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ABSTRACT Achieving reliable communication over different wavelength channels and modes is one of the
main goals of Mode Division Multiplexing-Wavelength Division Multiplexing (MDM-WDM) transmission.
The reliability can be described by the minimum Signal to Noise Ratio (SNR) margin which depends
on launch power, the gain of Few-Mode Erbium-Doped Fiber Amplifiers (FM-EDFA), and the nonlinear
impairments of Few-Mode Fiber (FMF). In this paper, we develop the Enhanced Gaussian Noise (EGN)
nonlinear model for FMF, which can be used in both weak and strong coupling regimes. We validate the
model by comparing simulation results with those obtained through the Split-Step Fourier Method. Based
on our proposed EGN model, we address the problem of joint optimized power and gain allocation based on
minimum SNRmargin maximization when accounting for practical FM-EDFA constraints such as saturation
power and maximum gain. The problem is solved using a convex optimization approach and considering
different scenarios such as the best equal power, optimized power, and joint optimized power and gain.
Results demonstrate that the minimum SNR margin improvement for the joint optimized power and gain
allocation compared to the best equal power allocation is 1.4 dB and 1.7 dB for MDM-single channel and
single-mode fiber-WDM systems, respectively.

INDEX TERMS Enhanced Gaussian noise model, few-mode fiber, power allocation, gain allocation.

I. INTRODUCTION
Mode Division Multiplexing (MDM) over Few-Mode
Fibers (FMF) or multi-core fibers has emerged as a possible
solution for overcoming the data-rate crunch in optical
communication networks. Theoretically, deploying FMF
that supports D spatial modes can increase capacity D
times [1]. The combination of MDM with Wavelength Divi-
sion Multiplexing (WDM) and polarization division multi-
plexing schemes further increases total capacity. However,
MDM-WDM systems suffer from both linear and nonlinear
transmission impairments in FMF. The linear impairments
include attenuation, chromatic and modal dispersion, and
linear coupling [2]–[6]. The linear coupling between spa-
tial (polarization) modes results in a power transfer from
one spatial (polarization) mode to another one [3]. When
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linear mode coupling is insignificant compared to the linear
polarization coupling, it is called weak coupling which is
more prone in short-range links [7], [8]. On the other hand,
in long-range links, strong coupling appears wherein the
linear mode coupling is significant compared to the linear
polarization coupling [3], [5]. For compensating FMF linear
effects in the weak coupling regime, each mode is processed
separately without using complex Multiple-Input-Multiple-
Output (MIMO) Digital Signal Processing (DSP) [8]. How-
ever, for compensating FMF linear effects in the strong
coupling regime, MIMO DSP is required [2]. It has been
shown that the MIMO DSP complexity can be used only in
the case of nearly equal group delays between the propagating
modes [9]–[11]. Graded index fibers, especially those with a
nearly parabolic index profile, can minimize the differential
mode group delay and are the most commonly employed
in current FMF-based MDM-WDM transmission [4]. The
nonlinear impairments include Kerr-based nonlinearity and
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nonlinear coupling [1]; these represent the main limitations
towards realizing practical MDM-WDM systems.

