
Received December 20, 2021, accepted February 6, 2022, date of publication February 24, 2022, date of current version March 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3154364

Software Defined Radio Platforms
for Wireless Technologies
DEREJE M. MOLLA 1, HAKIM BADIS 1, LAURENT GEORGE 1,
AND MARION BERBINEAU 2, (Member, IEEE)
1Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France
2Univ Gustave Eiffel, COSYS, F-59650 Villeneuve d’Ascq, France

Corresponding author: Dereje M. Molla (dereje.molla@esiee.fr)

This work was supported in part by the I-Site Future in the Framework of the WESTERN Project, in part by the Regional Project
SMARTIES in the Framework of the Écomobilité, Logistique, Sécurité et Adaptabilité dans les Transports in Horizon 2020
(ELSAT 2020) Program Co-Financed by the European Union with the European Regional Development Fund, and in part by the French
State and Hauts de France Regional Council.

ABSTRACT Wireless connectivity standards have been developed by standardizing bodies to meet the
requirements of various applications. Awireless transceiver should be equippedwith a Radio Frequency (RF)
transceiver to support a wireless standard. Traditional RF transceivers are designed and implemented on a
radio chip or an embedded module in a System-on-a-Chip (SoC), ensuring small size, high performance,
low power consumption, and cost. However, this traditional implementation design limits directly or
indirectly the programmability and flexibility of the RF transceivers. An alternative solution to implement
RF transceivers is using Software Defined Radio (SDR) platforms. In the market, SDR platform hardware
exists with different configurations, performance, cost, size, etc., making it hard to select the minimum
SDR platform necessary to satisfy the wireless standard requirements. This paper aims to provide a list of
well-knownGeneral Purpose Processor (GPP) based SDR platforms that meet theminimum specifications of
selected wireless standards. To this end, we first review the characteristics of selected wireless technologies.
Then, we investigate existing SDR platform architecture and their maximal performance in terms of the
frequency range, bandwidth, symbol rate, bitrate, and latency support. Finally, we intersect the wireless
standard requirements with the corresponding SDR platform parameters and provide a list of GPP-based
SDR platforms for some existing wireless technology implementations. All investigations related to the
frequency, bandwidth, symbol rate, and bitrate parameters are supported by theoretical results, whereas
latency results are obtained from experiments by benchmarking existing implementations.

INDEX TERMS General purpose processor, software defined radio, transceivers, wireless technologies.

I. INTRODUCTION
The number of wireless devices used by various wireless
application domains such as Wireless Sensor Networks
(WSNs) [1], Internet of Things (IoT) [2], cellular base
stations [3], etc., has increased tremendously in the past
decade. Several wireless technologies are standardized to
enable the interconnection between the different wireless
devices including NFC, RFID, IEEE 802.15x, IEEE 802.11x,
LoRa, Sigfox, 3GPP 3G/4G/5G, etc., [3]–[5]. A wireless
device can incorporate one or multiple wireless transceivers
supporting distinct wireless technologies. Each transceiver
performs all the physical (PHY) and a portion of the Media

The associate editor coordinating the review of this manuscript and

approving it for publication was Francesco Benedetto .

Access Control (MAC) layer operations through integrated
analog and digital circuit blocks. Indeed, most of the PHY
layer analog operations are implemented on a dedicated
and integrated analog hardware such as amplifiers, radio
frequency (RF) synthesizers, filters, etc. On the other hand,
some PHY layer digital baseband and time criticalMAC layer
functions are fully implemented on a digital hardware such
as Application Specific Integrated Circuits (ASICs), a Pro-
grammable Digital Signal Processor (PDSP), Application
Specific Instruction Set DSP (DSP ASIP) or a mixed solution
using ASIC hardware accelerators with PDSP or with DSP
ASIP [6]. This traditional implementation considerably limits
directly or indirectly the programmability and flexibility of
the transceivers for upgrading or handling multiple wireless
standards. Moreover, processors of wireless transceivers

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 26203

https://orcid.org/0000-0003-4515-679X
https://orcid.org/0000-0002-1792-6198
https://orcid.org/0000-0002-3247-787X
https://orcid.org/0000-0003-3807-9669
https://orcid.org/0000-0002-9203-1642

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

are mostly proprietary which prevent programmers and
researchers from access to reprogram the instruction code.

An alternative solution to allow programmers and
researchers to easily control the hardware and program the
software of wireless transceivers is to use an implementation
based on general-purpose processor (GPP) based Software
Defined Radio (SDR) platforms, which is a reconfigurable
and reprogrammable radio transceiver. In such platforms, the
PHY layer digital baseband and MAC layer operations are
implemented on a GPP, and the PHY layer analog RF/IF
front-end operations are controlled using an analog device
board supporting a wide range radio spectrum. This solution
have been explored by many researchers to investigate the
architecture, challenges and compare the performance of
several SDR platforms [7]–[9]. In addition, as the PHY and
MAC layers are performed in software by GPP host and due
to the reconfigurability and reprogrammability of the radio
transceiver, the SDR platform can be used to implement
multiple wireless technologies. Such benefit has been
exploited in many recent research works such as [10], [11].
These benefits conjugated with the continuous advancement
in processing performance (hardware and software) and
decreasing price of GPPs made GPP-based SDR platforms
gain much attention for implementing and testing wireless
technologies [12]–[16]. Moreover, it is also used to build
testbeds and/or perform experimentation to study different
features of communication systems and suggest performance
improvement [17]–[19].

Currently, several SDR platforms are available in the
market and research community. To implement a desired
wireless technology, an appropriate SDR platform need to
be selected. Previous research works such as [7] and [9]
have presented the challenges during SDR platform selection
process and compared the performance of SDR platforms in
the general context. However, they abstain from addressing
the specific considerations required by SDR platforms
based on the requirement of wireless technologies. This
problem is slightly addressed by other researchers and
developers in two different perspectives, by designing a
custom SDR architecture suited to a specific implementation
such as [20]–[22], and/or providing list of recommended
requirements to implement a certain wireless technology.
Regarding the latter case, the recommendations are usually
provided by SDR platform software implementations such
as Software Radio Systems (SRS) [14], OpenAirInterface
Software (OAI) [23], gr-IEEE-802.15.4 [15], gr-LoRa [24],
etc. However, these recommendations are essentially formu-
lated after multiple experimental tests. Nevertheless, as the
experimental tests are not exhaustive, the recommended SDR
platforms may be over-dimensioned and thus the minimal
necessary configuration (carrier frequency and bandwidth,
clock rate, communication interface support, GPP cores,
GPP processing power, software architecture, etc.), can be
exceeded.

The aim of this paper is to provide a list of possible
GPP-based SDR platforms in terms of hardware components

satisfying the minimum specifications of well-known wire-
less technologies. This is achieved by analyzing what
a wireless technology requires at minimum in terms of
frequency range, bandwidth, symbol rate, bitrate and latency,
and the performance offered by GPP-based SDR platform
components. The contributions of this paper can be summa-
rized as:
• we present a detailed study of the architecture of
GPP-based SDR platforms, and analyze their capabili-
ties in terms of the performance metrics;

• we drive the minimum performance requirements
of the most relevant wireless technologies. We use
these requirements to draw mapping conditions in
order to determine which GPP-based SDR platform is
appropriate to successfully perform a targeted wireless
technology;

• we identify existing wireless technology implemen-
tations from the literature that use GPP-based SDR
platforms, examine their performance metrics, and
suggest a list of other possible SDR platforms to
implement the use-cases described in the literature.

Thus, the in-depth analysis of selected wireless technologies
and SDR platforms allows researchers from both academia
and industry to easily understand required parameters,
software and hardware components of SDR platforms.
We believe this paper will help researchers (SDR platform
users and SDR software developers) looking for the appropri-
ate SDR platform to implement a given wireless technology.
To the best of our knowledge, this paper is the first to perform
mapping several wireless technologies with GPP-based SDR
platforms.

This paper is organized as follows: Section II provides
classification and characteristics of well-knownwireless con-
nectivity technologies. Section III discusses the architecture
of GPP-based SDR platforms and provides general back-
ground on the hardware and software components. Section IV
provides a detailed study on the performance parameters of
GPP-based SDR platforms and presents numerical results
using selected GPP-based SDR platforms. Section V presents
a mapping between SDR platform performance and wireless
technology requirements. Open research challenges and
future directions are given in section VI. Finally, section VII
provides conclusions to this paper.

II. WIRELESS CONNECTIVITY TECHNOLOGIES
The interconnection between different wireless devices is
enabled by a wide range of wireless technologies that can
cover from very short distance (in centimeter range) to several
kilometers. Thus, wireless connectivity technologies can
mainly be classified into three groups based on the range they
cover [25]: i) short-range wireless technologies, ii) Wireless
Local Area Networks (WLANs), and iii) Wireless Wide Area
Networks (WWANs).Within each of these categories, several
wireless technologies are standardized, as shown in Fig. 1.
The subsequent subsections present the main PHY and MAC
layer characteristics of major wireless technologies. We note

26204 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 1. Characteristics of short-range wireless technologies.

FIGURE 1. Wireless technologies.

that, the frequency requirement of wireless technologies
stated in the tables is given based on their standard. However,
the specific frequency band used by a wireless technology
depends on its allocation for global and regional use and also
countries regulation [26].

A. SHORT-RANGE WIRELESS TECHNOLOGIES
Short-range wireless technologies include proximity com-
munication, Wireless Body Area Networks (WBANs) and
Wireless Personal Area Networks (WPANs). They are mainly
characterized by their short-range coverage operating under
the unlicensed industrial, scientific and medical (ISM)
frequency bands. International Organization for Standardiza-
tion(ISO)/International Electrotechnical Commission (IEC)
defines the PHY and MAC layer requirements for proximity
technologies, and IEEE defines for WBAN and WPANs.
Some of the most prominent wireless technologies are Near
Field Communication (NFC), Radio Frequency Identification
(RFID), IEEE 802.15.6 (NB PHY, UWB PHY and HBC
PHY), IEEE 802.15.1, and IEEE 802.15.4. IEEE also
defines the PHY and MAC layer for Low-Rate WPAN to
meet the limited resource requirement of IoT and WSN
devices. Among these standards are IEEE 802.15.4 and
Bluetooth Low Energy (BLE), which are developed for

networks with low power consumption, low deployment
cost and less complexity. Table 1 gives the PHY and MAC
layer characteristics of some of the short-range wireless
technologies.

B. WIRELESS LOCAL AREA NETWORK - WLAN
WLAN is mostly designed for wireless connectivity covering
less than one kilometer range. Different standards falling
under this group include IEEE 802.11b, IEEE 802.11a/g,
IEEE 802.11n, IEEE 802.11ac/ax, IEEE 802.11ah and IEEE
802.11p. The first four standards (IEEE 802.11a/b/g/n/ac)
are the most popular wireless standards used by WiFi
[32], [33]. They are high bandwidth technologies that sup-
ports the communication of bandwidth-intensive applications
like streaming video, and enable wireless gateways with a
high-speed interface to relay traffics requiring large band-
width and IP connectivity [34]. Other standards promising for
IoT and WSN deployment due to their low power and long
range wireless communication support are IEEE 802.11ah
(WiFi-HaLoW) [35] and IEEE 802.11p [36]. IEEE 802.11ah
defines PHY and MAC layer specification for large scale
sensor networks and extended range hotspot. It operates in
the subGHz ISM bands. IEEE 802.11p is an amendment
of 802.11 standard that operates in the 5.9 GHz band and
offer wireless connectivity between mobile vehicles (and/or
vehicles and roadside units) and designed to guarantee low
latency [36]. Table 2 enlists their PHY and MAC layer
characteristics.

C. WIRELESS WIDE AREA NETWORK - WWAN
WWANs are meant for large area coverage in the order
of kilometers. The wireless communication technologies
standardized for such wide coverage have mainly two
groups: cellular networks such as 2G, 3G, 4G and 5G;
and Low Power Wide Area Networks (LP-WANs). The
latter also has two groups: licensed and unlicensed. The
licensed LP-WAN consists of Narrow-Band IoT (NB-IoT),
Enhanced Coverage-GSM IoT (EC-GSM-IoT) and Long

VOLUME 10, 2022 26205

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 2. Characteristics of WLAN standards.

TABLE 3. Characteristics of WWAN standards.

Term Evolution for Machine Type Communication (LTE-M).
They are upgrades of cellular communication technologies
for IoT applications. Unlicensed LP-WAN includes Long
Range (LoRa), Sigfox, etc., [37]. LP-WAN technologies
are designed for Machine-to-Machine (M2M) and IoT
applications that need to forward small payload data at low
data rate and low power consumption [38], [39]. The cellular
technologies (2G, 3G, 4G, and 5G), on the other hand,
consume a lot of device energy which may cause a negative
impact on low-power IoT devices. However, they are useful
for IoT gateways or IoT devices running bandwidth-intensive
applications. Table 3 quantifies the requirements of cellular
and LP-WAN technologies.

III. GPP-BASED SDR PLATFORM ARCHITECTURE
The implementation design of conventional wireless
transceivers, in general, lacks reprogrammability, flexibility
and scalability. Therefore, upgrading the software, changing
the logic of the dedicated hardware or reusing the transceiver
to implement a wireless standard other than the one the
transceiver was designed for is limited or non-existent.
Moreover, conventional wireless transceivers are mostly
proprietary which prevent developers and researchers
from access to reprogram the assembly instruction set.
An alternative solution to mitigate these limitation is
using SDR platforms. In addition to the programmability
feature, the SDR platform also serve as a multi-technology
gateway by performing multiple wireless technologies using

a common set of radio transceiver [10], [11]. It also allows to
reuse software across multiple radio devices and download
software over-the-air to implement new standards and fix
bugs [8]. Furthermore, it is recently being used to mitigate
cross-technology interference problem faced by conventional
technologies [42].

An SDR platform is a class of radio transceivers which
controls the analog RF/IF part using an open-source analog
device board, named SDR device, and implements all
the digital part using programmable host processor. The
programmable host processor can be GPP, DSP ASIP or
FPGA. The scope of our study is limited to GPP-based
SDR platforms due to its easy programmability using a
high-level language and its flexibility for reconfiguration and
handling complex algorithms [9]. The general architecture of
GPP-based SDR platform is illustrated in Fig. 2. It is mainly
sectioned into three parts as SDR device, communication
interface andGPP host. Each component of the platform has
its communication parameters that contribute to the overall
performance of the SDR platform. This section investigates
the GPP-based SDR platform.

A. SDR DEVICE
An SDR device is a small handheld type of device which
is capable of transmitting and receiving signals at different
frequencies. It typically consists of software controllable
analog RF/IF and digital IF front-ends. The former is called as

26206 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

FIGURE 2. GPP-based SDR platform general architecture.

TABLE 4. List of selected daughterboards.

daughterboard and the latter as motherboard. This subsection
describes their respective tasks and characteristics.

