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ABSTRACT Target tracking using an unmanned aerial vehicle (UAV) is a challenging robotic problem.
It requires handling a high level of nonlinearity and dynamics. Model-free control effectively handles the
uncertain nature of the problem, and reinforcement learning (RL)-based approaches are a good candidate
for solving this problem. In this article, the Twin Delayed Deep Deterministic Policy Gradient Algorithm
(TD3), as recent and composite architecture of RL, was explored as a tracking agent for the UAV-based target
tracking problem. Several improvements on the original TD3 were also performed. First, the proportional-
differential controller was used to boost the exploration of the TD3 in training. Second, a novel reward
formulation for the UAV-based target tracking enabled a careful combination of the various dynamic
variables in the reward functions. This was accomplished by incorporating two exponential functions to
limit the effect of velocity and acceleration to prevent the deformation in the policy function approximation.
In addition, the concept of multistage training based on the dynamic variables was proposed as an opposing
concept to one-stage combinatory training. Third, an enhancement of the rewarding function by including
piecewise decomposition was used to enable more stable learning behaviour of the policy and move out
from the linear reward to the achievement formula. The training was conducted based on fixed target
tracking followed by moving target tracking. The flight testing was conducted based on three types of target
trajectories: fixed, square, and blinking. The multistage training achieved the best performance with both
exponential and achievement rewarding for the fixed trained agent with the fixed and square moving target
and for the combined agent with both exponential and achievement rewarding for a fixed trained agent in the
case of a blinking target. With respect to the traditional proportional differential controller, the maximum
error reduction rate is 86%. The developed achievement rewarding and the multistage training opens the
door to various applications of RL in target tracking.

INDEX TERMS Navigation, reinforcement learning, target tracking, twin delayed deep deterministic policy
gradient, unmanned aerial vehicles.

I. INTRODUCTION
Unmanned aerial vehicle (UAV) applications are increas-
ing day by day, and aerial vehicles are being used as part
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of many recent technological applications. Some examples
are in shipping [1], surveillance [2]–[4], battlefield [5],
rescuing applications [6], [7], and inspection [8], [9].
Aerial vehicles are now divided into three categories:
teleoperated [10], [11], semi-autonomous [12], [13], and
full autonomous [14]. Enabling aerial vehicle applications
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requires essential autonomous features with regard to auton-
omy within the system.

Vehicles that can be autonomous must be able to decide
on and react to events without direct intervention by humans.
Some fundamental aspects are common to all autonomous
vehicles. These aspects include sensing and perceiving the
environment, analysing the gained information, communicat-
ing, planning and making decisions, and acting using control
algorithms and actuators. For example, in the autonomous
tracking feature of a UAV to a target, a camera is used for
sensing the environment. Next, the gained information is
analysed to detect the target. The detection is sent to the
decision-making algorithm that enables the mobility of the
UAV autonomously. Once this feature is shown to be work-
ing in a stable and robust way, it is deployed to UAVs as
an autonomous feature that assists in operating UAVs and
human–vehicle interaction.

Operating unmanned flying vehicles is useful; however,
it can be challenging when the vehicle interacts with the
environment. This interaction could be, for instance, in the
form of landing on the ground or landing pads, docking into
a station, approaching terrain for inspection, or approaching
another aircraft for refueling purposes. Such tasks can often
be solved when the vehicle is remotely piloted, especially
when the pilot has a first-person view of the environment.
However, human control may not always be possible. For
instance, the unavailability of a suitable data link or the pre-
cision and/or speed required for the maneuver may be outside
human capabilities. Thus, it is important to find effective and
flexible strategies to enable vehicles to perform such tasks
autonomously.

Well-developed features of autonomous UAV con-
trol include stability enhancement and waypoint flight,
autonomous tracking, and autonomous landing. However,
new developments in the design of UAVs, as well as the
emergence of new application areas, demand robust and adap-
tive control techniques for different flight conditions, such
as aggressive maneuvering flight [15], robust disturbance
rejection [16], obstacle avoidance [17], fault tolerance [18],
formation flying [19], and the use of new sensing and per-
ception paradigms such as computer vision [20]. Even when
the vehicle performs tasks autonomously, the efficiency and
reliability of the communication link to the ground station
or other aerial vehicles are important. This is because when
the autonomous UAV sends information about itself or its
environment to the ground station or other vehicles, it may
also need to receive updated mission parameters from the
ground station or information from other vehicles. These
ambitious requirements of autonomous operation require
systematic and innovative methods for planning, navigation,
decision-making, control, sensing, and communications [21].

In dynamic and nonlinear control, building a mathematical
function of the plant is needed to assure a stable controller.
The stability of the controller is analyzed based on compli-
cated mathematical methods and techniques. In many real-
world applications, the accuracy of the plant’s mathematical

model is questionable. Furthermore, engineers performmath-
ematical approximations to simplify the model development.
These approximations are based on some assumptions that
limit the generalizability of the controller. The assumption
can lead to stability and reliability issues, such as violating the
simplification assumptions considered in the approximation
when the controller operates in real-world scenarios. Hence,
to avoid such approximations and nonvalid assumptions, the
concept of free model control is used. However, instead
of using it based on repeated trial and error for tuning a
simplified controller, it can be used to develop an accurate
controller that embeds sufficient gained knowledge from the
plant [22].

