t)) under H1 and an upper bound
0̄
up
MME,H0

under H0 respectively. If 0̄lo
MME,H1

≥ 0̄
up
MME,H0

,
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the MME detector is robust. Bounds are denoted by a bar
above the respective symbol.

III. ROBUST ANALYSIS FOR MME DETECTION IN SCFNR
In this section, we analyze the robustness of MME detector
with the uncertainty of geometric configuration in SCFNR,
thus proving its existence. In (9), Rx = GRsGH

+ σ 2
u I =

G+Ru, the matricesG andRu are Toeplitz matrices. The dis-
turbance vector u is distributed according to a circularly sym-
metric complex Gaussian distribution, i.e., u ∼ CN

(
0, σ 2

u
)
.

A. THE TRANSMITTER-TARGET AND TARGET-RECEIVER
DISTANCES
The 2D Cartesian coordinate system in SCFNR is established
with the target as the origin in Figure 3. Let the positions
of transmitter and receiver for a bistatic radar TpRq ∈ TR
be (xp, yp) and (xq, yq) at initial time T0 respectively. And
the slopes from the origin to (xp, yp) and (xq, yq) are kp
and kq correspondingly. The distances between (x0, y0) and

(xp, yp), (x0, y0) and (xq, yq) are Cp =
∣∣∣xp√1+ k2p

∣∣∣ and
Cq =

∣∣∣xq√1+ k2q
∣∣∣, respectively. So, the largest and smallest

distances between the transmitter and target in the mobile
model M(t) are given as follows:

dmax
p = Cp +

M − m
4

dmin
p = Cp −

M − m
4

(17)

Similarly, the largest and smallest distances between the
receiver and target in the mobile model 0̄loMME,H1

are given
as follows: 

dmax
q = Cq +

M − m
4

dmin
q = Cq −

M − m
4

(18)

B. THE LOWER BOUND 0̄lo
MME,H1

AND THE UPPER
BOUND 0̄

up
MME,H0

In order to analyze the robustness of MME detector in
SCFNR, the lower bound 0̄lo

MME,H1
and the upper bound

0̄
up
MME,H0

need to be calculated.
Case 1: The lower bound 0̄lo

MME,H1
underH1

Let λmax (·) and λmin (·) denote the largest and smallest
eigenvalue of a matrix respectively. And the lower bound
0̄lo
MME,H1

on the asymptotic test statistic can be given as
follows:

λ̄lomax (Rx)

λ̄
up
min (Rx)

= 0̄lo
MME,H1

≤ 0MME,H1 =
λmax (Rx)

λmin (Rx)
(19)

To obtain the lower bound 0̄lo
MME,H1

, we need to determine
a lower bound on the largest eigenvalue λ̄lomax (Rx) and an
upper bound on the smallest eigenvalue λ̄upmin (Rx):{

λ̄lomax (Rx) ≤ λmax(Rx)
λ̄
up
min (Rx) ≥ λmin(Rx)

(20)

FIGURE 3. The 2D Cartesian coordinate system in SCFNR.

Without loss of generality, we assume that the largest
correlation coefficient is located at the k th column of the first
row of the matrix Rx and the ith block-matrix. According to
the Courant-Fischer theorem, we can obtain (21) [15].{

λ̄maxIo (Rx) = σ
2
u + KBσ

2
s /d11 + ρkKBσ

2
s /d1,k+1

λ̄maxup (Rx) = σ
2
u + KBσ

2
s /d11 − ρkKBσ

2
s /d1,k+1

(21)

where

ρk = 1− k/L,

dij =
1∥∥dp(i− 1)

∥∥ ∥∥dq(i− 1)
∥∥ ∥∥dp(j− 1)

∥∥ ∥∥dq(j− 1)
∥∥ .