1) DAUGHTERBOARD
The daughterboard is essentially responsible to perform
analog RF/IF processing functions such as filtering, ampli-
fication, conversion of signals from RF to IF and vice-versa,
etc. It is mainly characterized by the frequency band it covers,
the analog bandwidth, RF performance, number of channels,
channel’s capability (only RX or TX/RX), mode of operation
as a half (HD) or full (FD) duplex, etc. Mainly, the operating
frequency range, width of analog bandwidth and channel’s
capability determines the scope of the daughterboard to
implement a wide range of wireless technologies using
SDR device. The daughterboard interfaces the antenna with
the motherboard. Indeed, most daughterboards integrate
multiple input/output circuits to connect multiple separated
antennas enabling simultaneous transmission and reception
capability [43], [44]. Also, daughterboards integrate analog
inputs/outputs to connect motherboard ADCs and DACs.
In the market, daughterboards are either stand-alone compo-
nent or integrated with a motherboard forming a single board.
Table 4 lists few commercially available daughterboards.

2) MOTHERBOARD
Motherboard is mainly responsible to perform digitization,
channelization and sample rate conversion (digital up/down
conversion [DUC/DDC]). To achieve these operations, moth-
erboards integrate ADCs/DACs and a DSP processor that can
be implemented using ASIC, DSP ASIP or FPGA. It also
integrates one or more communication interfaces to connect
with GPP host. It is mainly characterized by the maximum
ADC and DAC sample rates, ADC and DAC resolution, DSP
processor design and the supported communication interface.
Table 5 provides characteristics of motherboards of selected
SDR devices.

The motherboard, in SDR devices, interfaces daughter-
board with a GPP host. It exchanges baseband samples
with GPP host and IF analog signals with daughterboards.

TABLE 5. Characteristics of motherboards of SDR devices.

Actually, a received IF analog signal from a daughterboard
is first digitized by ADC to get IF digital samples and
then down-sampled through DDC to obtain baseband digital
samples. Finally, the baseband samples are transmitted to
the GPP host through an integrated communication interface.
On the reverse direction, received baseband samples are
first up-sampled through DUC to get IF digital samples and
then converted to IF analog signal by DAC. Finally, the
IF analog signal is forwarded to the daughterboard [49].
In the market, motherboards are either separate boards
containing slots to plug daughterboards or a board integrating
daughterboards.

B. COMMUNICATION INTERFACE
Data is transferred from GPP Host to SDR device and
vice-versa using wired communication interfaces. These
are based on commonly used data transfer communication
interfaces like Universal Serial Bus (USB 2.0, USB 3.0,
etc.), Ethernet (standard, fast, gigabit, etc.) and Peripheral
Component Interconnect Express (PCIe 1.x, PCIe 2.x, etc).
They consist of controllers such as Network Interface
Controller (NIC), installed in both GPP host and SDR
motherboard, to implement the communication interface
standard. The communication interface technology imple-
mented by the controller has specific characteristics defined
by standards such as the maximal supported rate, maximal
payload size, maximal cable length, etc., [50]–[52]. To allow
more flexibility in data transfer speeds, some SDR devices
include multiple communication interfaces (see Table 5).
The controllers of both SDR device and GPP host should
implement the same interface standard but not necessarily the
same version. Indeed, different versions of the same standard
may create connection between the two ends but they need to
be synchronized for efficient data exchange. In such cases,
the communication standard with the lowest rate will be
agreed by auto-negotiation (as for Ethernet [51]) or backward
compatibility (for example between USB 2.0 and USB 3.0) or
manually [53].

C. GPP HOST
A GPP host is a programmable device that can perform
computational tasks based on instructions given by software
programs using either high or lower level programming
languages. As such a GPP host combines hardware and
software, and is responsible to handle their interaction. The
subsequent sections review these components highlighting
the parts that impact the processing speed of a GPP host.

VOLUME 10, 2022 26207

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

1) HARDWARE
The GPP host components are, mostly, assembled in a single-
board. This board contains SoC internal components such
as GPP, internal memories, co-processors (GPU, DSP ASIP,
etc.), and possible controllers for communication interfaces
(see section III-B) and SoC external components such as
external memories, expansion slots, etc.

A GPP, which can be either microprocessor or micro-
controller, is responsible for performing the digital PHY,
MAC, and upper layer operations. Unlike the conventional
transceivers, it has the advantage of either high or low level
programmability without modifying the hardware. Although
it offers high user flexibility, the high-level programmability
usually results in performance degradation of the processor
to satisfy the requirements of intensive computation signal
processing tasks [54]. Indeed, the performance (processing
speed) of GPP is largely determined by a clock, where
lower clock speed implies a slow processor and less energy
consumption [55].

The GPP may be of single core or multi-core processor.
However, most GPPs currently are based onmulti-core (Dual-
core, Quad-core, etc.,) processors on a single physical Central
Processing Unit (CPU) [7]. Each core, in a multi-core single
CPU system, represents a single processor or execution
unit capable of executing processes concurrently with other
processors. This increases the number of instructions to be
processed per clock cycle. In addition to clock speed and
number of cores, system bus architecture (bus width, its clock
frequency, the number of data it can transfer per clock cycle,
etc.,) significantly affects the speed of processing [55]. The
size and level of cache a CPU has also affects the speed
of its processing. Other parameters that could affect overall
processing speed of GPP are number of threads, memory size,
number of ALUs, hyper-threading support, size of Single
Instruction Multiple Data (SIMD) units, etc. The SIMD
units allow a processor to perform simultaneously the same
instruction (operation) on multiple data units [56]. Recent
GPPs support SIMD architecture to improve performance
capabilities [57]. Table 6 provides few examples of GPP host
hardware. To achieve more computing performance, GPPs
are usually complemented with co-processors like GPU,
FPGA and DSP ASIP as accelerators [56], [58], [59].

TABLE 6. List of well-known GPP Host hardware.

2) SOFTWARE
The software part of GPP host controls the operation of the
processor, input/output traffic of communication controllers
and the SDR device. It is generally layered into three on top

of the hardware processor as instructions set, kernel space
and user space. The instruction set is defined as a group of
instructions a processor can execute. Thereby, an instruction
code (object code) generated by a compiler or an assembler
can only contain instructions from this set. The instruction
set is one of two types of instruction set architecture (ISA)
designs: Reduced Instruction Set Computers (RISC) or
Complex Instruction Set Computers (CISC) [60]. The ISA
of GPPs can be based on CISC or RISC. To exploit the
advantages of both instruction sets, modern GPPs are more
based on hybrid ISA (using CISC instructions externally,
but RISC techniques internally) [61]. Moreover, the use of
RISC architecture can also be enhanced by adding Very Long
Instruction Word (VLIW) extensions, a technique that offer
instruction level parallelism [62].

The middle layer of the software system architecture is
the kernel. It is the heart of an operating system (OS),
linking the user space with the hardware processor [63].
To interact with the hardware, the kernel includes hardware
drivers such as processor driver, hard disk driver, network
controller driver, etc. To interact with user space, the kernel
includes Application Program Interface (API) allowing
programs in user space to access system resources (e.g.,
file systems, GPP time, virtual memory, etc.,) and services
(e.g., scheduling, swapping, interrupt request (IRQ) handling,
context switching, etc). It is precisely these services that
impact the kernel space performances in terms of latency and
overhead. To reduce the latency, additional functions such
as the IRQ handler, process scheduling, reducing number
of context switches, etc., are required. On the other hand,
kernel overhead is the time due to managing resources such
as GPP time, memory, disk, etc. The increased overhead often
results in reducing theGPP time occupation and consequently
the GPP throughput. As reducing the kernel latency requires
additional functions, the kernel overhead will increase. It is
obvious that a trade-off between kernel latency and GPP
throughput exists, and a balance should carefully be designed
as per user need.

At the top of software system architecture is the user
space that consists of a portion of memory in which user
applications are executed. Hereby, the user applications
are PHY and MAC functions of the wireless technologies.
The user applications are mostly written using high-level
programming languages like C, C++, Java, Python, Matlab,
etc. It is also possible to generate the user applications code
via data flow textual/graphical programming languages like
G programming, Python, C++, etc. These programming
languages (high-level and data-flow) are generally included
in software development toolkits such as GNU Radio [64],
LabVIEW [65], Matlab [66], etc. The toolkits provide
DSP libraries for DSP functions, libraries for runtime and
compilation, graphical tools for creating signal flow graphs
and generating flow-graph source code, etc.

The user application compiler is an element of most
importance in assisting the processor to achieve high
performance in speed and execution time. It is responsible

26208 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

for generating the instruction code using the ISA of the
target processor. When a large variety of target processors are
supported, the compiler is said to be general (like the GNU
Compiler Collection (GCC) [67]). The general compilers also
implement optimizations to improve the GPP performance by
increasing the parallelism levels through three mechanisms:
instruction-level parallelism (ILP) which allows multiple
instructions to be executed at the same time, thread-level
parallelism (TLP) which allows multiple threads to run
simultaneously or pseudo-simultaneously on single/multiple
cores, and data-level parallelism (DLP) which enables per-
forming multiple data-elements simultaneously. This entails
an optimal source code generation in size and execution time,
according to the target processor. Examples of optimizations
are automatic vectorization [68], automatic parallelization
[68], [69], inter-procedural optimization [70], and SIMD
intrinsics (assembly-coded functions [71]). Table 7 lists
well-known software implementation toolkits.

TABLE 7. Software development toolkits.

IV. SDR PLATFORM PERFORMANCE ANALYSIS
To implement a wireless technology on SDR platforms or
use existing implementations, it is necessary that the selected
SDR platform (SDR device, communication interface and
GPPHost) performance should meet at least the requirements
of the target wireless technology. These requirements are
mainly given in terms of operating frequency band, band-
width, symbol rate, bitrate, latency, etc. In this section, a thor-
ough theoretical analysis of these performance parameters
in GPP-based SDR platform architecture is presented along
with the minimal/maximal values offered by the components.

A. FREQUENCY BAND
The frequency band of SDR platforms is the operating
frequency range covered by the SDR device. This is deter-
mined at the daughterboard from the local oscillator (LO)
signals generated by the frequency synthesizer, such as
Phase-Locked Loop (PLL) synthesizer. Large frequency band
needs large LO frequency range, and consequently wideband
frequency synthesizers. The operating frequency band of
SDR devices are listed by the used daughterboard’s datasheet
(see Table 4 for well-known daughterboards). To cover the
range of frequency bands supported by daughterboards, SDR
device’s need to use appropriate type of antenna [74].

B. BANDWIDTH
Any analog or digital signal has a bandwidth defined as the
occupied range of frequencies carrying most of its energy.
This range varies at each stage of the signal chain. Hence,
it can be expressed differently (but related) according to the

FIGURE 3. Bandwidth at each block of SDR-GPP signal chain.

signal processing stage. Indeed, at the RF front end stage,
it is expressed as the analog bandwidth or RF channel width.
At the ADC/DAC stage, it is expressed as the DAC/ADC
sample rates. When the signal is processed at the digital
front end (DFE) stage, its bandwidth is expressed as the DFE
sample rate. On the communication link between theDFE and
GPP, the bandwidth is limited by the communication interface
speed. At the GPP host, the bandwidth is expressed as the
symbol rate. Fig. 3 illustrates the main points in the signal
chain where the bandwidth of SDR platform is characterized.
In this section, we examine the analog bandwidth, ADC/DAC
and DFE sample rates. Sections IV-C, IV-D and IV-E will
address the interface speed, symbol rate and bitrate.

1) ANALOG BANDWIDTH
This bandwidth, measured in Hz, is determined by the RF
front end (daughterboard) of the SDR device. It is configured
mainly by the analog baseband low pass filter (LPF) to vary
from 0 Hz to the specified cut-off frequency, fcut. Thus, in a
direct-conversion (Zero IF) I/Q modulator [75] both at the
transmitter and receiver side, the analog bandwidth at RF
front end is determined by the LPF and its fcut. It is equal to
twice fcut for Ideal LPFs that completely eliminate (attenuate)
all frequencies above the fcut. The excess bandwidth, defined
as the transition band in LPF datasheets [76], of an Ideal
LPF is null, and hence its Roll-off factor (ratio between
passband and transition band) is null. In real-world, practical
LPFs are not perfect and have a transition region where some
high frequencies above the fcut can pass. Consequently, the
real analog bandwidth is greater than twice fcut and can be
formulated as follows:

Real Analog bandwidth = (2× fcut)× (1+Roll-off factor)

(1)

where the Roll-off factor is in the range [0,1]. Equation (1)
assumes signals spectra that would occur after theoretical
cut-off point. Thus, the Roll-off factor shifts the bandwidth
towards the transition band so that we can minimize loss of
information.

Most of the LPFs are programmable and can take different
fcut values where each fcut is assigned a roll-off factor. The
maximal real analog bandwidth is achieved by the highest
fcut scaled by [1 + Roll-off factor]. Table 8 summarizes the
analog bandwidth as theoretically computed from (1) and the
maximal ideal analog bandwidth (twice fcut) as indicated on
the daughterboard’s datasheet.

2) ADC/DAC SAMPLE RATE
The DAC sample rate, given on Samples per Second (S/s),
allows to determine the time interval between two samples

VOLUME 10, 2022 26209

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 8. Maximal analog bandwidths of SDR devices.

TABLE 9. Analog bandwidth and ADC/DAC sample rates.

applied to the input of a DAC. The ADC sample rate
determines the time interval between two samples at the
output of an ADC. Both sample rates are related to the
input signal spectrum by the Nyquist-Shannon sampling
theorem [77]. Theoretically, for a given ADC/DAC sample
rate, the maximum frequency that can be reproduced is
half the sample rate (Nyquist frequency) to avoid aliasing
effect. As the maximum frequency of an equivalent complex
baseband (a complex valued representation of the real
baseband) is [real analog bandwidth / 2], the sample rate
needs to be greater than the real analog bandwidth (see (1)).
The more sample rate is greater than the real analog
bandwidth, the more the band gap increases between the real
analog bandwidth copies repeated at multiples of sample rate
resulting on zero-loss on bandwidth. This band gap has an
amount of [ADC sample rate – real analog bandwidth] Hz.

In motherboard of SDR devices, the integrated ADC/DAC
can support one or multiple sample rates where one at a time
can be selected. The highest sample rate value determines
the largest analog bandwidth. Table 9 shows the supported
sample rates by well-known SDR devices. This table also
shows whether the SDR device has fixed or selective sample
rates. Using selective sample rate is preferable than fixed
rate to adapt the real analog bandwidth to the necessary
bandwidth asked by applications’ rate requirement and
expressed by the DFE sample rate (see section IV-B3). When
the nearest sample rate is greater than the DFE sample rate,
an adjustment through interpolation and decimation process
is necessary [49].

3) DIGITAL FRONT END (DFE) SAMPLE RATE
This rate, given on Samples per second (S/s), defines the
constant speed by which I/Q samples are exchanged between
the DUC/DDC (interpolation/decimation) stages and the
interface controller. It can be specified either explicitly by
the user or implicitly from the real analog bandwidth of
the channel. The sample size (in bits) is determined by the
DAC/ADC resolution. At the transmitter side of an SDR

FIGURE 4. DFE sample rate (Digital Up Converter).