Reinforcement learning (RL) is one type of model-free
control based on artificial intelligence (AI). It has proven
itself an effective and practical approach to controlling non-
linear and complex dynamic systems, especially when accu-
rate modeling is difficult. Furthermore, integrating RL with
a deep-neural network for scene analysis from video and
decision-making based on extensive training has found its
niche valuable in AI products in the automotive industry and
driverless cars [23] and the control of aerial vehicles [23].
The reason for this is the ability to train the RL model
based on an extensive number of driving scenarios and then
to use the learned knowledge in operation. Hence, RL is
considered a type of model-free control as it does not require
a model for control application. Among the RL models, the
Deep Deterministic Policy Gradient (DDPG) has been devel-
oped [24]. It is considered the first deterministic actor–critic
that employs deep neural networks for learning in the actor
and critic. It is a model-free, off-policy algorithm that extends
both the Deep Q Network (DQN) and the DDPG because
it uses some insight from DQN, such as replay buffer and
target network, to make the DPG work with deep networks.
However, it has a problem of sensitivity to hyperparameters.
Recently, one algorithm has replaced the DDPG: the Twin
Delayed Deep Deterministic Policy Gradient (TD3) [25]. It is
being considered a replacement because it is a continuation of
theDDPG algorithm,with some ingredients that make it more
stable with better performance, such as reducing the over-
estimation bias because of the delayed training architecture
and the learning speed.

This article aims to develop a target tracking by a UAV
using TD3-based RL. The developed algorithm contains a
proportional differential (PD) controller for boosting the
exploration and handling the control on one axis, whereas
TD3 controls the UAV on the other two axes. The article
includes several contributions as follows:

1) To the best of the authors’ knowledge, this study is
the first to apply TD3 for the UAV-based target track-
ing problem with PD for boosting the exploration of
the TD3 in training. Previously, the work of [26] has
applied TD3 combined with meta-learning. However,
it was based on a simple simulation model in XY
only without addressing the stabilization of the third
dimension. In this work, TD3 was adopted instead of
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the DDPG. This is because it has an architecture that
solves several problems in the DDPG.

2) It proposes a novel reward formulation for UAV-based
target tracking that enables a careful combination of the
various dynamic variables in the reward functions. The
novel rewarding function incorporates two exponential
functions to limit the effect of velocity and accelera-
tion to prevent the deformation in the policy function
approximation.

3) It proposes an enhancement of the rewarding function
by including piecewise decomposition to enable the
policy’s more stable learning behaviour andmove away
from the linear reward toward achievement formula.

4) A thorough evaluation is conducted to evaluate the
developed models and compare them with standard
evaluation metrics.

The remainder of the article is organized as follows. The
literature survey is given in Section II. Next, the methodology
for target tracking implementation by UAV based on TD3 and
reinforcement learning is presented in Section III. The exper-
imental evaluation and results are provided in Section IV.
Finally, the conclusion and direction for future studies are
given in Section V.

II. LITERATURE SURVEY
The UAV-based tracking problem can be categorized into
trajectory tracking and target tracking. Several approaches
based on RL are found for trajectory tracking. In [27],
RL created quadrotor controllers for hovering at a fixed point
and circular trajectory tracking. Policy gradient-based actor–
critic architectures that use neural networks as the function
approximator have been used for both the value and pol-
icy functions. For target tracking, RL-based UAV was used
to track both the stand-alone UAV and cooperative UAVs.
In [28], multiagent reinforcement learning (MARL) for target
tracking was proposed. It includes local and global observa-
tion definition, action, dedicated reward functions, and the
learning method with a joint state and action tracker for a
stable strategy training procedure. Curriculum learning and
sequencing the intractable pursuit process into four statuses
is adopted. Each status corresponds to a more trackable sub-
task, and all statuses are organized into a curriculum that
characterizes the order of solving the subtasks. Based on the
four predefined statuses, a status-oriented cooperative pursuit
reward is developed to guide pursuers in learning complex
cooperative pursuit strategies by addressing the tractable sub-
tasks sequentially.

The literature includes numerous works for developing
target tracking based on RL. In the work of [29], RL-based
coordination of a swarm of drones for target searching and
monitoring was proposed. The problem addressed was the
trajectories planning in cooperative patrolling and tracking
missions. The environment was split into several grids, and
the grid represented the location of the UAV. A stationary
station for refueling the UAV was deployed. The actions of
RL were formulated at the upper management level of the

UAV. In other studies, deep RL was used to assist the UAV in
target detection. In the work of [30], a coarse-to-fine deep
scheme was used to address the aspect ratio variation in
UAV tracking. The coarse tracker first produced an initial
estimate for the target object. Then, a sequence of actions
was learned to fine-tune the four boundaries of the bounding
box. The coarse-tracker and the fine-tracker were designed
to have different action spaces and operating targets. The
former dominates the entire bounding box, and the latter
focuses on the refinement of each boundary. They are trained
jointly by sharing the perception network with an end-to-end
RL architecture. However, in other research works, RL was
utilized for commanding the UAV at lower levels. For the
autonomous landing of an aerial vehicle on a moving target,
tracking is a vital functionality. Deep Q learning was the
most used for a single drone [31]. Other approaches have
adopted deep reinforcement learning to handle the continuous
nature of control. In the work of [32], tracking was used
with landing based on decomposition into two separate tasks,
namely, marker alignment and vertical descent.