A. RELATED WORKS
During the last decade, several studies have investigated the
analyzed the impact of FMF nonlinearities; these include
those that focus mainly on numerical simulations [3] and
analytical predictions [12] combined with experimental ver-
ification [13]. The first step towards analyzing the impact
of FMF nonlinearity is to solve the Manakov equation [3].
While the Split Step Fourier Method (SSFM) can solve
the Manakov equation through many successive numeri-
cal simulation steps, it involves high computational com-
plexity. On the other hand, perturbation-based methods
can solve approximately the Manakov equation [14] and
result in analytical formulations that predict FMF non-
linearity. The Gaussian Noise (GN) model is the most
practical perturbation-based model which describes the non-
linear effects by an additive Gaussian noise source [26].
Existing publications on the GN model for FMF system
can be separated in two main categories: those involving
an integral-form [4],[10],[15],[20],[21] and those that are
closed-form [6],[22]. These formulations all involve and
Incoherent GN (IGN) model, which is based on the assump-
tion that the nonlinear interference noise created at each
span is accumulated incoherently at the receiver. This results
in an under-estimation of the Nonlinear Interference (NLI)
noise power spectral density [23]. Previously, we compared
the complexity performance of the closed-form IGN model,
integral-form IGNmodel, and SSFM for FMF [24]. Although
the closed-form IGN model is very fast, it can only be
applied to rectangular shaped Nyquist WDM [17], [18] and
is accurate when the channel spacing is close to the symbol-
rate [19]. Recently, we derived an integral-form coherent GN
model for FMF [25] and compared its complexity perfor-
mance with the IGN model. The GN model is only accurate
in Gaussian-shaped constellations for multi-span links [26].
The Gaussian distribution assumption of the transmitted sig-
nal leads to an over-estimation of the NLI noise power in
practical applications with modulation formats such as Phase
Shift Keying (PSK) and Quadrature Amplitude Modulation
(QAM). This over-estimation, which is greater in the first
spans (several dB) [16], in turn results in a 0.5 dB error on
predicting the optimum launched power. As a consequence,
the obtained gains with respect to the best equal power allo-
cation can be conservative and fall within the accuracy of
the GN model [16]. In Single Mode Fiber (SMF) systems,
the Enhanced GN (EGN) model, presented by [16]–[18],
removes the signal Gaussian distribution assumption and
does not have the above mentioned limitations.

One of the main goals of MDM-WDM systems is to
achieve reliable communication which is usually expressed in
terms of the Signal to Noise Ratio (SNR) margin between the
existing situation and the required error correction threshold.
Channels and modes with the lowest SNR margins have the
most likely failure. This failure can be minimized by the

minimum SNR margin maximization. The SNR margin is
directly related to the NLI noise, which is a dominating issue
for achieving reliable communication [10]. The NLI noise is
related to system parameters such as transmitted power and
FM-EDFA gain; therefore, power allocation [27]-[31] and
gain allocation [32] play essential roles in achieving reliable
communication.

B. NOVELTIES AND CONTRIBUTIONS
Previous researches on FMF systems have led to the devel-
opment of a closed-form IGN model, an integral-form IGN
model, and an integral-form coherent GN model. Despite the
improvements offered by the EGN model for simulating and
analyzing SMF systems, no such EGN model exists for FMF
systems. Therefore, in the first part of the paper, we derive
an EGN model for FMF. This model, which can be used in
both weak and strong coupling regimes, includes the first four
dispersion terms as well as Carrier Phase Estimation (CPE).
The significance of the first part of this paper include the
following:

• Presenting the EGN model for MDM-WDM system,
which can provide very accurate estimates of NLI noise
power for different numbers of spans, launched power,
and modulation format. Results from the ENG model
show that we can remove the 0.1 dB and 0.9 dB SNR
margins predicted by the integral-form IGN model [4]
in the weak and strong coupling regimes, respectively,
for the optimal (best equal) launched power per channel-
mode. This is important in applications such as resource
allocation, quality of transmission estimation, and opti-
cal performance monitoring.

• Proposing a formulation for NLI noise power wherein
different system and link parameters can be selected
independently (e.g., launch power of different channels
and modes, FM-Erbium Doped Fiber Amplifier (FM-
EDFA) gain of different spans, and fiber parameters
of different spans). This then allows for the formula-
tion of different marginal (or joint) resource allocation
problems at the physical and network layers (e.g., joint
optimized power and gain allocation).

The above referenced works use convex optimization for
power allocation in SMF links and networks. In our recent
work [24], we solved a power allocation problem for FMF
links using convex optimization without considering any
practical constraints, e.g., FM-EDFA saturation power. How-
ever, the joint optimized power and gain allocation has not
been investigated in FMF links and networks. Therefore,
in the second part of this paper, we use the proposed EGN
model to address the problem of joint optimized power and
gain allocation considering minimum SNR margin maxi-
mization. The contributions of the second part of this paper
include the following:

• Deploying power allocation in a multi-node lin-
ear MDM-WDM network by considering constraints
such as FM-EDFA saturation power and FM-EDFA
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FIGURE 1. Schematic diagram of the MDM-WDM system.

maximum gain. We show that the results are adaptable
to practical scenarios.