FIGURE 5. DFE sample rate (Digital Down Converter).

device, arriving I and Q data samples from the GPP host
(in a format configured by the user, e.g., 32-bit float) join
their corresponding queue waiting for service by the DFE.
The arrival rate at the queue is constant over time and is
determined by the bitrate of GPP host. The interpolation
stage of the DFE retrieves samples from the queue at DFE
sample rate, which is the service rate of the queue system.
As the DFE sample rate can take very high values, it is
extremely important that the arrival and service rates should
be equal after normalization to avoid waiting for the queues to
become non-empty (underflow). Then, the interpolation stage
increases the DFE sample rate of input samples to higher
output rate equal to the DAC sample rate (see Fig. 4). The
applied interpolation factor is equivalent to the ratio of the
DAC sample rate to the DFE sample rate.

At the receiver side of an SDR device, as shown in Fig. 5,
the DFE receives samples at a speed of ADC sample rate.
It performs decimation to decrease the input ADC sample
rate to a lower rate equal to the DFE sample rate. The applied
decimation factor is equivalent to the ratio of ADC clock rate
to the DFE clock rate. The output samples are, then, inserted
into the I/Q queues waiting to be transmitted to the GPP
host. A queue overflow occurs when the GPP host cannot
retrieve samples as fast enough. As in the transmitter side,
it is extremely important that the DFE sample rate be close to
the bitrate of GPP host.

From the above discussion, as the DFE sample rate should
be close to the bitrate of GPP host, it can be used to define
the necessary channel bandwidth required by user application
in the GPP host. Since the necessary channel bandwidth is
included in the real analog bandwidth (see section IV-B1),
the DFE sample rate should be smaller than the real analog
bandwidth. Also, the DFE sample rate should be increased or
reduced to fulfill the DAC and ADC clock rates. Some SDR
devices require a strictly-integer interpolation and decimation
factors, and it is strongly desirable for that factors to be even
and it’s much better if the factors are in power of two [78].
Thus, specifying appropriate DFE sample rate is another
requirement to be considered by the user.

26210 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

4) THE MAXIMAL GPP-BASED SDR PLATFORM BANDWIDTH
Since GPP-based SDR platform’s bandwidth is concave,
it takes the lowest value between analog bandwidth,
ADC/DAC sample rate and DFE sample rate. The maximal
DFE sample rate is achieved when its value reaches to
ADC sample rate and DAC sample rate at unity decimation
and interpolation factor, respectively. However, as stated
above, DFE sample rate cannot be greater than real analog
bandwidth. Consequently, the maximal GPP-based SDR
platform bandwidth (in Hz) is the minimum from maximal
DFE sample rate and analog bandwidth.

C. COMMUNICATION INTERFACE SPEED
This speed, given in bit per second (bit/s), refers to the PHY
layer net bitrate of the wired interface between GPP host and
SDR device. The PHY layer net bitrate defines the amount of
transferred bits, excluding the PHY layer protocol overhead,
per second over a communication link. Obviously, its value
(specified by the standard) is less than the real transmission
rate defined at the PHY layer gross bitrate that includes the
PHY layer overhead (channel coding, modulation, physical
framing, guard interval, etc). For example, the PHY layer
net bitrate of the Gigabit Ethernet is 1 Gbit/s and the
real transmission rate is 1.25 Gbit/s due to the 8B/10B
encoding [79]. Since I/Q samples, exchanged between GPP
host and SDR device, are encapsulated in frames of the used
interface, their rate is limited by the communication interface
speed. In the upcoming discussion, the I/Q sample rate is the
equivalent of DFE sample rate defined in bit/s and related by
[DFE sample rate × I/Q symbol format].
The communication interface speed, despite it excludes

the PHY layer protocol overhead, it includes upper layer
protocols head such as link layer head, network layer head,
etc. Based on this remark, the peak (maximum achievable)
rate of encapsulated I/Q samples (useful data rate) is limited
by the communication interface speed weighted by a factor
of [payload size / data link frame size], known as the link
efficiency. Higher the link efficiency, closer the peak I/Q
sample rate to the communication interface speed. The peak
I/Q sample rate is an instantaneous rate that doesn’t consider
link occupancy. Consequently, its value will be very large
to be taken as an acceptable upper bound, otherwise the
real I/Q sample rate will be under-constrained. Thus, it is
necessary to include the link occupancy on the upper bound
to get the maximal acceptable I/Q sample rate (or maximal
acceptable DFE sample rate). To do so, the peak I/Q sample
rate weighted by the link occupancy, expressed as [peak I/Q
sample rate × link occupancy], will give us the maximal
acceptable I/Q sample rate. Henceforth, we limit the I/Q
sample rate or DFE sample rate by the maximal acceptable
I/Q sample rate.

The maximal acceptable I/Q sample rate is affected
by three factors: the communication interface mode, GPP
host application mode and SDR device capability. The
communication interface between the GPP host and SDR

device motherboard can work in either half or full duplex
modes. With full-duplex interface mode, the communication
link can simultaneously be fully occupied in both directions
(Host→SDR and SDR→Host) allowing to benefit from
full-speed on each direction. In this case, the transmit and
receive links have independent occupancy of up to 100%
each at any time. With half-duplex interface mode, the
communication link is used to either exclusively transmit
or receive. In this case, the link occupancy is shared so
that transmitting and receiving occupancies are 100%’s
complement. One could think that full-duplex interfaces
always achieve highest performance but in reality it depends
on the GPP host application and SDRmotherboard capability
(half or full-duplex transceiver). Indeed, half and full duplex
interfaces can have similar performance when:
• The GPP host application is one-way communication.
So, using either half or full duplex is the same, as the
communication needed is only to transmit or receive.
This implies the link occupancy of the used direction
can attain 100%, allowing a maximal acceptable TX or
RX I/Q sample rate equal to the peak rate (on the used
direction) and always null on the other direction. Thus,
using only half-duplex interface is sufficient when the
GPP host application is one-way communication;

• The GPP host application is non-overlapped two-way
communication. Both directions between SDR device
and GPP host cannot be used simultaneously since
transmission and reception are separated in time. So,
the occupied time for transmission doesn’t consume the
time of reception and vice versa. Consequently, the sum
of TX and RX link occupancies can go to 100% allowing
a maximal acceptable TX rate of [peak rate × TX link
occupancy] and maximal acceptable RX rate of [peak
rate × (1 − TX link occupancy)]. Thus, using only
half-duplex interface is sufficient when GPP host user
application is non-overlapped two-way;

• The SDR device is half-duplex. As SDR device can
either receive or transmit, only single direction on the
link between SDR device and GPP host is solicited.
Such SDR device capability is suitable for GPP host
user applications using one-way communication or two-
way communication without temporal overlap between
transmission and reception. Since only single direction
is being used, its link occupancy can go to 100%
allowing a maximal acceptable rate equal to the peak
rate (null for the unused direction). Hence, using only
half duplex interface is sufficient for one-way and non-
overlapped two-way communications when SDR device
is half duplex.

Full-duplex interfaces become necessary when the GPP
host user application is temporally overlapped two-way
communication. In addition, SDR devices should also be
full-duplex. In this scenario, TX and RX link occupancies
are independent and can simultaneously go to 100%. Now,
the maximal acceptable TX and RX rate can attain the peak
I/Q sample rate. Table 10 shows the maximal supported I/Q

VOLUME 10, 2022 26211

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

sample rates of Host-SDR interface solutions for both full and
half-duplex SDR transceivers.

D. SYMBOL RATE
This rate, given in Symbol per second (Sym/s), refers to
the constant rate at which symbols occur. One symbol can
carry one or more bits according to the digital modulation
format. For example, in a BPSK system, each symbol
represents one bit; in a 64-QAM system, each symbol
represents 6 bits. Symbol rate is determined from the symbol
duration as [1 / symbol duration], where symbol duration
is the sum of the useful symbol duration and the potential
guard interval expressed as [useful symbol duration + guard
interval]. The guard interval is used between two successive
symbols to reduce inter-symbol interference that results from
multi-path fading or band-limited channels [80]. It is given
by the wireless technology specification. The useful symbol
duration is the time used to carry the useful data and is
related to the number of samples per symbol and the sampling
interval time. It can be formulated as [number of samples
per symbol × sampling interval]. The sampling interval
parameter is the inverse of the DFE sample rate, [1 / DFE
sample rate]. As the DFE sample rate for quadrature sampling
systems is equal to the occupied baseband bandwidth, the
sampling interval will be the inverse of the occupied baseband
bandwidth. The number of samples per symbol parameter can
be computed from the frequency domain based on the total
number of spectral lines [80].

The number of samples per symbol is equal to the
number of spectral lines in quadrature sampling systems
and twice in direct-sampling systems. The number of
spectral lines is related to the number of carrier/sub-carrier
frequencies. Considering quadrature sampling system, when
a conventional single-carrier modulation is applied (like in
IEEE 802.15.4, . . .), the number of spectral lines is equal to
one and hence the number of samples per symbol will be
one. When multiple sub-carrier modulation technique is used
(like in IEEE 802.11ac, . . .), the number of spectral lines is
equal to the total number of used and unused sub-carriers.
In general, the total number of sub-carriers is specified by the
used FFT size [80]. To summarize, the useful symbol duration
is expressed as [number of spectral lines / occupied baseband
bandwidth].

In some wireless systems spread spectrum techniques
such as Frequency-Hopping Spread Spectrum (FHSS), Direct
Sequence Spread Spectrum (DSSS), Time-Hopping Spread
Spectrum (THSS) and Chirp Spread Spectrum (CSS) are
used to prevent interference by transmitting symbols at low
power density over a wide band. This band is named as
spread occupied baseband bandwidth. The spreading process
is achieved by multiplying the symbols with a spreading
code, known as chip sequence, having a faster rate than
the input symbol rate (symbol rate before spreading). Thus,
the spread occupied baseband bandwidth is larger than the
original baseband bandwidth by a factor of chip sequence
size, [original occupied baseband bandwidth× chip sequence

size]. The spread occupied baseband bandwidth is always
given as the channel size of wireless systems using spread
spectrum techniques. The spreading process has no effect on
the useful symbol duration. However, as the given channel
size is the spread baseband bandwidth and not the original
occupied baseband bandwidth, the useful symbol duration
needs to be relied on the spread baseband bandwidth and the
chip sequence size. Based on the fact that the symbol duration
before spreading is [number of spectral lines / original
occupied baseband bandwidth] and the original occupied
bandwidth is [spread baseband bandwidth / chip sequence
size], the output symbol duration can be written as [number
of spectral lines × chip sequence size / spread occupied
baseband bandwidth]. It is obvious that the input and output
useful symbol duration are the same.

In general, the useful time duration with/without spreading
process can be formulated as [number of spectral lines× chip
sequence size / channel size]. Fig. 6 depicts an example of
possible single/multiple carrier and spreading/non-spreading
cases of digital baseband transmitter. Table 11 provides
equations of the symbol rate for each path-end. By applying
these equations, users can generate the symbol rate for their
desired wireless technology and can also be verified from the
corresponding specifications [31], [33], [35], [39]–[41].

FIGURE 6. Digital baseband transmitter paths.

The software programmer at user space should consider
both symbol rate and symbol format. The symbol rate can
be either explicitly set or implicitly driven from the DFE
sample rate and the number of used subcarriers. The symbol
format, on the other hand, should be explicitly specified (e.g.,
complex int16, complex int32, etc). When using a complex
int16, the I and Q samples of each symbol are coded each
by 16 bits, and so 32 bits per I/Q sample are transmitted to
the communication interface. This transmission has a rate of
[symbol rate× symbol format]. The communication interface
considers the received data as a data payload and performs its
operation related to its technology.

1) MAXIMAL SYMBOL RATE AT SDR DEVICES
From the equations depicted in Table 11, the theoretical
maximal symbol rate at SDR device can be attained when
the channel width (bandwidth) is at its maximal value, and
the number of spectral line, guard interval and chip sequence
size are at their lowest values. The highest channel width can

26212 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 10. Maximal I/Q sample rates of selected communication interfaces between GPP host and SDR transceivers.

TABLE 11. Symbol rate of transmitter paths in Fig. 6.

be set to the maximal bandwidth of SDR device; the lowest
number of spectral lines can be set to one; the lowest guard
interval can be set to zero (without guard interval) and the
lowest chip sequence size can be set to one (i.e., without
spreading). Consequently, the maximal symbol rate takes the
maximal bandwidth of the SDR device. On the other hand,
as symbols should traverse the communication interface
between the GPP host and the SDR device and vice versa, the
maximal symbol rate at the SDR device is bounded by the
communication interface speed (after normalization). This
latter value is given by [(interface speed × link efficiency ×
link occupancy) / symbol format] in Sym/s. Since, we have
two theoretical upper bounds, the maximal symbol rate
will take the minimum value between them, i.e., minimum
(maximal bandwidth of SDR device, [(interface speed× link
efficiency× link occupancy) / symbol format]). See Table 13
in subsecion IV-D3 for the maximal theoretical upper bound
of the symbol rate at SDR devices.

2) MAXIMAL SYMBOL RATE AT GPP HOST
In GPP-based SDR platforms, all symbols are either gen-
erated or consumed by GPP host. Therefore, GPP host can
impact the maximal symbol rate supported by the platforms.
To determine the maximal speed at which symbols are
generated or consumed at a GPP host, a continuous data
transmission/reception without MAC operations, physical
framing, channel coding and spreading is considered. Con-
sequently, the executed physical layer in software should
incorporate only bit generator and digital modulator blocks

at the transmission side (baseband TX path); or bit sink and
digital demodulator blocks at the receiving side (baseband
RX path). Hence, only Bit stream and Digital Modulator
blocks in Fig. 6 are used to determine the upper bound of
symbol rates supported at GPP hosts.

Each symbol generation/consumption requires a time
duration in the baseband TX/RX path, when inverted gives
the symbol rate. This duration represents the makespan
(execution time) of an executable file, created after compiling
the TX/RX path blocks, from generating a stream of bits to
delivering the corresponding output symbol or from taking a
symbol as input and delivering its corresponding bits. Several
hardware and software parameters of the GPP host impact
the makespan. The hardware parameters include: number of
cores, speed of cores, ISA design, pipeline stages, caches,
accelerators, hyperthreading support, SIMD support, etc. The
software parameters include: user program quality, compiler
optimization to enhance the degree of ILP/TLP/DLP, user
threads and their degree of TLP, kernel type (non-preemptive
and preemptive) and its operations (scheduling, context
switching, etc). Multiple parameters can be merged into
some big factors such as the minimum number of cycles per
instruction (CPI), the number of executed instructions and
overheads (due to kernel and memory access operations).
The minimum execution time supported by GPP hosts to
generate/consume one symbol is achieved when the number
of input/output symbols reaches a threshold value (K) to fully
benefit from the high degree of parallelism (ILP/TLP/DLP).
Above this threshold value, the execution time will increase
due to the high CPU load and overhead. Thereby, the minimal
makespan can be formulated as in (2):

makespan

=

[I
K
× Inf CPI× T ×

1
of cores× 2HT

+ Overhead
]
(2)

where I is number of executed instructions to gener-
ate/consume K symbols, Inf CPI represents the lowest
CPI, T is clock cycle duration given by 1

GPP clock speed , and
2HT = 2 if hyperthreading or 1 otherwise.