In addition, the divide-and-conquer paradigm was used for
splitting the tasks into two subsequent tasks in which each one
was assigned to a DQN. In the work of [33], the DDPG was
integrated with the RL framework. The approach considered
the tracking in X, Y as part of the reinforcement control,
whereas Z was separated. In addition, the work proposed a
rewarding function that does not consider adequate dynamics,
making the approach applicable only in simple maneuvers in
landing. In the work of [34], a sequential DQN was trained in
a simulator before it was deployed in the real world, handling
noisy conditions. In the work of [35], an autonomous landing
based on RL solved by the least-square policy iteration was
performed. The target was stationary, and the rewarding func-
tions used two terms, one for the position error and the other
for the velocity error with adaptive weighting. The weights
were considered to be exponentially changing with respect to
the error so that the position error gained more weight when
the error was large, and the velocity error gained more weight
when the error was small. The authors have not discussed the
quantization of the velocity and the position in their work.
In the work of [36], image-based visual serving has been pro-
posed using Kalman filtering and RL. Their work has shown
the importance of using velocity error in the reward function
and the effectiveness of asymmetric rewards. Considering
that the reward plays an essential role in the controller’s
performance, some researchers have attempted to design an
inverse RL for reward optimization. In the work of [37], the
hidden reward function of a quadratic form from the demon-
strated flights was learned using inverse RL.Next, the optimal
reward function that minimizes the trajectory tracking error
was found, and a reinforcement learning-based controller
using this reward function was proposed. In the work of [38],
Target Following DQN (TF-DQN), a deep reinforcement
learning technique based on DQNs was proposed with a
curriculum training framework for the UAV to persistently
track the target in the presence of obstacles and target motion
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uncertainty. For the reward function, a piecewise reward was
proposed to enable different rewards according to the status
of the collision compared with the noncollision. In the work
of [39], the constrained Markov decision process (CMDP)
was formulated based on the flight decision process with the
goal of optimizing the redundant UAV flight path. The target
continuously broadcasts radio frequency signals to all UAVs
in their work.

The goal is to realize the target within a given time thresh-
old. The Q-learning was formulated based on coordinated
constraint action-based multi-agent Q learning. They aimed
to improve the tracking performance based on the addition of
a constraint on the rewarding.

In the work of [40], a DDPG-based control framework was
used to provide learning and autonomous decision-making
capability for UAVs. In addition, an improvedmethod, named
mixture noise DDPG (MN-DDPG), for introducing a type of
mixed noises to assist UAV by exploring stochastic strate-
gies for optimal online planning was proposed. Finally,
an algorithm of task-decomposition and pretraining for effi-
cient transfer learning to improve the generalization capa-
bility of the UAV’s control model was built based on the
MN-DDPG. In the work of [26], metalearning has been incor-
porated in the training of the TD3 to enable more general-
ization and faster convergence. For metalearning, the authors
have created a metabuffer. The algorithm samples from this
buffer were based on the metalearning rate for updating the
hyperparameters.

In the work of [41], UAV tracking and landing tasks based
on a randomly moving platform have been handled using
the DDPG. The algorithm uses three coordinates for relative
position and velocity as distance and velocity change as
action. The reward is the relative distance with a threshold
penalty. In the work of [34], the DQN was used for landing.
The approach was based on a divide-and-conquer paradigm
that split a task into sequential subtasks, each one assigned to
a DQN. Random sampling was used to improve the general-
ization. In the work of [42], the problem of search and rescue
based on multiple UAVs was tackled in a 3D environment.
Cramér–Rao Lower Bound (CRLB) of the joint measure-
ment likelihood function was used to select the action. The
actions in their formulation are discrete, which is helpful in
simplification but affects fine tracking. In addition, the state
definition does not include the dynamic information of the
target, which also does not make the algorithm perform well
in highly dynamic conditions. In the work of [43], Decisions
about trajectories are generated using a Markov decision pro-
cess (MDP), with the system state space taking into account
vehicular network dynamics. Then, they use deep reinforce-
ment learning (DRL) to propose an approach for learning the
optimal trajectories of deployed UAVs in order to efficiently
maximize vehicular coverage, in which they use an Actor-
Critic algorithm to learn the vehicular environment and its
dynamics in order to handle the complex continuous action
space. In thr work of [44], two UAVs are deployed to act as a
UAV data collector (UAV-DC) and a UAV energy transmitter

(UAV-ET), respectively, in a separate UAV-assisted WPCN
system. As a result, at the level of the two related UAVs,
the gathering of new information and energy transfer are
managed separately. The UAVs’ trajectories could be opti-
mized to improve these two jobs. They use a multi-agent deep
Q-network (MADQN) technique to propose optimal UAV
trajectories that simultaneouslyminimize the predicted age of
information (AoI), improve energy transmission to devices,
and reduce UAV energy consumption. In the work [45],an
ordered and intelligent group of UAVs are sent to execute
long-term communication relays while maintaining connec-
tivity, lowering average energy consumption, and deliver-
ing a cost-effective coverage strategy. To fulfill these needs,
they offer DISCOUNT, a deep reinforcement learning (DRL)
framework (Dispatch of UAVs for Urban VANETs).