• Providing convex optimization solutions along with dis-
cussions on convergence speed and computational com-
plexity. This demonstrates that the proposed algorithms
can be implemented for joint optimized power and gain
allocation.

• Preparing a comprehensive investigation over joint opti-
mized power and gain allocation, optimal power alloca-
tion, and best equal power allocation in SMF-WDM and
MDM-single channel systems. We show that the joint
optimized power and gain allocation achieves 1.4 dB and
1.7 dB higher minimum SNRmargin compared with the
best equal power allocation in SMF-WDM and MDM-
single channel scenarios, respectively.

Note that in joint optimized power and gain allocation,
by optimized power allocation, we refer to the adjustment
of the power of different channels and modes at the source
node, and by optimized gain allocation we refer to adjust-
ing the FM-EDFA gain of different spans considering equal
FM-EDFA gain for different modes per span. In other words,
we do not adjust the FM-EDFA gain for different channels
and modes, rather we adjust the FM-EDFA gain for different
spans, since according to the current progress of FM-EDFA,
optimizing the FM-EDFA gain for different modes to a spe-
cific gain and power is still difficult to realize technically. In
the case of SM-EDFAs, the change in gain of one polarization
state will result in a change in gain of another polarization
state (at the same time); such problems also exist in FM-
EDFAs. The rest of this paper is organized as follows. In
Section II, we present the system and signal models. Next,
we derive the EGNmodel in Section III and present the prob-
lem statements in Section IV. We show the results and our
analysis in Section V and conclude the paper in Section VI.

II. SYSTEM AND SIGNAL MODEL
A. SYSTEM MODEL
Fig. 1 shows the MDM-WDM system investigated in which
the input data is a multiplexing of Nch channels, D spatial
modes, and 2 polarization modes. This link has Ns spans with
length Ls, combined by an FM-EDFA at the end of each
span for compensating the optical fiber loss. To minimize
the FMF nonlinear effects, neither modal nor chromatic dis-
persion is compensated [4]. The Kerr nonlinearity produced
by inter/intra channel and mode interactions is considered.
We consider bothweak and strong linear coupling among spa-
tial modes to be applicable in both short-haul and long-haul

links [3]–[6]. Moreover, a MIMO DSP at the receiver is
considered for compensating FMF linear effects, and a CPE
is used for carrier phase recovery [14].

B. SIGNAL MODEL
The following Ket notation represents the time domain of the
optical signal launched into the FMF link as

|A(0, t)〉 =
∞∑

i1=−∞

Nch∑
i2=1

2D∑
i3=1

ζiW
i2,i3
Tx (t − i1Ti2 )e

j2π fi2 t |i3〉,

(1)

where ζi is the digital symbol (for example, Quadrature
PSK (QPSK)) at time index i1, WDM channel index i2,
polarization-spatial mode index i3; i3 = 1, . . . , 2D, and i =
[i1, i2, i3]. Moreover,W i2,i3

Tx (t− i1Ti2 ) is the transmitted pulse
at time index i1. Moreover, i2 and i3 represent the WDM
channel and polarization-spatial mode index, respectively.
Ti2 shows the symbol duration and fi2 is the carrier frequency.
|i3〉 represents a one-hot vector wherein the i3th element is
one and the other elements are zero. Actually, i3 is used
to denote the polarization-spatial mode of the propagated
signal. In other words, i3 , p′, p, where p′; p′ = x, y is the
polarization mode index and p; p = 1, . . . ,D represents the
spatial mode index. It is obvious that i3 takes values between
1 and 2D, since each spatial mode is a multiplexing of 2 polar-
ization modes. Therefore, the time domain representation of
the optical signal launched into the FMF can be expressed as

|A(0, t)〉 =
2D∑
i3=1

Ai3 (0, t)|i3〉 ,


A1(0, t)
A2(0, t)
. . .