VOLUME 10, 2022 26213

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 12. Maximal symbol rate at GPP host.

Using (2), numerical results are conducted and illustrated
in Table 12. Some parameters such as the threshold number
of symbols K and the number of executed instructions are
obtained from experimental data by benchmarking specific
functions. To this end, a baseband TX/RX python program
is written using GNU Radio software. This program includes
source/sink and digital modulator/demodulator. To cover the
various types of baseband processing in multiple wireless
technologies, different modulation formats are considered
such as GFSK, GMSK, BPSK, QPSK, 8-PSK, 16QAM,
BPSK OFDM-64 (BPSK with 64-point IFFT), QPSK
OFDM-64, and 16QAMOFDM-64. By running the baseband
TX/RX python program on different GPP hosts based on
Intel core processor, the maximum number of supported
symbols (K) that achieves the lowest makespan per symbol
is examined. An average maximum value equivalent to fifty
six million symbols is obtained. At this threshold value, other
parameters such as the total number of instructions, Inf CPI
and overhead were also recorded via perf stat tool [81].

The results depicted in Table 12, show the minimal
makespans and maximal data symbol rates supported by
different GPP hosts according to the applied digital mod-
ulator. As the consecutive transmit or receive symbols are
independent of each other, a high degree of parallelism
ILP/TLP/DLP is expected. Thus, GPP hosts having more
cores with faster clock speeds and hyperthreading support
achieve higher symbol rates by fully exploiting the paral-
lelism. It is important to note that hyperthreading can enhance
performance when TLP is very high, otherwise, it might
create negative impacts.

3) MAXIMAL SYMBOL RATE SUPPORTED BY GPP-BASED
SDR PLATFORMS
The maximal symbol rate supported by a given GPP-based
SDR platform corresponds to the smallest value between the
maximal symbol rate at the used SDR device and at the GPP

host. Table 13 gives the maximal symbol rates supported by
selected GPP-based SDR platforms according to the type of
digital modulation. As the table depicts, for small modulators
such as GFSK and GMSK, the maximal symbol rate of the
SDR platform is generally limited by the symbol rate of
SDR devices, except when X310 is used as SDR device and
hyperthreading is enabled for high core and faster clock speed
hosts. As the modulator goes higher, the symbol rate starts to
be limited by the rate of theGPP host. This is true specially for
lower GPP core and slower clock speed. On the other hand,
when hyperthreading is disabled, the symbol rate of the SDR
platform is mostly limited by the rate of the GPP host for
lower core and slower clock speeds. At higher GPP core and
clock speed, specially for 8 core and 3.6 GHz host, the SDR
platform symbol rate is limited by the symbol rate of the SDR
device except for X310 and Lime.

E. BITRATE
This rate, given by bits per second (bit/s), refers to the
net bitrate at which data is transferred between the MAC
sublayer and the PHY layer of the wireless technology, both
implemented in software. It includes the user data and all
headers from the application layer to the MAC sublayer.
This rate can be expressed based on the wireless PHY layer
gross bitrate by excluding from the physical layer frames the
error-correction codes and physical layer header. Since the
rate of error-correction codes is [code rate] and the rate of
physical layer headers is [physical framing], the bitrate can be
written as [wireless physical layer gross bitrate× code rate×
physical framing]. The wireless physical layer gross bitrate
is related to the symbol rate, the number of bits per symbol
(resulted from bit-to-symbol mapper) and to the number of
data subcarriers (if OFDM system is used) to carry data in
parallel. It can be expressed by the formula [symbol rate ×
bits per symbol × # data subcarriers]. All the parameters
(code rate, physical framing, symbol rate, number of bits
per symbol and number of data subcarriers) are stated in
the wireless standard technical specifications. Thus, bitrates
and maximal bitrates of wireless technologies can simply be
obtained from the bitrate formula. Please refer to section II
for the maximal bitrate of selected wireless technologies.

1) THEORETICAL MAXIMAL SUPPORTED BITRATE BY
GPP-BASED SDR PLATFORMS
The theoretical maximal bitrate that can be achieved by a
GPP-based SDR platform depends on the highest values
of the wireless physical layer gross bitrate, code rate
and physical framing supported by the platform. It can
be formulated as

[
maximal wireless physical layer gross

bitrate × maximal code rate × maximal physical framing
]
,

where the maximal wireless physical layer gross bitrate
is computed according to the used digital modulator by[
maximal symbol rate × involved # of bits per symbol ×
involved # of data subcarriers

]
. The maximal symbol rate

supported by GPP-based SDR platforms is computed in
the previous section (see Table 13) using continuous data

26214 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 13. Maximal symbol rate of GPP-based SDR platforms.

TABLE 14. Maximal bitrate (in Mbit/s) of GPP-based SDR platforms.

transmission/reception without MAC operations, physical
framing (i.e., maximal physical framing is set to one), channel
coding (i.e., maximal code rate is set to one) and different
types of digital modulation techniques. The number of bits

per symbol as well as the number of data subcarriers are
related to the digital modulation on which the maximal
symbol rate is computed. Table 14 illustrates the maximal
supported bitrates by SDR platforms.

VOLUME 10, 2022 26215

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

FIGURE 7. GPP-based SDR platform latency.

Like the symbol rate, the maximal supported bitrate
by a given GPP-based SDR platform increases with GPP
core and clock speed, and varies with the used modulation
technique and number of data subcarriers. It is also shown that
hyperthreading support offers higher maximal bitrate than
hyperthreading disabled GPP host. From the SDR device’s
perspective, those with the highest maximal symbol rate
also gives the highest maximal supported bitrate. Thus, for
a given wireless technology (i.e., if required modulation
type and number of data subcarriers are known), one can
easily determine the type of GPP host that can support
this requirement. Hence, the candidate SDR platforms with
respect to supported maximal symbol rate and bitrate can be
determined. For instance, as shown in Table 14, executing
GMSK modulator provides a maximal bitrate of (26.76,
40.14, 112.39 and 192.68) Mbit/s, with (2, 4/1.5GHz,
4/3.6GHz and 8) core hyperthreading enabled GPP hosts,
respectively. Depending on the SDR device employed, the
GPP-based SDR platform will have a maximal bitrate value
as illustrated in the table. Therefore, a wireless technology
supporting GMSK modulator (such as EC-GSM-IoT having
a maximal bitrate of 240 kbit/s), can be implemented using
any of the SDR platforms listed in the table with/without
hyperthreading support. These findings are used for mapping
wireless technologies with SDR platforms in section V.

F. LATENCY
In GPP-based SDR platforms, a latency refers to the
time delay spent by a MAC frame (data, control and
management) in the transceiver chain between the MAC
layer at the GPP host and the antenna connected to the
SDR device. As frames can traverse the transceiver chain
while being transmitted or received, two types of latencies
can be distinguished: GPP-based SDR platform TX latency
and RX latency. Both of these latencies contain the same
components and results from an accumulation of latencies
at each stage of the corresponding path. Since TX/RX path
stages are shared between the GPP host, communication
interface and SDR device, the GPP-based SDR platform
TX/RX latency components can be grouped as: SDR latency,
communication interface latency and GPP host latency,
as shown in Fig. 7. These latencies are examined below in
detail, and we drive the minimal total latency.

1) SDR DEVICE LATENCY
This latency consists of three components: DFE latency,
ADC/DAC conversion latency and RF front end (RFFE)

FIGURE 8. Transmitter side SDR device latency.

latency. It may be asymmetrical, providing a varying
delay between the case when the SDR device is used for
transmitting or for receiving.

At the transmitter side, as shown in Fig. 8, the SDR device
latency is the sum of DFE latency, DAC output latency
and RFFE latency. The DFE latency is related to both the
queuing time of I/Q samples in the SDR buffers (one queue
for each type of samples) and the DUCs output latency.
The queuing time depends on the arrival rate (i.e., symbol
rate), the service rate (i.e., DFE sample rate) and the buffer
capacity (limited by dedicated buffer memory space located
in themotherboard). The queuingmodel of the sample buffers
can be identified as a D/D/1/buffer_capacity queuing system.
Thus, as the I/Q sample rate is always less than or equal to
the DFE sample rate, the expected waiting time (in seconds)
can be calculated from Little’s Law [82] and is given by
[1 / DFE sample rate]. The minimal waiting time can be
achieved when the DFE sample rate is at its maximum, i.e.,
the highest DAC sample rate. The DUC output latency is
given by [number of cycles × DUC cycle duration]. The
values of number of cycles and DUC cycle duration (i.e.,
[1 / DUC clock rate]) are stated in the motherboard device
datasheet [83]. Similarly to the DUC output latency, the DAC
conversion latency is given by [number of clock cycles ×
DAC clock duration] where number of clock cycles depends
on the used sample rate and DAC architecture, and the DAC
clock duration is [1 / DAC clock rate]. The minimal DAC
conversion latency can be formulated as [minimal number
of clock cycles / maximal DAC clock rate]. The last part of
latency related to the front-end (RFFE latency) is negligible
due to high frequency bus. The minimal SDR device latency,
therefore, is the sum of the minimum values of DFE and
DAC conversion latencies. Table 15 gives theoretical minimal
latencies of well-known SDR devices at the transmitting side.

The SDR latency at the receiver side has the same
components as the transmitter side, namely RFFE latency,
ADC conversion latency and DFE latency, shown in Fig. 9.
The RFFE latency remains negligible for the receiver side
due to the high frequency bus. The latency part related to
the ADC conversion can be expressed similarly as for DAC

26216 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 15. Minimal SDR latency for SDR devices.

FIGURE 9. Receiver side SDR device latency.

conversion latency, by [number of clock cycles×ADC clock
duration]. The minimal value, therefore, can be formulated
as [minimal number of clock cycles / maximal ADC clock
rate]. The DFE latency is related to the DFE operations and
includes: the DDC output latency and the queuing time at the
SDR buffer. The DDC output latency is given by [number of
clock cycles × DDC cycle duration], where the number of
clock cycles and DDC cycle duration are found from device
motherboard datasheet. The waiting time, on the other hand,
represents the time spent by I/Q samples in the SDR buffers
before forwarding to the communication interface controller.
The waiting time can be given by [(buffer_capacity + 1)
(in Sym) / symbol rate (in sym/s)]. The minimal waiting
time, therefore, is achieved when the symbol rate attains its
maximum, i.e., maximal DFE sample rate, which in turn
has its maximum value equivalent to ADC sample rate.
Consequently, the minimal waiting time can be approximated
to [(buffer_capacity + 1) (in Sym) / ADC sample rate (in
Sym/s)]. Table 15 gives theoretical minimal SDR device
latency in the receiving side (RX side).

2) COMMUNICATION INTERFACE LATENCY
This latency is related to data exchange between GPP host
and SDR device through communication interfaces such as
Gigabit Ethernet, USB3.0, PCIe, etc. The data packets are
used to carry symbols, where each symbol is pushed in one
packet as data payload and followed by a set of header
fields. The time spent by a data packet to travel from one
communication interface controller, of GPP host or SDR
device, to another is defined as the communication interface
latency. It includes the waiting time of data packets at both
communication interface controllers and the propagation
time. The waiting time at each communication interface
controller combines the queuing time and the service time.
Fig. 10 depicts the components of the communication
interface latency.

The queuing system consists of two symmetric queuing
networks that can work either simultaneously in case of Full-
duplex interfaces, or only one at a time in case of Half-duplex
interfaces. Each queuing network comprises a TX buffer

FIGURE 10. Communication interface latency.

linked to a RX buffer through the communication interface
link. From the TX buffer to RX buffer, the communication
interface controller collects I/Q samples (generated by the
user application or received from the DFE) and creates data
packets according to the used interface standard (data packet
size, header fields, etc). These data packets are queued at the
TX buffer waiting for transmission to the RX buffer. When
a packet is transmitted, it will travel over the communication
link with signal propagation speed in a medium. Finally, the
communication interface controller intercepts the received
packets, extracts the I/Q samples and puts them into the RX
buffer for delivery (to the DFE or to the user application). For
the queuing network parameters:
• The arrival rate at the TX buffer, expressed in packets/s,
takes the same value of the symbol rate as each symbol
is carried by a single data packet;

• The service rate of the TX Buffer can be derived from
the interface speed and the TX link occupancy, and
converted into packets/s using the following formula:
[(interface speed × link efficiency × TX link occu-
pancy) / payload size] (in packets/s). The resulting
speed is called normalized interface speed. For more
details about the TX link occupancy computation, see
section IV-C;

• The propagation time can be given by [length of the
medium / speed of signal propagation] where speed of
signal propagation is 3×108m/sec; or can be found from
datasheet of the used communication interface [50];

• The arrival rate at the RX buffer, expressed in Sym/s,
takes the same arrival rate of the TX buffer (i.e., symbol
rate) if this later is less than or equal to TX buffer service
rate (normalized interface speed). Otherwise, it takes the
normalized interface speed;

• The service rate of the RX buffer, expressed in Sym/s,
is symbol rate.

The communication interface latency can, therefore,
be regarded as the total waiting time of the queuing network.
Thus, it’s the result of the sum of the waiting time of
data packets at TX/RX buffers and the propagation time.
Two cases need to be distinguished: when the symbol
rate is less than or equal, and when it’s greater than the
normalized interface speed (i.e., the interface speed, averaged
and converted). In the first case, the expected waiting
time in the TX buffer is [1 / normalized interface speed]
seconds, and the expected waiting time in the RX buffer is
[1 / symbol rate] seconds. Hence, the total waiting time
is given by [(1 / normalized interface speed) + (length of

VOLUME 10, 2022 26217

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 16. Minimal communication interface latency.

the medium / speed of signal propagation) + (1 / symbol
rate)] (seconds). The minimal waiting time is achieved when
the symbol rate attains its maximum, i.e., the normalized
interface speed, the limit imposed by the condition of the 1st

case. Consequently, the total minimum waiting time is [(2 /
normalized interface speed) + (length of the medium / speed
of signal propagation)] (seconds). In the second case, the
expected waiting time in the TX buffer is [(TX buffer capacity
(in packets) + 1) / normalized interface speed] seconds, and
the expected waiting time in the RX buffer is [1 / symbol
rate] seconds. Hence, the total waiting time is given by[(
(TX buffer capacity (in packets)+ 1) / normalized interface

speed
)
+ (length of themedium / speed of signal propagation)

+ (1 / symbol rate)
]
(seconds). The minimal waiting time is

achieved when the symbol rate attains its maximum, i.e., the
DFE sample rate, and it is given by

[(
(TX buffer capacity (in

packets) + 1) / normalized interface speed
)
+ (length of the

medium / speed of signal propagation) + (1 / DFE sample
rate)

]
(seconds). Table 16 gives theoretical minimal interface

latency with 100% TX link occupancy.