Table 1 includes an overview of the various RL-based
models developed in the literature for UAV tracking appli-
cation, reviewing their developed RL basics and attributes.
As observed in the table, none of them has used the
TD3 as an agent. Hence, this confirms that implementing
TD3-based tracking has not yet been accomplished in the
literature, making it one of the novelties provided in the
current article, as stated earlier.

III. METHODOLOGY
This section provides the developed methodology to accom-
plish target tracking by a UAV based on the TD3 and RL.
The methodology consists of problem formulation. Next, the
general framework is presented, followed by the observation
and state. Next, the definition of the action and the rewarding
model are provided and, finally, the episode completion logic.

A. PROBLEM FORMULATION
Assume that a target exists within the field of view of a UAV
and is moving with an unknown trajectory. The problem is
to control the UAV to maintain the target in the center of the
image of the UAV’s frame. Without loss of generality, it is
assumed that the target is moving in the plane yz and the
UAV and the TD3-based RL are responsible for controlling
the UAV to perform its tracking in yz. For dimension x, a PD
controller is responsible for controlling the UAV to maintain
the same distance with respect to the target. The target was
detected based on the AprilTag detection algorithm. In addi-
tion, the low levels command of changing the acceleration of
the UAV with respect to the axes x, y and z were performed
based on the internal proportional integral differential (PID)
control embedded in the UAV controller, which exists in most
commercial UAVs nowadays.

The article focuses on the upper-level TD3-based RL train-
ing to provide the required tracking within different scenarios
of target mobility. A conceptual diagram of target tracking
using the UAV is presented in Figure 1.

B. THE GENERAL FRAMEWORK
The general framework of establishing UAV tracking of the
target using TD3-based RL is presented in Algorithm 1, and

23548 VOLUME 10, 2022



N. Abo Mosali et al.: Twin Delayed DDPG-Based Target Tracking for UAV With Achievement Rewarding

TABLE 1. Overview of RL-based approaches for UAV tracking application.

a conceptual block diagram for it is depicted in Figure 2.
As shown in the figure, the state estimation provides the
needed information to the two controllers, namely, the PD

and the RL agents. Next, a block of inverse Kinematic
was enabled for outputting the low-level control signals
that are affecting the environment. After that, the camera
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FIGURE 1. The conceptual diagram of target tracking based on UAV.

and inertial sensing were used to update the state of the
environment.

As observed in algorithm 1, the initialization starts by
initiating the PD controller and the TD3 networks in line
number 2.

FIGURE 2. The conceptual diagram of the developed RL based tracking.

In addition, the initialization includes defining the number
of episodes to train the TrainingEpsdsNum; the PD explo-
ration steps PDExplrStps, the desired relative position Dsr-
dRelPos based on the GetDesiredRelativePosition(), and the
initial UAV position DsrdDronePos. The role of the Train-
ingEpsdsNum was to determine how many episodes were
needed to finish the training. Increasing the value of the Train-
ingEpsdsNum does not mean a more mature agent because of
over-fitting. Hence, it is important to enabling agent selection
based on the validation phase to decide which agent is the best
among the generated episodes. The role of the DsrdRelPos is
to define the range of accepted errors in this control problem.
The role of the DsrdDronePos is to enable training from dif-
ferent locations of the initial drone position. The PDExplrStps
role is to control the boosting phase when the PD is used to
guide the UAV instead of the TD3 until enough maturity is
reached by the buffer experience to change to the TD3 mode.

The algorithm starts by launching the simulation at
line 7 using LaunchSimulation Next, it uses GetBufferEx-
periencesNum()to update the size of BufExpcNum, which
shows the index of the current last update of the experience
buffer. It is important to note that this variable is updated
upon each control step, as is shown in the pseudocode in
line number 29. Afterwards, ConstructStateVector() was per-
formed to build the state vector, respectively. The main loop
in the algorithm is located between lines 14 and 41, and it
is the loop of episodes. Inside the loop, there is another loop
for each episode separately, placed in lines 16 to 34. In this
loop, there are two branches: the first one is where the PD
controller is consulted for generating actions for y, z and z
and angular rotation around z, and the second one is where
the PD controller is consulted to select actions for only x
and the angular rotation around z while the TD3 handles y
and z control, which represents the core tracking part. Upon
the control, there is a step of updating the buffer using the
command AddExperienceToBuffer() in line 27. In addition,
it can be seen that when the buffer gets sufficient data and
the PD exploration phase finishes, there is a repeated step of
updating the TD3 knowledge in line 32.

C. OBSERVATION AND STATE
The observation updated at each moment, t , includes nine
variables, calculated based on the position of the drone at
the moment t

(
xdrone,t ,ydrone,t , zdrone,t

)
and the position of the

target at the moment t (xtarget,t , ytarget,t , ztarget,t ).
The observation is given in the vector

Ot (xrel,t , yy,rel,t , zrel,t , vx,rel,t , vy,rel,t , vz,rel,t ,

ax,rel,t , ay,rel,t , az,rel,t )

The state is given based on the part of the observation or

st = (yy,rel,t , zrel,t , vy,rel,t , vz,rel,t )

D. ACTION
The action vector consists of two elements, at = (cy,t , cz,t )
where cy,t denotes the action of changing the acceleration of
y, cz,t denotes the action of changing the acceleration of z.
It pointed out that this part is under the mission of the TD3,
whereas the action of changing the acceleration or x or the
angular rate around z is given as actPD = (cx,t , cwz,t ) and it is
under the mission of the PD controller that is integrated with
the TD3.