Hence, the lower bound 0lo
MME,H1

under H1 is now given
by

0lo
MME,H0

=
σ 2
u + KBσ

2
s /d11 + ρkKBσ

2
s /d1,k+1

σ 2
u + KBσ 2

s /d11 − ρkKBσ 2
s /d1,k+1

(22)

Case 2: The l upper bound 0̄up
MME,H0

under H0

For this case, the upper bound 0̄up
MME,H0

on the test statistic
is given as follows:

λ̄
up
max (Rx)

λ̄lomin (Rx)
= 0̄

up
MME,H0

≥ 0MME,H0 =
λmax (Rx)

λmin (Rx)
(23)

According to the Gershgorin circle theorem, an upper
bound on the maximum eigenvalue of Rx can be obtained
as [15]

λ̄
up
max (Rx) = σ

2
s = λmax (Rx) (24)

And a lower bound on the minimum eigenvalue of
σ 2u+KBσ

2
s /d11+ρkKBσ

2
s /d1,k+1

σ 2u+KBσ 2s /d11−ρkKBσ 2s /d1,k+1
≥ 1 can be obtained as

λ̄lomin (Rx) = σ
2
u = λmin (Rx) (25)

So, the upper bound 0̄up
MME,H0

underH0 is 1.
Hence, the MME detector is robust when 0̄lo

MME,H1
≥

0̄
up
MME,H0

, i.e. (26),

σ 2
u + KBσ

2
s /d11 + ρkKBσ

2
s /d1,k+1

σ 2
u + KBσ 2

s /d11 − ρkKBσ 2
s /d1,k+1

≥ 1 (26)

VOLUME 10, 2022 23609



M. Xia et al.: Constraint on Bounded Relative Distance for Robust MME Detection in SCFNR

In (26), we make sure that λ̄upmin(Rx) > 0, which leads to
the constrained (27):

σ 2
u + KBσ

2
s /d11 − ρkKBσ

2
s /d1,k+1 > 0 (27)

C. CONSTRAINT ON BOUNDED RELATIVE DISTANCE FOR
ROBUST MME DETECTION
In the absence of control, the two initially closed transmitter
and receiver platforms rapidly separate due to different accel-
erations. It is thus necessary to identify orbits on which the
transmitter and receiver platforms remain within some pre-
specified relative distance for the entire mission lifetime in
SCFNR [2]. Also, it needs to identify orbits for robust MME
detecting in SCFNR.

The orbits of all transmitter and receiver platforms are
determined by Earth-centered inertial (ECI) coordinate sys-
tem. ECI is defined in the following standard manner [2]: the
fundamental plane is the equatorial plane; the x axis towards
the vernal equinox, the z axis points towards the geographic
north pole, and y = z × x. The vector of classical orbital
elements in ECI coordinate, which describes natural orbits of
fractionated spacecraft, is defined as:

α , [a, e, β, ω, f , �]T (28)

where a is the semimajor axis, e is the eccentricity, β is
the inclination, ω is the argument of perigee, f is the true
anomaly, and � is the right ascension of ascending node
(RAAN).

If the vector r = [x, y, z]T denotes the position of any
satellites in FSN in ECI coordinate, v = dr/dt is the velocity,
η =

√
x2 + y2 is equatorial projection of position vector,

as well as the maximal and minimal equatorial projections
of the position vector of satellite at time t , given by ηmax =

max
t
η(t) and ηmin = min

t
η(t), where η(t) =

√
x2(t)+ y2(t).

To obtain the initial constraint to SCFNR with respect to
keep bounded relative distance, the proposition is given as
following [2]:
Proposition: Consider two modules, the transmitter plat-

form C and the receiver platform D, having identical constant
ballistic coefficients, i.e.,

CDC SC
mC

=
CDDSD
mD

= cons (29)

where S is the cross-sectional area, CD is the drag coefficient
defined with respect to the cross-sectional area, mC and mD
are the mass of the transmitter platform C and the receiver
platform D, respectively. In the following development, the
subscripts (.)C and (.)D denote quantities corresponding to
the satellites C and D, respectively. If only the atmospheric
drag and the zonal harmonics with gravitational potential
are considered, satellite D requires initial conditions to be
satisfied as follows:

αD (t0) = αC (t0)+
∫ t0+1t

t0
α̇Adt +

[
05×1
1�

]
(30)

where 05×1 denotes a five-dimensional-zeros vector, differ-
ential RAAN satisfy

1� = �D(t0)−�C (t0 +1t) (31)

And the distance between the transmitter platform C and
the receiver platform D is required to satisfy (32).