3) GPP HOST LATENCY
This latency is the time a wireless MAC frame (data,
management or control) passes in GPP host between the
MAC layer and the interface controller due to TX and
RX activities. It mainly includes the processing time due
to the MAC layer operations such as access mechanism,
MAC framing, generating/transmitting/receiving control and
management frames, transmitting/receiving data frames,
etc., and the PHY layer operations such as channel cod-
ing, digital modulation, PHY framing, etc. The time to
forward/retrieve symbols to/from the interface controller
should also be added. To perform all these operations
require a GPP time and additional extra-time related to the
kernel operations and external memory read/write should
be considered. Estimating the GPP host latency is a very
complex work, due to the high number of hardware and
software factors that affect the execution time of the
user program (wireless technology implementation). Indeed,
the GPP host hardware and software configurations (see
section III-C) affects the execution speed and hence impact
the response time of all tasks. Consequently, we illustrate the
minimum GPP host latency experimentally by benchmark-
ing existing software implementations of selected wireless
technologies.

The selected wireless technologies were run on Intel
x86_64 microprocessor with different number of cores
and speeds (2 GHz Dual-core, 1.5 GHz Quad-core and

TABLE 17. GPP host latency for wireless technologies.

3.6GHz Octa-core). Each core has L1/L2/L3 cache sizes of
64KB/256KB/6144KB and access time of 1.2ns/3.6ns/12ns.
All the applications listed below are tested on Ubuntu
18.04.2 LTS: NFC based on gr-nfc [84], IEEE
802.15.6 based on a prototype proposed in [85] for
NB-WBAN, IEEE 802.15.1 based on scapy-radio
for Bluetooth [86], IEEE 802.15.4 based on gr-IEEE
802.15.4 [15], IEEE 802.11ac and IEEE 802.11ah
are based on GNU Radio implementation of gr-IEEE
802.11 [16]; EC-GSM-IoT based on gr-GSM [87]. LTE
is measured using eNodeB and user equipment (UE) PHY
downlink (DL) shared channel (PDSCH) and NB-IoT
using Narrowband PDSCH (NPDSCH) PHY modules from
srsRAN [14]; and LoRa based on gr-lora [24]. The
parameters involved in the experimental latency result like
number of executed instructions and CPI are measured using
perf stat tool. The results are depicted in Table 17.

From Table 17, we can see that under the same hardware
and kernel settings at the GPP host, wireless technologies
provide different latencies according to the total number
of executed instructions and the inherent parallelism in
the instruction code. This parallelism defines on one hand
the level of TLP exploited by the scheduler to split
execution of threads between physical/virtual cores, and
on the other hand by the level of TLP exploited by the
processor to perform multiple instructions simultaneously
within the same core which reduces (on average) the
number of required CPI. Based on the total number of
executed instructions and parallelism, the latency increases

26218 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

when the number of instructions increases and parallelism
degree decreases and vice versa. Thereby, since the total
number of executed instructions of IEEE 802.15.4 is
861,073,678/858,617,170 for TX/RX and the CPI is 0.8772
for both TX and RX, the latencies under hyperthreading for
Dual/Quad/Octa-core are 94.417ms/62.944ms/13.113ms for
TX and 94.147ms/62.765ms/13.076ms for RX, respectively.
Also, we note that the latency is lower with hyperthreading
enabled than hyperthreading disabled for all tested technolo-
gies, from 0.009% upto 54.31% improvements. The major
contributor of the high percentage improvements provided by
some tested technologies is due to the large number of threads
in the program; and with high-TLP, theoretically, we might
expect to have upto 50% improvement due to hyperthreading.
However, this depends on the resource contention between
threads on hyperthreaded cores. High resource contention
often leads to latency degradation.

4) MINIMAL THEORETICAL GPP-BASED SDR
PLATFORM LATENCY
The latency of GPP-based SDR platforms related to TX/RX
operations is the result of cumulative latencies over three
stages: SDR device, communication interface and GPP host.
The minimal latency at both SDR device and communication
interface stages is theoretically expressed by modeling
the internal architecture using queuing theory. While the
minimal latency at the SDR device varies from several
nanoseconds to few milliseconds depending on the buffer
size, it varies from microseconds to few milliseconds at
the communication interface. At the GPP host stage, the
minimal latency is investigated experimentally based on
multiple parameters such as number and speed of cores,
hyperthreading, number of executed instructions, number
of threads, degree of ILP/TLP/DLP, kernel scheduler, I/O
management (e.g., cache/memory/disk access), etc. Table 18
gives the total minimal latency of GPP-based SDR platforms
related to TX/RX operations of some wireless technologies.
For the communication interface a link occupancy of 100%
and symbol rate less than or equal to the normalized interface
speed is used.

Table 18 demonstrates that large part of the total latency
is due to the GPP host. Comparing the minimal GPP-based
SDR platform latency for TX/RX paths with latencies at
the three components (SDR device, communication interface
and GPP host), we see that for some wireless technologies
the GPP host contributes upto 99% of the total (such as in
NFC, IEEE802.15.6, IEEE802.15.1, etc). It is shown that
the latency at the GPP host stage could be minimized by
using high TLP, high clock rate, hyperthreading (with lower
resource contention), etc. One can also see that, TX and RX
latencies are different. This is due to the specific operations
on each path. Moreover, there’s significant difference in TX
and RX latencies of SDR devices (see section IV-F1) that also
contributes to the total latency. The values in Table 18 indicate
the capability of the SDR platforms in executing wireless
technologies. For instance, to perform a TX operation of

NFC using Hack SDR device and USB2.0 communication
interface on a (2 core, 2 GHz, hyperthreading enabled) GPP
host, it takes 122.855ms (shaded cell). However, to determine
whether a given SDR platformmeets the latency required by a
wireless technology, one needs to carefully map the two (see
section V for the mapping). Note that the latency analysis
illustrated in this paper can also be exploited to investigate
other SDR platforms and wireless technologies.

V. MAPPING PARAMETERS OF WIRELESS TECHNOLOGY
WITH GPP-BASED SDR PLATFORM
In the previous sections, we have carried out investigations
to determine the requirements of well-known wireless
technologies and the minimum performance of GPP-SDR
platform in terms of frequency, bandwidth, symbol rate,
bitrate and latency. In this section, we intersect the wireless
standard requirements with the SDR platform performance
to build a list of possible GPP-based SDR platforms that can
successfully implement a given wireless technology.

A. MATCHING CONDITIONS
A successful matching between a wireless technology
requirements and a GPP-based SDR platform performance
can occur when matching conditions are satisfied. These
conditions are applied to perform a simple comparison
between similar metrics of the two sets. Further details on
the matching conditions are discussed below.

1) FREQUENCY BAND MATCHING
Wireless technologies are defined to operate in a single or
multiple frequency bands of the radio spectrum. On the other
hand, SDR device daughterboards are defined to operate
in a wide contiguous frequency band. Given a wireless
technology, frequency band matching consists of ensuring
that the SDR device daughterboard frequency range covers
the frequency bands of the wireless technology.

2) BANDWIDTH MATCHING
Wireless technologies divide their operating frequency bands
to single/multiple overlapping/non-overlapping channels of
predefined widths. However, the really occupied bandwidth
can be less than the channel width depending on the type
of modulation. Given a wireless technology, bandwidth
matching consists of ensuring that themaximal SDR platform
bandwidth is at least equal to the real occupied bandwidth in
the channel width defined by the standard.

3) SYMBOL RATE MATCHING
The specifications of wireless technologies provide the
symbol duration, and hence the symbol rate, either explicitly
or implicitly through related PHY parameters (see equations
in Table 11). Given a wireless technology and a GPP-based
SDR platform, symbol rate matching ensures that the
maximal supported symbol rate by the GPP-based SDR
platform is greater than or equal to that defined by the
wireless standard.

VOLUME 10, 2022 26219

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 18. Theoretical minimal latency (ms) on GPP-based SDR platforms.

4) BITRATE MATCHING
Based on PHY parameters (spectral lines, code rate, PHY
framing, digital modulation) and symbol rate of wireless
technologies, specifications provide a list of supported
bitrates. On the other hand, GPP-based SDR platforms
support a maximum bitrate according to the used SDR device,
communication interface and GPP host capabilities. Given
a wireless technology and a GPP-based SDR platform, full
bitrate matching ascertains that the maximal supported bitrate
by the GPP-based SDR platforms is greater than or equal
to the highest bitrate of the wireless technology. However,

partial matching can also occur when the maximal supported
bitrate by the SDR platform is between the highest and
lowest bitrates of the wireless technology. In this case, the
SDR platform can still perform the implemented wireless
technology but in lower bitrates.

5) LATENCY MATCHING
Wireless devices operate in a shared wireless medium, and
hence, require a MAC protocol to organize access to a
channel. In general, MAC protocols can be classified as either
contention-based or contention-free protocols [88]. Despite

26220 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

their significant differences in terms of coordination, they
define inter-frame times to handle waiting periods between
transmission of frames (data, control and management).
For example, IEEE 802.15.4 uses slotted CSMA/CA as a
contention based protocol and Guaranteed Time Slot (GTS)
allocation mechanism as a contention-free protocol. Both
protocols define inter-frame times to cover the period
from receiving a data frame and transmitting an explicit
acknowledgment frame. The smallest inter-frame time among
all inter-frame times is defined as the latency. Wireless
devices should respect the latency to ensure optimized net-
work performance. Examples of latency for the well-known
wireless technologies are given in Tables 1, 2 and 3.

As GPP-based SDR platforms will play the role of
wireless device, they should fulfill the latency constraint by
completing execution of all operations within the dedicated
time period as defined by the specific MAC protocol. The
concerned operations are often related to transmission and/or
reception of frames. Thus, during the latency period, frames
should traverse the transceiver chain in one or both directions
based on the objective of MAC operations. Consequently,
the latency of GPP-based SDR platforms related to the
implemented wireless technology can include latency values
of only in TX or RX path, or both TX andRXpaths depending
on the covered operations desired by the implemented
technology.

Given a wireless technology and a GPP-based SDR plat-
form, full latency matching occurs when the minimal latency
supported by the GPP-based SDR platform is below the
latency of the wireless technology. Such matching allows the
GPP-based SDR platform to perform the TX/RX operations
efficiently and ensure normal communication with legacy
transceivers. However, when the minimal latency supported
by the GPP-based SDR platform exceeds the latency of
wireless technology and/or some other (perhaps all) inter-
frame times, frame exchange with legacy transceivers will
be affected. In other words, as TX/RX operations at the
GPP-based SDR platform are delayed, the overall network
(in presence of one or more legacy transceivers) performance
will degrade. To illustrate this, consider the following two
cases:
• Case 1: Assume that a GPP-based SDR platform has
won the channel access. A delayed frame transmission
may cause collisions at legacy receivers in the presence
of concurrent transmissions;

• Case 2: Assume that a GPP-based SDR platform is
receiving a unicast data frame from a legacy transceiver.
A delayed processing of the received frame and
transmitting a response (e.g., ACK) may cause the data
frame retransmission after response timeout, or starting
concurrent transmissions by other devices;

It should be noted that with or without matching,
GPP-based SDR platforms can still perform some tasks
successfully such as: a) receiving broadcast/multicast frames
as they are not acknowledged, and b) acting as a wireless
sniffer.

B. MAPPING PERFORMANCE OF GPP-BASED SDR
PLATFORMS WITH WIRELESS TECHNOLOGY
REQUIREMENTS
Based on the theoretical performance of GPP-based SDR
platforms calculated in section IV and the requirements
of wireless technologies listed in section II, the matching
conditions can be performed. For this purpose, a list
of selected wireless technologies and GPP-based SDR
platforms are considered. List of wireless technologies
include: NFC, IEEE802.15.6, IEEE802.15.1, IEEE802.15.4,
IEEE802.11ac, IEEE802.11ah, LTE, NB-IoT, EC-GSM-IoT,
and LoRa. There are also cases where SDR based wireless
networks (such as 2G GSM) are also implemented with
limited features using OpenBTS, Sysmocom, OsmoNITB,
UmTRX SDR based platforms [87]. The list of GPP-based
SDR platform contains several SDR devices connected
to different GPP hosts via their fastest supported com-
munication interface. The SDR devices and their fastest
supported communication interface considered are: HackRF
with USB2.0, USRP-X310 with 10Gigabit Ethernet, USRP-
B210 with USB3.0, Microsoft Sora with PCIe (x8), and
LimeSDR with PCIe (x4). The GPP hosts are: 2 GHz Dual-
core processor, 1.5 GHz Quad-core processor and 8 GHz
Octa-core processor.

To match the two lists, according to the matching
conditions, a mapping table is created (see Table 19).
In this Table, as the maximal frequency band and maximal
bandwidth of SDR devices are determined irrespective of the
wireless technology and GPP host type, they are defined only
once. Whereas, the other three parameters (maximal symbol
rate, maximal bitrate and minimal latency), as they are
determined for each technology on the three GPP host types,
their values are indicated separately as per the technology.
Moreover, the minimal latency supported by GPP-based SDR
platform for each wireless technology is set based on TX
path and RX path latencies computed for each technology.
For example, the minimal latency supported by a GPP-based
SDR platform when performing IEEE802.15.4 based slotted
CSMA/CA protocol should take the sum of TX path and RX
path latencies. This is due to the fact that slotted CSMA/CA
protocol latency represents the Turn around Time (TT) which
covers the delay for a receiver device to receive a data frame
on RX path and if successfully decoded, transmit an ACK on
TX path.

From Table 19, we see that SDR platforms that have
wider range of operating frequency (HackRF, USRP-X310
and USRP-B210) satisfies the frequency requirements of
all wireless technologies except for IEEE 802.15.6, which
is only partially matched. Another exception is that of
USRP-B210, which doesn’t cover the frequency range of
NFC technology. Whereas, most of the technologies are not
fully supported by Sora and LimeSDR, although LimeSDR
can fully/partially match with more technologies than Sora.
In terms of bandwidth, while all wireless technologies are
fully matched with the SDR platforms, the exceptions are
IEEE 802.15.6 and IEEE 802.11ac. IEEE 802.15.6 is partially

VOLUME 10, 2022 26221

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 19. Mapping SDR platform with wireless technologies (F: Full match; P: Partial match; N: No match).

matched by all SDR platforms; and IEEE 802.11ac is fully
supported only by USRP-X310 and LimeSDR, partially by
USRP-B210 and Sora.