E. REWARDING MODEL
The reward is the essential part for guaranteeing a good
performance of the RL convergence toward the optimal
policy. It should enable optimal action selection given a
certain state and provide more stable convergence. The
previous researchers [33] include the error concerning the
distance, velocity, and acceleration in the reward. In addi-
tion, they try to make the reward normalized to make
the learning more stable. The classical rewarding model
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Algorithm 1 Pseudocode Training Main
1: Initialization
2: Initialize ()
3: TrainingEpsdsNum
4: PDExplrStps
DsrdRelPos

5: end initialization
6: Start Algorithm
7: LaunchSimulation()
8: BufExpcNum← GetBufferExperiencesNum()
9: PrevStaVec← ConstructStateVector()
14: for EpsdNum← 0, TrainingEpsdsNum do
15: EpsdCmplt← False
16: While EpsdCmplt = False do
17: if BufExpcNum < PDExplrStps then
18: [yzActn, xwzActn]←

GenerateActionUsingPD()
19: elseif BufExpcNum >= PDExplrStps then
20: xwzActn← GenerateActionUsingPD()
21: yzActn← GenerateActionUsingTD3

(PrevStaVec)
22: end if
23: Advance DroneMotion(xwzActn, yzActn)
25: NextStaVec← ConstructStateVector()
27: AddExperienceToBuffer()
29: BufExpcNum← GetBufferExperiences

Number()
30: if BufExpcNum > PDExplrStps then
30: ExtractRandomMinibatchFromBuffer()
32: UpdateTD3PolicyNetwork()
33: end if
34: end while
35: if EpsdCmplt = True then
36: RelaunchDroneSimulation()
39: PrevStaVec← ConstructStateVector()
40: end if
41: end for
42: End Algorithm

is given in Equation (1):

r = −wpr̄p − wvr̄v − war̄a (1)

where wp denotes the weight of the position rewarding
term, wv denotes the weight of the velocity rewarding term,
wa denotes the weight of the acceleration rewarding term, and
r̄p denotes the normalized relative distance between the drone
and the target and it is calculated based on Equation (2):

r̄p =
y2rel,t+z

2
rel,t∥∥Rp∥∥ (2)

where Rp denotes the maximum magnitude of y2rel,t + z2rel,t
and it is used for normalization, r̄v denotes the normalized
relative distance between the drone and the target and it is

calculated based on Equation (3):

r̄v =
vy2rel,t + vz

2
rel,t

‖Rv‖
(3)

where Ra denotes the maximum magnitude of vy2rel,t + vz
2
rel,t

and it is used for normalization, r̄a denotes the normalized
relative acceleration between the drone and the target and it
is calculated based on Equation (4):

r̄a =
ay2rel,t + az

2
rel,t

‖Ra‖
(4)

Ra odenotes the maximum magnitude of ay2rel,t + az
2
rel,t and

it is used for normalization.
The modification in the reward is carried out based on the

following:
1) A novel approach for rewarding is developed where the

reward is not given at one time based on the three terms
of position, velocity, and acceleration. However, it is given
progressively throughout the training, where the entire set
of episodes is decomposed into three stages. The rewarding
based on the position term is given in the first stage, the
rewarding based on the velocity term is given in the second
stage, and the rewarding based on the acceleration term is
given in the last term. This approach is called multistage
rewarding. The pseudocode of multistage rewarding is given
in Algorithm 2. As observed in the code, from lines 1 to 4,
the first stage of position-based rewarding is executed. From
lines 5 to 7, the second stage of velocity-based rewarding is
given, and from lines 8 to 10, the stage of acceleration-based
rewarding is given.

Algorithm 2 Pseudocode Multi Stage Shaping Function
Input:
(1)EpsdNum: Episode Number.
PosEpsdsNum
VelEpsdsNum
AcelEpsdsNum
Output:
Shaping
1: Start Algorithm
2: if EpsdNum < PosEpsdsNum then
3: Shaping = CalPositionTerm()
4: else if (EpsdNum > PosEpsdsNum) and
5: (EpsdNum < VelEpsdsNum)then
6: Shaping = CalVelTerm()
7: else if (EpsdNum > VelEpsdsNum) and 9:(EpsdNum <

8:AcelEpsdsNum) then
9: Shaping = CalAccTerm()
10: end if
11: End Algorithm

2) An exponential factor for weighting the velocity and
acceleration terms in the reward is incorporated. They are
given in Equation (5-6):

wv = w0,ve−v (5)
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wa = w0,ae−a (6)

The role of these terms is to assure that the rewarding of the
dynamics will not exceed its safe level of affecting the policy
surface.