A2D−1(0, t)
A2D(0, t)



,


Ax,1(0, t)
Ay,1(0, t)
. . .

Ax,D(0, t)
Ay,D(0, t)

 , (2)

and

〈A(0, t)|

,
[
A∗1(0, t) A

∗

2(0, t) . . . A
∗

2D−1(0, t) A
∗

2D(0, t)
]

,
[
A∗x,1(0, t) A

∗

y,1(0, t) . . . A
∗
x,D(0, t) A

∗
y,D(0, t)

]
, (3)

whereAi3 (0, t) , Ap′,p(0, t) represents the time domain of the
propagated signal in i3th polarization-spatial mode (i.e., p′th
polarizationmode and pth spatial mode) and can be expressed
as

|Ai3 (0, t)〉 =
∞∑

i1=−∞

Nch∑
i2=1

ζiW
i2,i3
Tx (t − i1Ti2 )e

j2π fi2 t |i3〉, (4)

Considering (1), the propagated signal in the frequency
domain can be expressed by

|Ã(0, f )〉 =
∑
i

ζi|W̃ i
Tx(f )〉, (5)

23124 VOLUME 10, 2022



M. A. Amirabadi et al.: Joint Power and Gain Allocation in MDM-WDM Optical Communication Networks

where

|W̃ i
Tx(f )〉 , W̃ i

Tx(f )|i3〉

= W̃ i2,i3
Tx (f − fi2 )e

−j2π (f−fi2 )i1Ti2 |i3〉. (6)

III. EGN MODEL FORMULATION
The Manakov equation for the considered MDM-WDM link
can be expressed as [14]

∂|Ai3 (z, t)〉
∂z

= L+N , (7)

where L and N represent the linear and nonlinear effects in
the FMF. The linear effects L are given by [3]–[6]

L = −
αi3

2
|Ai3 (z, t)〉 + jβ0i3 |Ai3 (z, t)〉 − β1i3

∂|Ai3 (z, t)〉
∂t

−j
β2i3

2
∂2|Ai3 (z, t)〉

∂t2
−
β3i3

6
∂3|Ai3 (z, t)〉

∂t3
, (8)

where αi3 is the attenuation, βmi3 is the mth order Taylor
coefficient of the i3th polarization-spatial mode propagation
constant. The nonlinear effects N are comprised of [3]–[6]

N = j
2D∑

k3,m3,n3=1

γ̃i3k3m3n3

(
〈An3 (z, t)|Am3 (z, t)〉|A

∗
k3 (z, t)〉

+〈A∗k3 (z, t)|Am3 (z, t)〉|An3 (z, t)〉
)
, (9)

where

γ̃i3k3m3n3 =


4
3
(
2
3
)δi3k3 δi3m3 δi3n3 fi3k3m3n3γ , weak coupling

κγ , strong coupling,

with

κ =
∑

k3,m3,n3≤i3
i3,k3,m3,n3∈{1,2,...,2D}

32

2δi3k3 δi3m3 δi3n3
fi3k3m3n3

6D(2D+ 1)
,

and

fi3k3m3n3 =
Aeff√

Ii3 Ik3 Im3 In3

×

∫∫
Fi3 (x, y)Fk3 (x, y)Fm3 (x, y)Fn3 (x, y)dxdy,

γ is the Kerr nonlinearity coefficient, Ii3 =
∫∫

F2
i3
(x, y)dxdy,

Fi3 (x, y) is the spatial profile of i3th mode, and Aeff is the
effective area of the fundamental mode [3]–[6]. The first-
order perturbation approximation of the solution to the Man-
akov equation expresses the received signal as [14]

|A(z, t)〉 ' eLz|A(0, t)〉 +
∫ z

0
eL(z−ξ )N

(
eLξ |A(0, t)〉

)
dξ.