2ηmin sin
(
|1�|

2

)
− |1t| vmax

≤ |rD (t)− rC (t)|

≤ 2ηmax sin
(
|1�|

2

)
+ |1t| vmax (32)

Eq. (32) gives the bound of relative distance between the
transmitter platform and the receiver platform. For robust
MME detecting, we need to analyze the constraints on the
relative distances.

We give related theorems 1 and 2, and their proofs are
shown in the appendix.
Theorem 1: If the chief module C and the deputy mod-

ule D of SCFNR have identical constant ballistic coefficients,
if ηmax−ηmin

vmax
≤

sin(|1�|/2)
|1t| , the difference between M and m

satisfy (33).

2vmin |1t| ≤ M − m

≤ 2ηmax sin
(
|1�|

2

)
− 2ηmin sin

(
|1�|

2

)
+2vmax |1t| (33)

Theorem 2: In SCFNR, if the initial position of trans-
mitter SiT (0) and mobility model M(t) are given, let
dmax
t = min{dmax

p }, d
max
r = min{dmax

q } and dmin
t =

min{dmin
p }, d

min
r = min{dmin

q }, the MME detector is robust
under the condition given by (29) when

0 < M − m ≤ 2 ·
−b+

√
b2 − 4ac
a

,

where

C = max{Cp,Cq}, D = min{Cp,Cq},

a =
20KBσ 2

s ρk

D6 −
20KBσ 2

s

C6 , b =
4KBσ 2

s ρk

D5 +
4KBσ 2

s

C5 ,

c =
KBσ 2

s ρk

D4 −
KBσ 2

s

C4 − σ
2
u .

Thus, to identify orbit elements on which the transmitter
and receiver platforms remain within some pre-specified rel-
ative distance for the entiremission lifetime in SCFNR, and to
identify orbit elements for robust MME detecting in SCFNR,
the corollary is as follows:
Corollary: Given M - m, the condition of orbit elements

(maximum distance difference) for robust MME detector in
the entire mission lifetime of SCFNR must be satisfied:

2vmin|1t| ≤ M − m ≤ 8 (34)

where

8 = min
{
2ηmax sin

(
|1�|

2

)
− 2ηmin sin

(
|1�|

2

)
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TABLE 1. All near circular orbital elements of SCFNR.

TABLE 2. Parameter setting.

FIGURE 4. Simulation scenario in SCFNR.

+2vmax |1t| ,
−2b+ 2

√
b2 − 4ac

a

}
.

IV. NUMERICAL CALCULATION
In order to simulate and analyze the robustness of MME
detector for SCFNR in time slot of the orbital hyper-period,
we need to establish the SCFNR scenario by STK (Satellite
Tool Kit) in Figure 4. And we fulfil numerical simulation in
Windows 10 and MATLAB R2017b environment.

A. PARAMETER SETTINGS
Suppose SCFNR is composed of 4 pairs of homogeneous
bistatic radars. Let T =

{
T1,T2,T3,T4

}
, R =

{
R1,R2,

R3,R4
}
, m = 30 km, M = 580 km. According to the orbit

design of cluster flight spacecraft proposed in using (34), all
near circular orbital elements of SCFNR are listed in Table 1.
And the other parameter settings are listed in Table 2.

B. TRANSMITTED POWER’S EFFECT ON THE BOUND OF
RELATIVE DISTANCE
According to Table 1, all orbital periods can be calculated and
are approximated as 6310 seconds using STK. So, we believe
the orbital hyper-periods of the SCFNR are also 6310 s.
In addition, as shown in Figure 5, we can also calculate all rel-
ative distances between transmitters and receivers in 172 days
by STK. For convenience, the CPI is taken as the width of
time slot in orbital hyper-period. Considering the number L
of pulse in a CPI is 2, 3 and 4 respectively, then ρk = 1/2, 2/3

and 3/4 in (21) correspondingly. And let B = −2b+2
√
b2−4ac

a ,
the transmitted power’s effect on the bound of relative dis-
tance in SCFNR can be shown in Figure 6.

And the relation between the transmitted power and
0̄lo
MME,H1

is shown in Figure 7(a)-(c) correspondingly.

In Figure 7, the results can be analyzed as follows:
(1) It is observed that all up bound of R is greater

than 205 km, irrespective of ρk . And it shows that the MME
detector in SCFNR is robust in Figure 5. This satisfies the
constraint in Theorem 2. So, designing the orbit of SCFNR
can ensure the relative distances bounded and the MME
detector robust.