3) An achievement concept of rewarding was developed
where the reward formula changes according to entering or
exiting a surrounding square frame around the target. To elab-
orate this concept, it was assumed that the target is surrounded
with K frames, presented in the set F = {f1, f2, . . .fK . The
reward is modified in Equation (7):

rpw (t) =


r (t)+ c1 if (target is within f1)
r (t)+ c2 if (target is within f2)

.
...

r (t)+ cK if (target is within fK )

(7)

where f1 is surrounding f2, f2 is surrounding f3, and so on
until the last frame fK . c1 < c2< . . .cK . The model is called
an achievement-based rewarding because the constants ci are
given at each frame as an extra reward because of the agent’s
achievement.

F. EPISODE COMPLETION LOGIC
The episodes consist of the fixed target set of episodes and the
moving target set of episodes. The completion of one episode
and the starting of a new episode is based on combinatory
logic.More specifically, the episode ends with the availability
of one of three conditions in the fixed target, namely entering
the inner area of a square surrounding the target, exceeding
the area of simulation, or exceeding the allocated steps for the
episodes.

On the other side, the episode ends with the availability of
one of two conditions in the case of the moving target, namely
exceeding the area of simulation or exceeding the allocated
steps for the episodes. The algorithm that shows the logic of
episode completion is given in Algorithm 3. The part from
line 6 enables the terminal state successfulness flag in the case
of the fixed target. Lines 7 to 11 enables the flag of failure to
reach the terminal state due to exceeding the area in the case
of the moving target.

IV. EXPERIMENTAL EVALUATION AND RESULTS
For simulation, the Gazebo simulator was used. It is a three-
dimensional dynamic simulator that can correctly and effec-
tively model UAVs and robots. For training, the set of the
initial random positions was selected with N = 9, and it is
given as:

RP = {(0, 0.15, 0.5) , (0, 0.15, 1.15) , (0, 0.15, 1.5) ,

(0, 0.5, 0.5) , (0, 0.5, 1.15) , (0, 0.5, 1.5) ,

(0,−0.5, 0.5) , (0,−0.5, 1.15) , (0,−0.5, 1.5) .

For the multistage rewarding, K = 5, c1 = 20,c2 =
40,c3 = 60,c4 = 80 and c5 = 100were used. The parameters
of the experiments are presented in Table 2. In addition, the
TD3 parameters in Table 3 are presented. As given in the

Algorithm 3 Episode Completion Status
Input:
(1) StaVec: State Vector.
(2) TrmnlStaThrshld: Terminal State Threshold.
Index 1 for position and 2 for velocity
(3) MaxRelPos: Maximum Relative Position.
(4) EpsdStpNum: Episode Step Number.
(5) MaxEpsdStps: Maximum Episode Steps.
(6) TagTrajType: Tag Trajectory Type.
Output:
EpsdCmplt: Episode Completion.
1: Start Algorithm
2: EpsdCmplt← False
3: TrmnlStaStatus← False
4: FlgAreaExcd← False
5: MaxEpsdStpsStatus← False
6: if absolute(StaVec[’yAxisLinearPos’]) <

TrmnlStaThrshld(1) and
absolute(StaVec[’zAxisLinearPos’])
< TrmnlStaThrshld(1) and absolute
(StaVec[’yAxisLinearVelocity’])
< TrmnlStaThrshld(2) and
absolute(StaV ec[’zAxisLinearVelocity’])
< TrmnlStaThrshld(2) then
7: TrmnlStaStatus← True
8: end if
9: if absolute(StaV ec[’yAxisLinearPos’])
> MaxRelPos[’yAxis’] or
absolute(StaV ec[’zAxisLinearPos’])
> MaxRelPos[’zAxis’] then
10: FlgAreaExcd← True
11: end if
12: if EpsdStpNum =MaxEpsdStps then
13: MaxEpsdStpsStatus← True
14: end if
15: if TagTrajType = ’fixed’ then
16: if TrmnlStaStatus = True or FlgAreaExcd = True
or MaxEpsdStpsStatus = True then
17: EpsdCmplt← True
18: end if
19: end if
20: if TagTrajType = ’moving’ then
21: if FlgAreaExcd = True or MaxEpsdStpsSta-
tus = True then
22: EpsdCmplt← True
23: end if
24: end if
25: End Algorithm

table, the number of hidden layers is 2, and the number of
hidden neurons in each layer is 256. Other parameters are the
standards used by researchers for TD3 implementation.

The evaluation results were reported under boxplot
visualization to characterize the random behavior of the
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TABLE 2. Parameters of the rewarding model.

TABLE 3. Parameters of TD3 algorithm.

performance for each model. The labelling coding presented
in Table 4 was used for the various models evaluated. The
type of evaluated agent from the models was added as a title
for each figure. The original TD3 model does not include
achievement reward or exponential weighting. In addition,
it was based on the combined training of position, velocity
and acceleration, named as combined (C). Two types exist
agents: agents trained by fixed target only (F) and agents
trained by fixed and moving target (FM). For FM agents,
the training was based on the first stage of training on a
fixed target and the second stage of training on moving
targets within the square path with a diameter of 0.5, 1 and
1.5 meters. It is pointed out that the C agent of FM can be
called metalearning TD3 because it used the same concept
of [26]. Two evaluation metrics are presented for each agent
type, namely the accumulated error on the y axis, which is
named as Ey and the accumulated error on the z axis, which
is named asEz. They both indicate the accumulated root mean
square error.