(10)

After compensating the linear effects of the FMF using
MIMO DSP, the received signal can be expressed as

|AR〉 ' |A(0, t)〉 +
∫ z

0
e−LξN (eLξ |A(0, t)〉)dξ, (11)

The L can be described in the frequency domain by its
Fourier transform F(eLz) = |eν(z,f )〉 where

νi3 (z, f ) = −
∫ z

0
(αi3 (ξ )+ jβi3 (ξ, f ))dξ. (12)

Moreover, βi3 (z, f ) can be calculated as

βi3 (z, f ) = β0i3 + β1i3 (2π f )+
β2i3

2
(2π f )2 +

β3i3

6
(2π f )3.

(13)

The second term in (11) represents the NLI noise which,
by considering (12), can be simplified in the frequency
domain as

|ñ(f )〉 = − j
∫∫
−∞

−∞

|η(f , f1, f2)〉

〈Ã(f + f1 + f2)|Ã(f + f2)〉|Ã(f + f1)〉df1df2, (14)

where

ηi3 (f , f1, f2)

,
Ns∑
s=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
∑

k3,m3,n3

γ̃i3,k3,m3,n3

×

∫ zs

zs−1
eνn3 (ξ,f+f1)+νm3 (ξ,f+f2)+ν

∗
k3
(ξ,f+f1+f2)−νi3 (ξ,f )dξ

,
Ns∑
s=1

s−1∏
n=1

(Gn Ln)3
Ns∏
n=s

(Gn Ln)ηi3,s(f , f1, f2), (15)

withGn being FM-EDFA amplifier gain and Ln being the loss
of the nth fiber span. Using matched filtering on the received
signal gives ∫

∞

−∞

〈gi(f )|Ã(f )〉Ridf , (16)

where |gi(f )〉 = gi(f )|i3〉 is the spectral shape of transmitted
pulse on the i2th channel and i3th polarization-spatial mode,
which has been normalized such that

∫
+∞

−∞
gi(f )df = 1. Ri is

the symbol rate of transmitted pulse on the i2th channel and
i3th polarization-spatial mode. Accordingly, the NLI noise
takes the form of (17), as shown at the bottom of the page,
at the receiver which can be written in (18), as shown at the
bottom of the next page.

ni(f ) = −j
Ns∑
s=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
∑
k,m,n

ζ ∗k ζmζn

∫∫∫
∞

−∞

|ηs(f , f1, f2)〉〈W̃ k
Tx(f + f1 + f2)|W̃

m
Tx(f + f2)〉

〈gi(f )|W̃ n
Tx(f + f1)〉Ridf1df2df (17)
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The variance of the NLI noise is derived in (19), as shown
at the bottom of the page, which depends on six infinite inte-
gration/summations where the following Poisson summation
helps to drop some of the interactions/summations:

∞∑
k=−∞

ejkf 2πT = T
∞∑

k=−∞

δ(f − k/T ). (20)

By considering the sinc pulses with finite bandwidth inter-
acting with only one Dirac delta function, summation over
the time index can be given by (19). Furthermore, equating
the arguments with equal atoms results in

f + f1 + f2 = v+ v1 + v2
f + f2 = v+ v2
f + f1 = v+ v1, (21)

and accordingly

f = v

f1 = v1
f2 = v2, (22)

which yields to simplify three integrals with v, v1, and v2.
The Kerr nonlinearity is cubic; therefore, the product

E[ni(f )n∗i (f )] depends on the product of six atoms. Note that
only combinations with an equal number of conjugate/non-
conjugate pairs are non-zero. In addition, it should be noted
that ζi are independent and identically distributed random
variables with zero mean and unit variance. The considered
CPE removes the average phase at the receiver (φ) [14].
In a perturbative frame, this corresponds to work with the
following nonlinear interference noise

n′i = ni + jφζi. (23)