(2) It is observed that 0̄MME is greater than 1 in Figure 6-8,
and theMME detector is robust according to (26) irrespective
of ρk . The results are consistent with the above. Also, the
0MME increases with the ρk increasing.

(3) In Figure 7(a)-(c), the up bound of R approaches
some constant, and the 0MME approaches some constant too.
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FIGURE 5. The relative distance between any transmitter-receiver within 172 days.

FIGURE 6. The transmitted power’s effect on the bound of relative distance in SCFNR.

All approaching trends are the same. The reason is that the
higher the transmitted power, the more negligible the other
factors in (22) are.

C. FALSE-ALARM PROBABILITY AND MISSED-DETECTION
PROBABILITY
Using the method in [26], the false-alarm probability and
the missed-detection probability can be calculated. So, the

relation between the transmitted power and the false-alarm
probability, the missed-detection probability is shown in
Figure 8 while ρk = 1/2, 2/3, and 3/4 respectively.
In Figure 8, both the false-alarm probability and the

missed-detection probability are smaller than 0.5. Accord-
ing to Definition 2, the MME detector is robust. This is
consistent with the results in Section IV.A. This shows
that the proposed constraint is effective. Also, it is
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FIGURE 7. The transmitted power’s effect on the bound of relative distance in SCFNR.

shown that the correlation coefficient ρk has fewer effects
on the false-alarm probability and the missed-detection
probability.

In short, the numerical results in Sections IV.B and IV.C
show that to identify orbit elements for robust MME detec-
tor, the transmitter and receiver platforms remaining within

some pre-specified relative distance for the entire mis-
sion lifetime in SCFNR, the condition in (34) must be
satisfied. The results also show that controlling the orbit
elements about the transmitter and receiver platforms in
SCFNR can ensure MME robust and relative distance
bounded.
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FIGURE 8. The relations between the transmitted power and the false-alarm probability, the
missed-detection probability in SCFNR.
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V. CONCLUSION
In this paper, we study the robust MME detection problem
caused by the uncertainty of geometric configuration and
focus on the constraint on bounded relative distance for robust
MME detection in SCFNR. Firstly, according to the proposed
novel concept of SCFNR, we have given the robust constraint
condition about MME detector. Secondly, we have derived
the closed-form of the lower bound on the test statistic under
the presence of target return, the upper bound under the
absence of target return. Next, the interval between the upper
bound of transmitter-receiver distance and the lower bound
in SCFNR for robust MME detecting, and the constraint on
the bounded relative distance for robust MME detector have
been given. Finally, the effectiveness of the proposed con-
straint have been validated through numerical calculations.
The results have shown that controlling the orbit elements
about the transmitter and receiver platforms in SCFNR can
ensure the robustness of MME and relative distance bounded.

In the future, to further develop the theory and applica-
tion of SCFNR, we will study problems on localization and
tracking, etc.

APPENDIX
The proofs of theorems 1 and 2 are as follows:
Theorem 1: If the chief module C and the deputy module

D of SCFNR have identical constant ballistic coefficients,
if ηmax−ηmin

vmax
≤

sin(|1�|/2)
|1t| , the difference between M and m

satisfy (33).

2vmin|1t| ≤ M − m

≤ 2ηmax sin
(
|1�|

2

)
−2ηmin sin

(
|1�|

2

)
+ 2vmax|1t| (A.1)

Proof: In [2], as the chief module C is met vmin ≤ v ≤
vmax and ηmin ≤ η ≤ ηmax, then

2ηmin sin
(
|1t|
2

)
− vmax|1t|

≤ m ≤ 2ηmax sin
(
|1t|
2

)
− vmin|1t| (A.2)

2ηmin sin
(
|1t|
2

)
+ vmin|1t|

≤ M ≤ 2ηmax sin
(
|1t|
2

)
+ vmax|1t| (A.3)

In (A.2) and (A.3), the upper bound of m is less than or
equal to the lower bound of M . This requires that

ηmax − ηmin

vmax
≤

sin(|1�|/2)
|1t|

.