The maximal symbol rate requirement of the wireless
technologies, except IEEE 802.15.6, fully matches with that
offered by the GPP-based SDR platforms. The maximal
symbol rate of IEEE 802.15.6, however, fully matches with

all SDR devices, except HackRF, connected to Quad and
Octa-core GPP hosts and partially when connected to a
Dual-core GPP host. The mapping of bitrate has a similar
behaviour to that of symbol rate mapping. Thus, the maximal
bitrates of all wireless technologies, except IEEE 802.11ah
and IEEE 802.11ac, fully match with that supported by all
GPP-based SDR platforms. For the maximal bitrates of IEEE

26222 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

TABLE 20. Possible GPP-based SDR platforms for existing implementations.

802.11ah and IEEE 802.11ac, while the first partiallymatches
with HackRF and fully with other SDR platforms, the second
partially matches with all SDR devices connected to any GPP
host type. For the latency matching, the requirement of most
of the wireless technologies is several orders of magnitude
less than what is offered by any of the SDR platforms. Thus,
except NB-IoT, all the other technologies have nomatch. NB-
IoT have full match with all SDR platforms interfaced with
Quad-core and Octa-core GPP hosts.

As illustrated by the mapping table and discussion given,
most GPP-based SDR platforms fully or partially satisfy the
frequency, bandwidth, symbol rate and bitrate requirements
of most wireless technologies. However, meeting the latency
condition was a bit of a challenge, and thus, both software and
hardware improvements should be made. For the software
part, compiler and kernel should be optimized to increase
the degree of parallelism according to the used processor
capabilities. For the hardware part, increasing the number
of cores can be efficient in case of applications having

high degree of parallelism. Otherwise (with low degree of
parallelism), processor with a higher clock speed or using
hardware accelerators such as GPUs, DSPs and FPGAs
are necessary. Several software projects exist to enable
hardware accelerators usage like RAPIDS cuSignal [89]
and Compute Unified Device Architecture (CUDA) [90] for
GPU, RF Network-on-Chip (RFNoC) [91] and Nutaq’s Real-
Time Data Exchange (RTDEx) [92] for FPGA, meta-sdr
OpenEmbedded layer [93] and liquidsdr [94] for DSP.

C. WHAT OTHER GPP-BASED SDR PLATFORMS FOR
EXISTING WIRELESS SDR IMPLEMENTATIONS
Implementations of wireless technologies using SDR plat-
forms were considered by several researchers. These imple-
mentations are accompanied by a limited, if not a single,
recommended GPP-based SDR platforms. Moreover, the
implementations doesn’t show/demonstrate how the SDR
platforms were selected nor there are studies to map
several wireless standards with commercial SDR platforms.

VOLUME 10, 2022 26223

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

Table 20 presents examples of recommended GPP-based
SDR platforms for selected wireless technologies. Now,
based on the mapping table given in previous section, new
opportunities appear to perform the existing implementations
of wireless technologies. Thus, new possible GPP-based
SDR platforms, listed in Table 20, become candidates and
may be more convenient for some users in terms of cost,
hardware availability, etc. Of course the list of the proposed
GPP-based SDR platforms are not exhaustive, but it can be
easily extended for other SDR devices and GPP hosts based
on the theoretical analysis of our work. For example, a user
having a GPP host with Quad-core 3.4 GHz processor can
follow our theoretical analysis to determine its eligibility to
perform a desired wireless technology through computing the
supported bitrate, symbol rate and latency metrics. However,
it should be noted that the same latency problem might
occur as discussed in section V-B. The following paragraphs
demonstrate how to determine the candidate SDR platforms
for few existing wireless SDR implementations.

1) IEEE 802.15.6
The proposed NB-WBAN evaluation platform by [85] uses
USRP-N210 and GNU Radio to test different modulation
techniques (DBPSK, DQPSK, D8PSK, GMSK) at operating
frequency of 950MHz and bandwidth of 0.4MHz. The
frequency band and bandwidth help determine the candidate
SDR devices, and hence, from our matching conditions
and mapping table, HackRF, USRP-X310, USRP-B210,
Sora, and LimeSDR are possible candidates. The maximal
symbol rate and bitrate for this implementation is 0.6MSym/s
and 0.971Mbit/s, respectively, allowing us to choose any
communication interface from (USB2.0, USB3.0, Gig.Eth,
10Gig.Eth and PCIe). The listed SDR devices also matches
with the required symbol rate. For the target modulation
techniques, symbol rate and bitrate, a GPP host having
2 core, 2.0 GHz processor without hyperthreading support
is sufficient (see Table 12). Hence, from the list of SDR
platforms considered in this paper, HackRF with USB2.0,
USRP-X310 with Gig.Eth or 10Gig.Eth, USRP-B210 with
USB3.0, Sora with PCIe, and LimeSDRwith USB3.0 or PCIe
can be used along with Dual-core, Quad-core or Octa-core
GPP hosts.

2) LTE
srsRAN is one of the most popular open-source SDR
implementation of LTE that has been tested with USRP,
LimeSDR and BladeRF SDR devices; USB3.0, Gig.Eth and
10Gig.Eth as communication interface; and ARM based
processors as GPP host [14]. It operates for LTE frequency
bands and all current LTE bandwidths. As per themodulation,
it supports LTE modulation coding scheme upto QAM256
in DL direction. The maximal bitrate achievable by the
current srsRAN release is 75Mbit/s DL and 50Mbit/s
uplink in 20MHz bandwidth and single-input single-output
configuration. To determine other possible SDR platforms,
we check for each parameter. The operating frequency

for this implementation (LTE bands) ranges from 0.41 to
5.9GHz, which is supported partially by Sora SDR devices
as discussed in the mapping table. For the bandwidth, Sora
is capable to handle the implementation. The symbol rate
and bitrate are also supported by the PCIe communication
interface of Sora. As per the GPP host, the maximal symbol
rate and maximal bitrate demanded by srsRAN are attained
by Dual/Quad/Octa-core processors in both hyperthreading
enabled and disable mode as demonstrated by our result in
Table 12. Thus, from the list of SDR platforms considered
in this paper and using the mapping table, Sora with PCIe
interfaced with any of the three GPP hosts are suggested as
possible SDR platform to test srsRAN in addition to those
recommended by srsRAN.

D. EXPLOITATION OF THE MAPPING BETWEEN SDR AND
WIRELESS TECHNOLOGIES
The mapping Table 19 can be exploited either by SDR
software developers or regular users. An SDR software
developer integrates two categories: who are programming
the embedded software (custom SDR functions, FPGA
design, etc.,) for SDR devices, and who are programming
open-source software (wireless technology libraries, digital
signal processing blocks, etc.,) on GPP hosts.

The mapping table cells with values N (no match) or P
(partial match) give important information to encourage SDR
software developer to propose solutions. As most of the table
cells with value N are mainly due to the high latency of GPP
hosts that cannot fulfill the wireless standard requirement,
both embedded software and open-source software develop-
ers can provide improvements and optimizations in their soft-
ware to reduce latency. Thus, embedded software developers
can move some intensive computation or time critical MAC
layer functions of wireless standards to be performed by the
SDR device, which is more fast to save GPP resources and
reduce latency. For example, from the mapping table, the
wireless technology IEEE 802.15.4 cannot be performed (in
terms of latency) by any SDR platforms due to the MAC
layer latency. In this case, embedded software developers
can decide to provide APIs to allow open-source software
developers to directly implement and perform the critical
MAC layer functions such as inter-frame spacing periods
manager on the SDR device. Recently, some SDR devices
have integrated this option such as all USRP devices from the
third-generation integrated RFNoC [91], an API developed
by Ettus Research to use USRP’s FPGA processing power,
with the UHD software. On their side, open-source software
developers can adapt their wireless standard source code by
integrating custom processing blocks of the critical MAC
layer functions. These blocks should be implemented based
on the APIs offered by the used SDR device. To continue
with the RFNoC example, several RFNoC blocks have been
developed and ready to use [102]. Also, on GPP hosts, open-
source software developers should make an effort to provide
software optimization (vectorization, automatic paralleliza-
tion, inter-procedural optimization, etc.,) according to the

26224 VOLUME 10, 2022

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

used GPP host characteristics (clock speed, number of cores,
memory and cache size, external hardware accelerators).
These software optimizations, in context of SDR platforms,
remain an open research (for further details, see section VI-
A). Based on the level of optimizations and our mapping
table, open-source software developers can test and suggest
more SDR platform possibilities to regular users.

Unlike SDR software developers, regular users employ
GPP-based SDR platforms as a testbed to experiment
their applications (upper layers) without relying on expert
knowledge on how the wireless standards (lower layers) are
implemented or performed. Indeed, they only need to know
how to select the appropriate SDR platform and how to run
the selected wireless technology. For a given application,
they first determine its characteristics in terms of data type
(sensory data, voice, video, etc.), traffic model (event-driven,
continuous or query-driven), number of sensors, geographical
area, etc., [4], [5]. Then, they express the application
characteristics as a set of specific requirements such as range,
data rate, energy consumption, etc. After, they select a set of
candidate wireless technologies that can theoretically meet
the application’s requirement. To experiment the application
with the selected wireless technologies, regular users can
use a single SDR platform due to the reconfigurable
and reprogrammable hardware. In order to determine the
suitable SDR platform that can support the selected wireless
technologies, regular users can refer to our mapping table.
They can also refine their selection by choosing an SDR
platform capable of satisfying the requirement of most of
their selected wireless technologies.

VI. OPEN CHALLENGES AND FUTURE DIRECTIONS
Using GPP-based SDR platforms for wireless prototyping
have been extensively accepted by many researchers and
companies. Despite its continuing expansion, several existing
research challenges have not yet been addressed. This section
presents some open challenges and trends related to the
performance enhancement of GPP-based SDR platforms to
successfully perform wireless transceivers.

A. HARDWARE AND SOFTWARE OPTIMIZATIONS
To improve the performance of GPP-based SDR platforms
in dealing with the computational requirements of wireless
standards, hardware and software optimizations should
be addressed. From the hardware side, GPP-based SDR
platforms performance can be enhanced by different solutions
such as: a) increasing the processing speed of GPP host
by using more number of cores (as reported by our work)
with higher clock speed, memory and cache, and b) using
external hardware accelerators such as GPU, FPGA and
DSPs. In literature, these solutions were more or less studied
theoretically (using GPU [58], [59], [103], FPGA [56], [91],
[104], [105], DSPs [93], [94]) but it’s still an open challenge
to fully investigate experimentally. In addition, the latency
due to the interface between the GPP and external accelerator
should be considered.

From the software side, various optimizations can be
applied to enhance the execution time of the wireless
transceiver code at the GPP host. Few examples include using
increased number of threads (multi-threadedGPP), vectoriza-
tion, automatic parallelization, inter-procedural optimization,
SIMD and look-up tables (LUTs). These solutions are well
investigated theoretically and experimentally in a general
context. With respect to the SDR platform, there are
few studies conducted by applying these solutions such
as [20], [48], however, satisfying the full requirements of
wireless transceivers still remains an open challenge. Another
important point that seeks research attention is satisfying
the real-time requirements (e.g., respecting response time) of
wireless transceivers, which has been slightly addressed by
researchers using Xenomai Real-Time OSs (RTOSs) [106].
However, the real-time performance of GPP-based SDR
platforms need to be investigated more based on the real-time
demands of different wireless standards using other RTOSs
such as Real-time Linux [107], Real-Time Application
Interface (RTAI) [108], and ChronOS [109].

B. VIRTUALIZATION IN SDR PLATFORMS
GPP-based SDR platform can use different type of SDR
devices to implement one or more wireless transceivers. Two
problems could arise: on one hand the PHY layer software
portability, and on the other hand running multiple parallel
wireless transceivers. For the first problem, as different
types of SDR devices are considered, transceiver software
portability can be insured by virtualization to abstract the
hardware resources. In literature, the common solution to this
problem consists of including a dedicated virtual machine
(VM), named as radio virtual machine (RVM), on each
SDR device image [11], [110], [111]. However, this solution
introduces an extra cost in terms of overhead and latency,
and limiting their effect remains an open challenge. The
second problem concerns gateways (e.g., IoT gateways in
home automation box) that require multiple transceivers
to communicate with the deployed end-devices through
heterogeneous wireless technologies. To enable this role on
the GPP-based SDR platform, multiple VMs should be run
in parallel at the GPP host where each VM is dedicated
to one wireless transceiver [112]. However, in spite of
the benefits gained, the performance of each implemented
wireless transceiver maybe seriously degraded due to the
competition of GPP host and SDR device resources between
the co-located wireless transceivers and additional costs of
VMs. These problems are not yet addressed and needs to be
explored.

C. MOBILITY AND ENERGY CONSUMPTION
The majority of commercially available GPP-based SDR
platforms (Desktop PC or Laptop based) consume high
energy to achieve high performance, hence rely on main
power supply. However, this is unsuitable for mobile appli-
cation where SDR platforms can be used as mobile wireless
transceivers. Indeed, many projects such as [113], [114]

VOLUME 10, 2022 26225

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

are developed addressing mobile applications where sensors
are deployed on vehicles (e.g., car, drone, train) with an
on-board SDR platform powered by the vehicle’s battery
like any mobile wireless device. All these projects report
the negative impact of GPP-based SDR platforms on the
life-time of vehicle’s battery. It becomes necessary to
build mobile SDR platforms consuming less energy and at
the same time offer expected performance. One discussed
solution in literature [42], [115], [116] is to use low power
embedded computer boards such as Raspberry Pi, ARM
Cortex processor, etc., as GPP hosts. Nevertheless, prototypes
based on this solution lack offering adequate performance to
support the requirement (specially, the frequency, bandwidth,
latency) of most wireless technologies. Thus, building energy
efficient SDR platform using embedded computer boards
with performance objective is still an open issue. Another
alternative solution discussed in literature is to remove
the GPP host by migrating its capabilities to the SDR
device to form a standalone SDR platform. Examples of
such SDR platforms are USRP-E3xx [117], BladeRF [118],
µSDR [119]. They are designed to offer high performance,
be energy efficient and suitable for mobile applications.
However, they require more experimental investigations on
their performance in terms of frequency, bandwidth, symbol
rate, bitrate and latency.

VII. CONCLUSION
Selecting SDR platform to implement and perform a wireless
technology is challenging as it comprises, on one hand,
to satisfy design requirements both at the hardware and
software level. On the other hand, previous recommendations
by researchers/developers of wireless technologies suggest to
fulfill the proposed hardware and software list to successfully
perform their open-source implementations. However, the
proposed list is often restrictive in terms of hardware (SDR
devices and GPP hosts) and doesn’t take into account the
use-case desired by users. This paper has reviewed and
presented a large list of GPP-based SDR platforms that satisfy
the minimum requirement of wireless technologies.