A. FIXED TARGET
The developed TD3-based tracking was evaluated based on
two types of analysis. The first one is the analysis of the

TABLE 4. Labelling coding for the models used in the evaluation.

statistical results of the errors in both Y and Z, given in
Subsection 1. The second one is the evaluation of the time
series of the relative distance between the UAV and the target
in both Y and Z throughout the experiment, given in Subsec-
tion 2. For both analyses, a boxplot was selected to capture
the random behavior in the experiments and incorporate it in
the evaluation.

1) STATISTICAL RESULTS
It was observed in Figures 3, 4, 5 and 6 that the accumulated
error on Y and Z, for the F agent axis, shows that the best
achieving agent was Multilevel - Achievement- Exponential
(MLAE) with an accumulated error of less than 50. The worst
performance was observed for Combined-Exponential (CE),
which has reached an error of close to 350 for Y and 400 for Z.
This provides that incorporating the exponential weighting in
the combined rewarding is not useful in improving the latter.

In addition, it was observed that all Multilevel-
Achievement (MLA), Combined- Achievement- Exponen-
tial (CAE) and Combined-Achievement (CA) have provided
much better performances than both proportional differ-
ential (PD) and Combined (C), which are just classical
TD3-based models with no modifications. The ranges of
errors provide that adding an achievement term to the TD3 is
useful for improving the tracking performance and reducing
the error. Furthermore, combining both the achievement
rewarding formula and the exponential weighting terms
provides better performance than using the achievement
rewarding alone. Another observation is that the width of the
boxplot is reduced for the achievement-based agents, namely
CA, CAE, MLA and MLAE, which means more stability
in the performance when they are trained on a fixed target,
i.e., F-agent. More specifically, as is observed from Table 5 of
the summary of the errors in Y and Z that F-agentMLAEwith
the error of Y of 39.53 in Y axis has increased to 125 in Fixed
then Moving trained (FM), and the error of Z has increased
from 51 in the F training case to 122 in the FM agent. The
stability generated from achievement rewarding is interpreted
by the piecewise formula that makes the agent aware of its
progress in the tracking and its motivation when it passes
from one region to another closer to the target. Also, it was
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observed that the best agent in the FM training was MLA,
with an error of 64 on Y and 113 on Z.

The time series is presented in Figure. 5, showing good
tracking performance bymaintaining the location of the target
in both Y and Z despite the frequent sensor failure cases that
are shown at the bottom graph.

FIGURE 3. Boxplot of an error on Y-axis for various agent types trained
on fixed target and tested on fixed trajectory scenario.

FIGURE 4. Boxplot of an error on Z-axis for various agent types trained
on fixed target and tested on fixed trajectory scenario.

2) TIME SERIES RESULTS
The visualization of the dynamic performance is given by pre-
senting the time series of the unit step response. As depicted
in Figure 7, the tracking shows good performance for both Y
and Z despite the cases of sensor failures caused by the non-
detection of the tag. Hence, the model shows good robustness
of the UAV tracking.

B. MOVING WITH SQUARE TRAJECTORY
The evaluation of the target that moves along a square trajec-
tory was decomposed into two subsections. The first is the
statistical evaluation, presented in (1), and the second is the
time series evaluation, presented in (2).

FIGURE 5. Boxplot of an error on the Y-axis for various agent types
trained on fixed and moving target and tested on fixed trajectory scenario.

FIGURE 6. Boxplot of an error on Z-axis for various agent types trained
on fixed and moving target and tested on fixed trajectory scenario.

TABLE 5. Summary of the errors in Y and Z for F and FM training types
and the different types of the agents for fixed target testing.

1) STATISTICAL RESULTS
Similarly, the tracking performance of the square trajec-
tory scenarios conducted by the object observed from
Figures 8, 9, 10, and 11 show that the best-achieved tracking
performance was accomplished by MLAE for the F-agent,
with an accumulated error in Y and Z close to 50. On the other
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FIGURE 7. Time response of the scenario of one example fixed target
scenario for the best agent.

side, the maximum error has occurred by the PD, showing
an error of approximately 300 in Y and Z. Additionally,
a decline in the performance for the FM agents with the
well-accomplished performance of MLA and the least per-
formance of CE was observed. The median values of the
errors are shown in Table 6, demonstrating that MLAE has
generated an error of 43 and 54 in Y and Z, respectively.
In addition, good tracking performance in the time-series
graph in the table for the MLAE model is visualized.

FIGURE 8. Boxplot of an error on Y-axis for various agent types trained
on fixed target and tested on square trajectory scenario.

2) TIME SERIES RESULTS
For visualizing the dynamic behavior of the tracking, the
time series of the UAV compared with the target in Y and
Z is provided in Figure 12. The tracking shows less deviation
between the two-time series, showing good tracking perfor-
mance despite the cases of sensor failures in detecting the tag,
which is represented by pulses in the bottom graph.

C. BLINKING TARGET
The final testing scenario was conducted on the blinking
target, which explores the dynamic aspect of the tracking
performance when the target moves in a disconnected way.

FIGURE 9. Boxplot of an error on Z-axis for various agent types trained
on fixed target and tested on square trajectory scenario.

FIGURE 10. Boxplot of an error on Y-axis for various agent types trained
on fixed followed by moving target and tested on square trajectory.

FIGURE 11. Boxplot of an error on Z-axis for various agent types trained
on fixed followed by moving target and tested on square trajectory
scenario.