Hence, if
ηmax − ηmin

vmax
≤

sin(|1�|/2)
|1t|

,

2ηmax sin
(
|1t|
2

)
− vmin|1t|

≤ 2ηmin sin
(
|1t|
2

)
+ vmin|1t|,

and (A.2) and (A.3) hold in the meantime.
Also, the (A.2) can be rewritten as follows:

2ηmin sin
(
|1t|
2

)
− vmax|1t|

≤ m ≤ 2ηmin sin
(
|1t|
2

)
− vmin|1t| (A.4)

From (A.3) and (A.4), we get

2vmin|1t|

≤ M − m ≤ 2ηmax sin
(
|1�|

2

)
−2ηmin sin

(
|1�|

2

)
+ 2vmax|1t| (A.5)

Q.E.D.
Theorem 2: In SCFNR, if the initial position of trans-

mitter SiT (0) and mobility model M(t) are given, let
dmax
t = min{dmax

p }, d
max
r = min{dmax

q } and dmin
t =

min{dmin
p }, d

min
r = min{dmin

q }, the MME detector is robust
under the condition given by (29) when 0 < M −

m ≤ 2 · −b+
√
b2−4ac
a , where C = max{Cp,Cq},D =

min{Cp,Cq}, a =
20KBσ 2s ρk

D6 −
20KBσ 2s
C6 , b = 4KBσ 2s ρk

D5 +

4KBσ 2s
C5 , c = KBσ 2s ρk

D4 −
KBσ 2s
C4 − σ

2
u .

Proof: In SCFNR, to make sure that the MME detector
is robust, the following must be satisfied (A.6), as shown at
the bottom of the page. In fact, (A.7), as shown at the bottom
of the page, also (A.8) and (A.9), as shown at the top of the
next page.

min

{
σ 2
u +

KBσ 2
s∥∥dp(0)∥∥2 ∥∥dq(0)∥∥2 − ρkKBσ 2

s∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ∥∥dp(k)∥∥ ∥∥dq(k)∥∥
}
> 0, ∀p, q (A.6)

min

{
σ 2
u +

KBσ 2
s∥∥dp(0)∥∥2 ∥∥dq(0)∥∥2 − ρkKBσ 2

s∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ∥∥dp(k)∥∥ ∥∥dq(k)∥∥
}

= σ 2
u + KBσ

2
s min

{
1∥∥dp(0)∥∥2 ∥∥dq(0)∥∥2

}
+ KBσ 2

s ρk min

{
−

1∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ∥∥dp(k)∥∥ ∥∥dq(k)∥∥
}

(A.7)
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min

{
1∥∥dp (0)∥∥2 ∥∥dq (0)∥∥2

}
=

1∣∣∣dmax
p dmax

q

∣∣∣2 =
1(

Cp + R
)2 (Cq + R)2

≥
1(

max
{
Cp,Cq

}
+ R

)2 (max
{
Cp,Cq

}
+ R

)2 = 1

(C + R)4
(A.8)

min

{
−

1∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ∥∥dp(k)∥∥ ∥∥dq(k)∥∥
}
= −

1∣∣∣dmin
p dmin

q

∣∣∣2 = −
1(

Cp − R
)2 (Cq − R)2

≥ −
1(

min
{
Cp,Cq

}
− R

)2 (min
{
Cp,Cq

}
− R

)2 = − 1
(D− R)4

(A.9)

min

{
σ 2
u +

KBσ 2
s∥∥dp(0)∥∥2 ∥∥dq(0)∥∥2 − ρkKBσ 2

s∥∥dp(0)∥∥ ∥∥dq(0)∥∥ ∥∥dp(k)∥∥ ∥∥dq(k)∥∥
}

≥ σ 2
u + KBσ

2
s

1
(C + R)4

− KBσ 2
s ρk

1
(D− R)4

(A.10)

Generally, R < D, R < C . So, the (A.9) can be rewritten
as (A.10), shown at the top of the page.

Expanding the right side of (A.10) in Taylor series, and
omitting the high order terms, the following is given by

σ 2
u +

KBσ 2
s

C4

(
1−

4R
C
+

20R2

C2

)
−
KBσ 2

s ρk

D4

×

(
1+

4R
D
+

20R2

D2

)
≥ 0 (A.11)

Due to R > 0, and solving the (A.6), we get

0 < M − m ≤ 2 ·
−b+

√
b2 − 4ac
a

(A.12)
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