We believe that the study conducted in this paper will
help users to determine, for a given wireless technology,
which GPP-based SDR platform configuration is necessary
to fully or partially perform the MAC and PHY functions.
Additionally, through this study, users who already possess a
GPP-based SDR platform can identify possible applications
that could be implemented. To determine the candidate SDR
platform, the paper first evaluated the performance of selected
GPP-based SDR platforms through theoretical and experi-
mental analysis. Then, we proposed matching conditions and
created a mapping table between the minimum requirements
of well-known wireless technologies and performance of
GPP-based SDR platforms. Thereby, a list of candidate
GPP-based SDR platforms is established for each wireless
technology. This list indicates if the matching is complete,
incomplete or negative. The two latter are mainly due to
the high latency of GPP hosts. A summary of some of

the existing implementations were discussed and using the
mapping table we suggested other possible GPP-based SDR
platforms to be used. Finally, we highlighted some of the
research challenges and future directions to be considered by
the research community.

TABLE 21. Definitions of abbreviations.

REFERENCES
[1] Research and Markets. (2019). Wireless Sensor Network

Markets. Accessed: Sep. 2021. [Online]. Available: https://www.
researchandmarkets.com/reports/4844854/wireless-sensor-network-
markets?w=5&utm_source=CI&utm_medium=PressRelease&utm_
code=g87tcl

[2] IoT Analytics. Accessed: Jan. 2021. [Online]. Available: https://iot-
analytics.com/iot-2020-in-review/

[3] A. Gupta and R. K. Jha, ‘‘A survey of 5G network: Architecture and
emerging technologies,’’ IEEE Access, vol. 3, pp. 1206–1232, 2015, doi:
10.1109/ACCESS.2015.2461602.

26226 VOLUME 10, 2022

http://dx.doi.org/10.1109/ACCESS.2015.2461602

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

[4] A. Al-Fuqaha,M. Guizani,M.Mohammadi,M. Aledhari, andM.Ayyash,
‘‘Internet of Things: A survey on enabling technologies, protocols,
and applications,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 4th Quart., 2015.

[5] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani, ‘‘Internet of Things architecture: Recent
advances, taxonomy, requirements, and open challenges,’’ IEEE Wireless
Commun., vol. 24, no. 3, pp. 10–16, Jun. 2017.

[6] R. Tessier andW. Burleson, ‘‘Reconfigurable computing for digital signal
processing: A survey,’’ J. VLSI Signal Process. Syst. Signal, Image Video
Technol., vol. 28, nos. 1–2, pp. 7–27, 2001.

[7] T. Ulversoy, ‘‘Software defined radio: Challenges and opportuni-
ties,’’ IEEE Commun. Surveys Tuts., vol. 12, no. 4, pp. 531–550,
4th Quart., 2010.

[8] D. F. Macedo, D. Guedes, L. F. M. Vieira, M. A. M. Vieira, and
M. Nogueira, ‘‘Programmable networks—From software-defined radio
to software-defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 2, pp. 1102–1125, 2nd Quart., 2015.

[9] R. Akeela and B. Dezfouli, ‘‘Software-defined radios: Architecture, state-
of-the-art, and challenges,’’ Comput. Commun., vol. 128, pp. 106–125,
Jul. 2018.

[10] C. Gavrila, V. Popescu, M. Alexandru, M. Murroni, and C. Sacchi,
‘‘An SDR-based satellite gateway for internet of remote things (IoRT)
applications,’’ IEEE Access, vol. 8, pp. 115423–115436, 2020.

[11] M. Kist, J. Rochol, L. A. DaSilva, and C. B. Both, ‘‘SDR virtualization
in future mobile networks: Enabling multi-programmable air-interfaces,’’
in Proc. IEEE Int. Conf. Commun. (ICC), May 2018, pp. 1–6.

[12] M. Schadhauser, J. Robert, and A. Heuberger, ‘‘Design of autonomous
basestations for low power wide area (LPWA) communication,’’ in Proc.
Eur. Conf. Smart Objects, Syst. Technol. (SmartSysTech), Jun. 2017,
pp. 1–8.

[13] X.Wei, H. Liu, Z. Geng, K. Zheng, R. Xu, Y. Liu, and P. Chen, ‘‘Software
defined radio implementation of a non-orthogonal multiple access system
towards 5G,’’ IEEE Access, vol. 4, pp. 9604–9613, 2016.

[14] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano,
C. Cano, and D. J. Leith, ‘‘srsLTE: An open-source platform for LTE
evolution and experimentation,’’ in Proc. 10th ACM Int. Workshop
Wireless Netw. Testbeds, Exp. Eval., Characterization, 2016, pp. 25–32.
[Online]. Available: https://github.com/srsran/srsRAN

[15] B. Bloessl, C. Leitner, F. Dressler, and C. Sommer, ‘‘A GNU radio-based
IEEE 802.15.4 testbed,’’ in Proc. GI/ITG KuVS Fachgespräch Drahtlose
Sensornetze (FGSN), Cottbus, Germany, Sep. 2013, pp. 37–40.

[16] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, ‘‘An IEEE 802.11
a/g/p OFDM receiver for GNU radio,’’ in Proc. 2nd Workshop Softw.
Radio Implement. Forum, 2013, pp. 9–16.

[17] M. B. Khan, X. Yang, A. Ren, M. A. M. Al-Hababi, N. Zhao, L. Guan,
D. Fan, and S. A. Shah, ‘‘Design of software defined radios based
platform for activity recognition,’’ IEEE Access, vol. 7, pp. 31083–31088,
2019.

[18] C. Politis, S. Maleki, J. M. Duncan, J. Krivochiza, S. Chatzinotas,
and B. Ottesten, ‘‘SDR implementation of a testbed for real-time
interference detection with signal cancellation,’’ IEEE Access, vol. 6,
pp. 20807–20821, 2018.

[19] S. Handagala and M. Leeser, ‘‘Real time receiver baseband processing
platform for sub 6 GHz PHY layer experiments,’’ IEEE Access, vol. 8,
pp. 105571–105586, 2020.

[20] Y. Chen, S. Lu, H.-S. Kim, D. Blaauw, R. G. Dreslinski, and T. Mudge,
‘‘A low power software-defined-radio baseband processor for the Internet
of Things,’’ in Proc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Mar. 2016, pp. 40–51.

[21] S. Wu, S. Kang, C. Chakrabarti, and H. Lee, ‘‘Low power baseband
processor for IoT terminals with long range wireless communications,’’ in
Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP), Washington,
DC, USA, Dec. 2016, pp. 728–732.

[22] R. Subramanian, B. Drozdenko, E. Doyle, R. Ahmed, M. Leeser, and
K. R. Chowdhury, ‘‘High-level system design of IEEE 802.11b standard-
compliant link layer for MATLAB-based SDR,’’ IEEE Access, vol. 4,
pp. 1494–1509, 2016.

[23] (2021). OpenAirInterface (OAI) Project. [Online]. Available:
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/home

[24] M. Knight and B. Seeber, ‘‘Decoding LoRa: Realizing a modern LPWAN
with SDR,’’ in Proc. GNU Radio Conf., Sep. 2016, vol. 1, no. 1, pp. 1–5.
[Online]. Available: https://github.com/matt-knight/gr-lora

[25] (Nov. 2020). Internet of Things (IoT) Smart Connected. [Online]. Avail-
able: http://literature.cdn.keysight.com/litweb/pdf/5992-1217EN.pdf

[26] (Aug. 2021). ITU-R (RR Nos. 5.138 and 5.150). [Online]. Available:
https://www.itu.int/net/ITU-R/terrestrial/faq/#g013

[27] International Organization for Standardization and
International Electrotechnical Commission, Standard ISO/IEC
18092:2013/Cor 1:2015, 2013. [Online]. https://standards.iso.
org/ittf/PubliclyAvailableStandards/index.html

[28] S. Roy, V. Jandhyala, J. R. Smith, D. J. Wetherall, B. P. Otis,
R. Chakraborty, M. Buettner, D. J. Yeager, Y.-C. Ko, and A. P. Sample,
‘‘RFID: From supply chains to sensor nets,’’ Proc. IEEE, vol. 98, no. 9,
1583–1592, Sep. 2010.

[29] IEEE Standard for Local and Metropolitan Area Networks: Part
15.6: Wireless Body Area Networks, IEEE Submission, IEEE Stan-
dard 802.15.6-2012, 2012.

[30] IEEE Standard for Information Technology—Local and Metropolitan
Area Networks—Specific Requirements—Part 15.1a: Wireless Medium
Access Control (MAC) and Physical Layer (PHY) Specifications for
Wireless Personal Area Networks (WPAN), IEEE Standard 802.15.1-2005
(Revision of IEEE Std 802.15.1-2002), Jun. 2005, pp. 1–700.

[31] IEEE Standard for Low-Rate Wireless Networks, IEEE Standard
802.15.4- 2015 (Revision of IEEE Std 802.15.4-2011), Apr. 2016,
pp. 1–709.

[32] IEEE Standard for Information Technology-Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks-Specific Requirements. Part 11: Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifications, IEEE Standard
802.11-2016, Dec. 2016.

[33] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems—Local and Metropolitan Area
Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications—
Amendment 4: Enhancements for Very High Throughput for Operation
in Bands Below 6 GHz, IEEE Standard 802.11ac-2013, 2013.

[34] S. Tozlu,M. Senel,W.Mao, andA.Keshavarzian, ‘‘Wi-Fi enabled sensors
for Internet of Things: A practical approach,’’ IEEE Commun. Mag.,
vol. 50, no. 6, pp. 134–143, Jun. 2012.

[35] IEEE Standard for Information Technology—Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks—Specific Requirements. Part 11:Wireless LANMediumAccess
Control (MAC) and Physical Layer (PHY) Specifications. Amendment 2:
Sub 1 GHz License Exempt Operation, IEEE Standard 802.11ah-2016,
Dec. 2016.

[36] IEEE Standard for Information Technology—Local and Metropolitan
Area Networks—Specific Requirements—Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications Amend-
ment 6: Wireless Access in Vehicular Environments, IEEE Standard
802.11p-2010, Jul. 2010, pp. 1–51.

[37] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, ‘‘A comparative study of
LPWAN technologies for large-scale IoT deployment,’’ ICT Exp., vol. 5,
no. 1, pp. 1–7, Mar. 2019.

[38] Cellular System Support for Ultra Low Complexity and Low Throughput
Internet of Things, document TR 45.820 V13.1.0, 3GPP Technical
Specification Group GSM/EDGE Radio Access Network, 3GPP, Nov.
2015.

[39] N. Sornin, M. Luis, T. Eirich, T. Kramp, and O. Hersent, ‘‘LoRaWAN
specification,’’ LoRa Alliance 1, Lora Alliance, San Ramon, CA,
USA, Tech. Rep., 2015. Accessed: Jul. 2020. [Online]. Available:
https://www.lora-alliance.org

[40] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical Layer Procedures, document TS 36.213, 3GPP,
Oct. 2014. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/
136200_136299/136213/12.03.00_60/ts_136213v120300p.pdf

[41] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base
Station (BS) Conformance Testing (3GPP TS 36.141 Version 13.6.0
Release 13), document ETSI TS 136 141, V13.6.0, European Telecom-
munications Standards Institute, Jan. 2017.

[42] R. Narayanan and S. Kumar, ‘‘Revisiting software defined radios in
the IoT era,’’ in Proc. 17th ACM Workshop Hot Topics Netw., 2018,
pp. 43–49.

[43] (Jun. 2020). USRP SDR. [Online]. Available: https://www.ettus.com/
products/

VOLUME 10, 2022 26227

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

[44] (Jun. 2020).AD-FMCOMMS2-EBZ, AnalogModule. [Online]. Available:
https://www.analog.com/ en/design-center/evaluation-hardware-and-
software/evaluation-boards-kits/EVAL-AD-FMCOMMS2.html#eb-
overview

[45] (Jun. 2020). HackRF One. [Online]. Available: https://github.com/
mossmann/hackrf/wiki/HackRF-One

[46] (Jun. 2020).WARP Radio Board. [Online]. Available: http://warpproject.
org/trac/wiki/HardwareUsers Guides/RadioBoard_v1.4

[47] (Jul. 2020). LimeSDR Lime Microsystems—Software Defined Radio.
[Online]. Available: https://limemicro.com/products/boards/limesdr/

[48] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, and G. M. Voelker,
‘‘Sora: High-performance software radio using general-purpose multi-
core processors,’’ Commun. ACM, vol. 54, no. 1, pp. 99–107, Jan. 2011.

[49] T. Hentschel, M. Henker, and G. Fettweis, ‘‘The digital front-end of
software radio terminals,’’ IEEE Pers. Commun., vol. 6, no. 4, pp. 40–46,
Aug. 1999.

[50] (Jun. 2020). USB Specifications. [Online]. Available:
https://www.usb.org/documents

[51] IEEE Standard for Ethernet, IEEE Standard 802.3-2018
(Revision of IEEE Std 802.3-2015), Aug. 2018, pp. 1–5600, doi:
10.1109/IEEESTD.2018.8457469.

[52] J. Lawley, ‘‘Understanding performance of PCI express systems,’’ Xilinx
97, USA, White Paper WP350 (v1.2), 2014. Accessed: Jun. 2020.
[Online]. Available: https://www.xilinx.com/support/documentation/
white_papers/wp350.pdf

[53] (Jun. 2020). eXtensible Host Controller Interface for
USB (xHCI). [Online]. Available: https://www.intel.com/
content/www/us/en/products/docs/io/universal-serial-bus/extensible-
host-controler-interface-usb-xhci.html

[54] M. Vestias and H. Neto, ‘‘Trends of CPU, GPU and FPGA for high-
performance computing,’’ in Proc. 24th Int. Conf. Field Program. Log.
Appl. (FPL), Munich, Germany, Sep. 2014, pp. 1–6.

[55] T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide
for Engineers and Programmers. London, U.K.: Newnes, 2012.

[56] J. M. P. Cardoso, J. G. F. Coutinho, and P. C. Diniz, ‘‘High-performance
embedded computing,’’ in Embedded Computing for High Performance.
San Mateo, CA, USA: Morgan Kaufmann, 2017, pp. 17–56.

[57] H. Amiri and A. Shahbahrami, ‘‘SIMD programming using Intel vector
extensions,’’ J. Parallel Distrib. Comput., vol. 135, pp. 83–100, Jan. 2020.

[58] K. Li, M. Wu, G. Wang, and J. R. Cavallaro, ‘‘A high performance
GPU-based software-defined basestation,’’ in Proc. 48th Asilomar
Conf. Signals, Syst. Comput., Pacific Grove, CA, USA, Nov. 2014,
pp. 2060–2064.

[59] S. Bernier, F. Lévesque, M. Phisel, D. Zvernik, and D. Hagood, ‘‘Using
OpenCL to increase SCA application portability,’’ J. Signal Process. Syst.,
vol. 89, no. 1, pp. 107–117, Oct. 2017.

[60] M. Dubois, M. Annavaram, and P. Stenström, Parallel Computer
Organization and Design. Cambridge, U.K.: Cambridge Univ. Press,
2012.

[61] S. Mishra, N. K. Singh, and V. Rousseau, System on Chip Interfaces for
Low Power Design. San Mateo, CA, USA: Morgan Kaufmann, 2015.