1) STATISTICAL RESULTS
The statistical results of the simulation experiments were
also conducted for the blinking target. As observed in
Figures 13, 14, 15, and 16, the least generated error on Y
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TABLE 6. Summary of the errors in Y and Z for F and FM training types
and the different types of the agents for square target testing.

FIGURE 12. Time response of the scenario of one example square target
scenario for the best agent.

was 51 for the CAE agent, and the least generated error on Z
was 52 for the MLE agent in the case of the F-trained agent.

On the other side, the least generated error on Y was 60 for
the CAE agent, and on Z, it was 56 for the CE agent in the case
of the FM trained agent. This indicates the superiority of the
CAE performance at blinking-targets tracking. In addition,
observing the behavior of the boxplot, the testing of the FM
trained agents has resulted in a longer box, which shows less
stability than the case of testing on the F-trained agents. The
median values of the errors are shown in Table 7.

2) TIME SERIES RESULTS
The tracking response of one scenario from the experiments
of the best accomplishing agent with respect to both Y and
Z signals is visualized in Figure 17. The results show that
within 5 seconds, the UAV was capable of maintaining min-
imum error on both Y and Z with respect to the target.
In addition, the UAV was not affected by the frequent sensor
failure that occurs because of the reduced quality of the UAV
camera as it is considered as a cheap sensor.

FIGURE 13. Boxplot of an error on Y-axis for various agent types trained
on fixed target and tested on blinking target scenario.

FIGURE 14. Boxplot of an error on Z-axis for various agent types trained
on fixed target and tested on blinking target scenario.

FIGURE 15. Boxplot of an error on Y-axis for various agent types trained
on fixed followed by moving target and tested on blinking target scenario.

D. CROSS ANALYSIS
Comparing the various models based on both F agent and
FM agent for the fixed scenario, it is found that MLAE has
accomplished the least errors for F agent, 39 and 51 for Y
and Z respectively, while MLA has accomplished the least
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FIGURE 16. Boxplot of an error on Z-axis for various agent types trained
on fixed followed by moving target and tested on blinking target scenario.

TABLE 7. Summary of the errors in Y and Z for F and FM training types
and the different types of the agents for blinking target testing.

FIGURE 17. Time response of the scenario of one example blinking target
scenario for the best agent.

error for FM agent in Y which is 65 and the second least
in Z which is 114. The same was observed for the moving
scenario. However, the superiority of MLAE and MLA was
not found for the blinking scenario. This is interpreted by
the difference between training an agent using standard fixed

or moving scenarios on one side and training on random
movement (blinking) on the other side. The latter is more
challenging in providing represented knowledge to the agent.

E. LEARNED LESSONS
It was observed from the three sets of scenarios that the
developed RL based tracking improves the performance of
the moving scenarios. This improvement is accomplished
by minimizing the distance between the target and UAV,
considering the dynamical variables such as velocity and
acceleration, and capturing the behavior of target mobility.
Additionally, the multi-level rewarding based training (MLA)
based on position, followed by velocity and acceleration,
ismore beneficial for improving the learning of the dynamical
behavior based on RL than combining the three variables in
one rewarding function. Also, it was observed that the piece-
wise rewarding function or achievement rewaeding (CA) is
useful for increasing learning effectiveness for dynamical
behavior such as tracking than the simple continuous reward-
ing function. Lastly, the agent selection algorithm helps
avoid overfitting, resulting from a higher allocated number
of episodes for training.

V. CONCLUSION AND FUTURE WORKS
In this article, a novel algorithm for target tracking using the
UAV is presented. The algorithm uses a recently developed
agent architecture of RL, named TD3. The agent is respon-
sible for Y and Z control, whereas the third dimension, x, is
controlled by the PID controller. This is by considering that
the target only moves within y and z dimensions. The state
contains the relative position and velocity between the UAV
and the target. The actions are responsible for changing the
acceleration of y and z. The reward was formulated based
on three terms: position, velocity, and acceleration reward-
ing. The training was carried out based on two concepts:
single-stage and combinatory rewarding of the three terms
and multistage rewarding based on position, velocity, and
acceleration one after the other. In addition, two methods
were used for training: 1-fixed target training to produce
the F-agent 2-fixed, followed by moving target training to
produce the FM agent.

Two developments were added: (1) exponential factor was
added to the velocity and acceleration terms to limit their
effect on the policy surface, and (2) achievement rewarding
to add more stability to the performance. The evaluation
was based on three testing scenarios: fixed target, square
trajectory target, and blinking target. The results showed
that the best-accomplished performance was achieved by the
multistage concept with both exponential and achievement
rewarding for the fixed trained agent in the case of the fixed
and square moving target and for a combined agent with
both exponential and achievement rewarding for fixed trained
agent in the case of the blinking target. This reveals that both
combinatory and multistage training with both exponential
and achievement when conducting the training on a fixed
target is more effective for learning. Furthermore, the role of
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the exponential term in limiting the effect on the dynamic
target, which is secondary in the learning and the role of
achievement in boosting the training and stabilizing it, are
promising concepts for developing more complicated models
of tracking. Future work should extend themodel to 3D-based
RL tracking and explore its applicability to specific real-
world applications such as target following in the military.
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