[62] D. R. Kaeli, P. Mistry, D. Schaa, and D. P. Zhang, Heterogeneous
Computing With OpenCL 2.0. San Mateo, CA, USA: Morgan Kaufmann,
2015.

[63] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts
Essentials. Hoboken, NJ, USA: Wiley, 2014.

[64] (Apr. 2020). GNU Radio. [Online]. Available: https://www.gnuradio.org/
[65] (Apr. 2020). LabVIEW—National Instruments. [Online]. Available:

https://www.ni.com/en-us/shop/labview.html
[66] (Apr. 2020).MathWorks for MATLAB and Simulink. [Online]. Available:

https://www.mathworks.com/
[67] (May 2020). GCC, the GNU Compiler Collection. [Online]. Available:

https://gcc.gnu.org/
[68] (May 2020). Intel C++ Compiler Classic Developer Guide and

Reference. [Online]. Available: https://software.intel.com/content/
www/us/en/develop/documentation/cpp-compiler-developer-guide-and-
reference

[69] Y. M. Altman, Accelerating MATLAB Performance: 1001 Tips to Speed
Up MATLAB Programs. London, U.K.: Chapman & Hall, 2014.

[70] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), 2004, pp. 75–86.

[71] (May 2020). Intel Intrinsics Guide, Intel Intrinsic Instructions. [Online].
Available: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#

[72] VOLK. (May 2020). GNU Radio. [Online]. Available:
https://wiki.gnuradio.org/index.php/Volk

[73] (May 2020). NI LabVIEW Compiler. [Online]. Available:
https://www.ni.com/en-us/support/documentation/supplemental/10/ni-
labview-compiler–under-the-hood.html

[74] U. L. Rohde and T. T. N. Bucher, Communications Receivers: Principles
and Design, vol. 4. New York, NY, USA: McGraw-Hill, 1988.

[75] A. Bensky, Short-Range Wireless Communication. London,
U.K.: Newnes, 2019.

[76] S. Xie, Practical Filter Design Challenges and Considerations for
Precision ADCs, vol. 50. Norwood, MA, USA: Analog Dialogue, 2016.

[77] H. J. Landau, ‘‘Sampling, data transmission, and the Nyquist rate,’’ Proc.
IEEE, vol. 55, no. 10, pp. 1701–1706, Oct. 1967.

[78] L. Tan, J. Jiang, L. Tan, and J. Jiang, ‘‘Multirate digital signal processing,
oversampling of analog-to-digital conversion, and undersampling of
bandpass signals,’’ in Digital Signal Processing. New York, NY, USA:
Academic, 2019, pp. 529–590.

[79] A. X. Widmer, ‘‘8B/10B encoding and decoding for high speed
applications,’’ U.S. Patent 6 977 599, Dec. 20, 2005.

[80] E. Perahia and R. Stacey, Next Generation Wireless LANs:
802.11n and 802.11ac. Cambridge, U.K.: Cambridge Univ. Press,
2013.

[81] Perf. (Jun. 2020). Linux Kernel Profiling. [Online]. Available:
https://perf.wiki.kernel.org/index.php/Tutorial

[82] J. D. C. Little and S. C. Graves, ‘‘Little’s law,’’ in Building Intuition
(International Series in Operations Research & Management Science),
vol. 115, D. Chhajed and T. J. Lowe, Eds. Boston, MA, USA: Springer,
2008.

[83] ADS62Px9/x8. (Mar. 2020). Dual Channel ADC. [Online]. Available:
http://www.ti.com/lit/ds/slas635b/slas635b.pdf

[84] (Jul. 2020). NFC. [Online]. Available: https://github.com/jcrona/gr-nfc
[85] T. Guan, J. Han, and X. Zeng, ‘‘Highly flexible WBAN transmit-receive

system based on USRP,’’ in Proc. IEEE 10th Int. Conf. ASIC, Shenzhen,
China, Oct. 2013, pp. 1–4.

[86] (Jul. 2020). Scapy Radio With GNU Radio for Bleutooth and
Sigfox. [Online]. Available: https://bitbucket.org/cybertools/scapy-
radio/src/default/

[87] (Jul. 2020). Open Source Mobile Communications, Gr-GSM. [Online].
Available: https://osmocom.org/

[88] W. Dargie and C. Poellabauer, Fundamentals of Wireless Sensor
Networks: Theory and Practice. Chichester, U.K.: Wiley, 2010.

[89] Adam Thompson. (2019). GPU-Accelerated Signal Processing
With cuSignal. Accessed: Jul. 2020. [Online]. Available:
https://medium.com/rapids-ai/gpu-accelerated-signal-processing-with-
cusignal-689062a6af8

[90] (Jul. 2020). CUDA Toolkit Documentation. [Online]. Available:
http://docs.nvidia.com/cuda/

[91] M. Braun, J. Pendlum, and M. Ettus, ‘‘RFNoC: RF network-on-chip,’’ in
Proc. GNU Radio Conf., 2016, vol. 1, no. 1, pp. 1–7.

[92] Nutaq RTDEx: Accelerating GNU Radio Development With
Xilinx FPGAs. Accessed: Jul. 2020. [Online]. Available:
https://www.nutaq.com/blog/accelerating-gnu-radio-development-
xilinx-fpgas

[93] S. Ma, V. Marojevic, P. Balister, and J. H. Reed, ‘‘Porting GNU
radio to multicore DSP+ ARM system-on-chip—A purely open-source
approach,’’ in Proc. Karlsruhe Workshop Soft. Radios, 2014, pp. 21–28.

[94] J. D. Gaeddert. (Jul. 2020). Liquid: Open-Source DSP Library. [Online].
Available: https://liquidsdr.org/

[95] T. Schmid, ‘‘GNU radio 802.15. 4 en- and decoding,’’ Netw. Embedded
Syst. Lab., UCLA, LosAngeles, CA, USA, Tech. Rep. TR-UCLA-NESL-
200609-06, Jun. 2006.

[96] R. Schiphorst, F. W. Hoeksema, V. J. Arkesteijn, C.‘H. Slump,
E. A. M. Klumperink, and B. Nauta, ‘‘A GPP-based software-
defined radio front-end for WLAN standards,’’ in Proc.
4th IEEE Benelux Signal Process. Symp. Hilvarenbeek,
The Netherlands: IEEE Benelux Signal Processing Chapter, 2004,
pp. 203–206.

[97] K. Kang, Z. Zhu, D. Liu, W. Zhang, and H. Qian, ‘‘A software
defined open Wi-Fi platform,’’ China Commun., vol. 14, no. 7, pp. 1–15,
Jul. 2017.

26228 VOLUME 10, 2022

http://dx.doi.org/10.1109/IEEESTD.2018.8457469

D. M. Molla et al.: Software Defined Radio Platforms for Wireless Technologies

[98] Y. Li, J. Fang, K. Tan, J. Zhang, Q. Cui, and X. Tao, ‘‘Soft-LTE:
A software radio implementation of 3GPP long term evolution based
on sora platform,’’ in Proc. ACM Int. Conf. Mobile Comput. Netw.
(MobiCom), Jan. 2009, pp. 1–2.

[99] Z. Chen and J. Wu, ‘‘LTE physical layer implementation based on
GPP multi-core parallel processing and USRP platform,’’ in Proc.
9th Int. Conf. Commun. Netw. China, Maoming, China, Aug. 2014,
pp. 197–201.

[100] P. Robyns, P. Quax, W. Lamotte, and W. Thenaers, ‘‘A multi-channel
software decoder for the LoRa modulation scheme,’’ in Proc. 3rd Int.
Conf. Internet Things, Big Data Secur. (IoTBDS). Setúbal, Portugal:
SciTePress, 2018, pp. 41–51.

[101] J. Blum. (2016). LoRa-SDR. Source Code onGitHub. [Online]. Available:
https://github.com/myriadrf/LoRa-SDR

[102] Ettus Knowledge Base Contributors. RFNoC, Ettus Knowledge
Base. Accessed: Aug. 20, 2021. [Online]. Available:
https://kb.ettus.com/index.php?title=RFNoC&oldid=4228

[103] J. Kim, S. Hyeon, and S. Choi, ‘‘Implementation of an SDR system
using graphics processing unit,’’ IEEE Commun. Mag., vol. 48, no. 3,
pp. 156–162, Mar. 2010.

[104] X. Cai, M. Zhou, and X. Huang, ‘‘Model-based design for software
defined radio on an FPGA,’’ IEEE Access, vol. 5, pp. 8276–8283, 2017.

[105] N. Kumar, M. Rawat, and K. Rawat, ‘‘Software-defined radio transceiver
design using FPGA-based system-on-chip embedded platform with
adaptive digital predistortion,’’ IEEE Access, vol. 8, pp. 214882–214893,
2020.

[106] P. Guo, X. Qi, L. Xiao, and S. Zhou, ‘‘A novel GPP-based software-
defined radio architecture,’’ in Proc. 7th Int. Conf. Commun. Netw. China,
Kunming, China, Aug. 2012, pp. 838–842.

[107] Real-Time Linux. Accessed: Jul. 10, 2020. [Online]. Available:
https://wiki.linuxfoundation.org/realtime/start

[108] RTAI, the RealTime Application Interface for Linux. Accessed:
Jul. 10, 2020. [Online]. Available: https://www.rtai.org/

[109] ChronOS Real-Time Linux. Accessed: Jul. 10, 2020. [Online]. Available:
http://www.chronoslinux.org/wiki/Main_Page

[110] R. Hossain, M. Wesseling, and C. Leopold, ‘‘Application descrip-
tion concept with system level hardware abstraction,’’ in Proc.
IEEE Workshop Signal Process. Syst. Design Implement., Nov. 2005,
pp. 36–41.

[111] R. B. Abdallah, T. Risset, A. Fraboulet, and Y. Durand, ‘‘The radio virtual
machine: A solution for SDR portability and platform reconfigurability,’’
in Proc. IEEE Int. Symp. Parallel Distrib. Process., May 2009,
pp. 1–4.

[112] H. Ahn, S. Choi, M. Mueck, and V. Ivanov, ‘‘Data plane framework
for software-defined radio access network based on ETSI-standard
mobile device architecture,’’ IEEE Access, vol. 7, pp. 163421–163436,
2019.

[113] D. M. Molla, H. Badis, A. A. Desta, L. George, and M. Berbineau,
‘‘SDR-based reliable and resilient wireless network for disaster rescue
operations,’’ in Proc. Int. Conf. Inf. Commun. Technol. Disaster Manage.
(ICT-DM), Paris, France, Dec. 2019, pp. 1–7.

[114] K. Powell, A. S. Abdalla, D. Brennan, V. Marojevic, R. M. Barts,
A. Panicker, O. Ozdemir, and I. Guvenc, ‘‘Software radios for unmanned
aerial systems,’’ in Proc. 1st Int. Workshop Open Softw. Defined Wireless
Netw., 2020, pp. 14–20.

[115] M. Hessar, A. Najafi, V. Iyer, and S. Gollakota, ‘‘TinySDR: Low-
power SDR platform for over-the-air programmable IoT testbeds,’’ in
Proc. 17th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2020,
pp. 1031–1046.

[116] R. Utrilla, R. Rodriguez-Zurrunero, J. Martin, A. Rozas, and A. Araujo,
‘‘MIGOU: A low-power experimental platform with programmable logic
resources and software-defined radio capabilities,’’ Sensors, vol. 19,
no. 22, p. 4983, Nov. 2019.

[117] (Dec. 2020). USRP E3xx: USRP Embedded Series. [Online]. Available:
https://www.ettus.com/product-categories/usrp-embedded-series/

[118] (Dec. 2020). bladeRF 2.0 Micro. [Online]. Available:
https://www.nuand.com/bladerf-2-0-micro

[119] Y.-S. Kuo, P. Pannuto, T. Schmid, and P. Dutta, ‘‘Reconfiguring
the software radio to improve power, price, and portability,’’ in
Proc. 10th ACM Conf. Embedded Netw. Sensor Syst. (SenSys), 2012,
pp. 267–280.

DEREJE M. MOLLA received the B.S. degree in
electrical engineering from Hawassa University,
Hawassa, Ethiopia, in 2008, the M.S. degree in
telematics from Politecnico di Torino, Turin, Italy,
in 2013, and the Ph.D. degree in computer science
from Gustave Eiffel University, Marne la Vallée,
France, in 2022. From 2014 to 2018, he was
a Lecturer in communication engineering with
the Hawassa University Institute of Technology,
Hawassa. His research interests include to study

the performance of SDR platforms as a wireless transceiver for WSNs
and IoT, integration of SDR, and software defined networking for wireless
networks.

HAKIM BADIS received the M.S. degree in
distributed computing from Paris-Sud University,
Orsay, France, in 2002, and the Ph.D. degree in
mobile networks from LRI, Orsay, in 2005. He is
currently an Associate Professor in computer sci-
ence with Gustave Eiffel University, a Researcher
with the LIGM Laboratory, specialized in next
generation wireless networks, multi-hop and IoT
sensor networks, smart antennas (MIMO), soft-
ware defined radio, software defined networking,

discrete mathematics (graph theory and information theory), and distributed
algorithms and complexity.

LAURENT GEORGE received the Ph.D. degree in
computer science from Versailles Saint-Quentin-
en-Yvelines University, France, in 1998, and the
H.D.R. (Habilitation to Direct Research) degree
in temporal robustness of real-time embedded and
distributed systems from the University of Nantes,
France, in 2008. He is currently a Professor
and the Head of the Computer Science Depart-
ment, ESIEE Paris, Gustave Eiffel University;
the Head of the Software, Networks and Real-

Time Research Group; a Member of the LIGM Laboratory, Gustave Eiffel
University; and an Associate Researcher at INRIA Paris-Rocquencourt,
AOSTE Team. His research activities concern real time embedded systems,
software defined networks, network functions virtualization, and the IoT.

MARION BERBINEAU (Member, IEEE) received
the Engineering degree from Polytech’Lille
(EUDIL) in informatics, electronics, automatics,
in 1986, and the Ph.D. degree in electronics from
the University of Lille, France, in 1989. She
was the Director of the Leost Laboratory, from
2000 to 2013, and the Deputy Director of the
COSYS Department, from 2013 to 2017. She
has been the Research Director of Gustave Eiffel
University (previously Ifsttar and Inrets), since

2000. In addition to research activities and supervision of Ph.D. students,
she coordinates railway research at Gustave Eiffel University. She is also the
Pole Leader of the Intelligent Mobility pole of European Railway Research
Network of Excellence (Eurnex). Her current research interests include
wireless communications for connected and automatic vehicles (trains and
cars) (radio propagation, channel characterization and modeling, MCM,
MIMO, ITS-G5, GSM-R, LTE, and 5G NR). She has already participated
to a lot of European and National research projects since 1990. She is
also the Project Leader of the Emulradio4Rail Project in the framework of
Shift2Rail IP2 and involved in several other projects (X2RAIL3, X2RAIL4,
andX2RAIL5). She is on the reserve list of the Scientific Council of ShiftRail
Program.

VOLUME 10, 2022 26229