The NLI noise variance in the EGN model can be interpreted
as a summation over the Second-Order Noise (SON) which
is usually called the GN contribution, Fourth-Order Noise

ni(f ) = − j
Ns∑
s=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
∑
k,m,n

ζ ∗k ζmζn

∫∫∫
∞

−∞

|ηs(f , f1, f2)〉W̃ k∗
Tx (f + f1 + f2)W̃

m
Tx(f + f2)g

i∗ (f )

W̃ n
Tx(f + f1)〈k3|m3〉〈i3|n3〉Ridf1df2df (18)

E[ni(f )n∗i (f )] =
Ns∑

s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
∑

kmnljo

E[ζ ∗k ζmζnζlζ
∗

j ζ
∗
o ]
∫
· · ·

∫
∞

∞

〈ηs(f , f1, f2)|ηs′ (v, v1, v2)〉W̃
k∗
Tx (f + f1 + f2)W̃

m
Tx(f + f2)g

i∗(f )W̃ n
Tx(f + f1)

W̃ j∗
Tx(v+ v2)W̃

l
Tx(v+ v1 + v2)W̃

o∗
Tx (v+ v1)g

i(v)〈k3|m3〉〈i3|n3〉〈j3|l3〉〈o3|i3〉Ridf1df2dfdv1dv2dv (19)

σ 2
EGN ,i2,p =

Ns∑
s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

[
3/4

∑
k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,q

×Pn2,pX
a
i2,p(k2,m2, n2, q)+ 1/4

∑
k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p(k2, k2, n2, q)+ Pk2,pPk2,qPn2,q

×X ci2,p(k2, n2, k2, q))+ 1/4
∑
n2

κ
(n2)
3 P2n2,qPn2,pX

d
i2,p(n2, n2, n2, q)

]
(25)

Mi2,p =

(
Pi2,p

Ns∏
n=1

(Gn Ln)/
( Ns∏
n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+
Ns∑
s=1

[(F(Gs − 1)hνBi2 )
Ns∏

n=s+1

(Gn Ln)]+
Ns∑

s,s′=1

s−1∏
n=1

(Gn Ln)3/2

Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

[
3/4

∑
k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,pX

a
i2,p(k2,m2, n2, q)

+1/4
∑
k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX

c
i2,p(k2, n2, k2, q))+ 1/4

∑
n2

κ
(n2)
3 P2n2,qPn2,p

×Xdi2,p(n2, n2, n2, q)
]
+ σ 2

RxN

))
/SNRreqi2,p (28)
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(FON), and Higher-Order Noise (HON) variances, i.e.,

σ 2
EGN = σ

2
GN + σ

2
FON + σ

2
HON . (24)

It is shown in Appendix A that the NLI noise variance
of the whole link becomes equal to (25), as shown at the
bottom of the previous page, where Pi2,p , Pi2,p,1 is the
launch power at the first span and Pi2,p,s = Pi2,p,s−1(Gs Ls)
is the launch power at the sth span. The power at each span
input is the multiplication of the power of the previous span
by the loss and FM-EDFA gain of that span. Note that (25)
represents both self- and cross-channel as well as intra- and
inter-modal interactions.

IV. PROBLEM STATEMENT
Based on the proposed notations in the previous section,
the SNR of i2th channel and pth mode can be expressed
as [26]

SNRi2,p =
Pi2,p

∏Ns
n=1(Gn Ln)

σ 2
ASE + σ

2
EGN ,i2,p

+ σ 2
RxN

, (26)

where σ 2
RxN is the receiver noise power. Moreover, the vari-

ance of the Amplified Spontaneous Emission (ASE) noise in
the receiver can be expressed as

σ 2
ASE =

Ns∏
n=1

(Gn Ln)(F(GBA − 1)hνBi2 )

+

Ns∑
s=1

[(F(Gs − 1)hνBi2 )

Ns∏
n=s+1

(Gn Ln)], ] (27)

where F is the amplifier noise figure, GBA is the booster
amplifier gain, h is Plank’s constant, and ν is the central
frequency. The SNRmargin of the i2th channel and pth mode
can be defined in (28), as shown at the bottom of the previous
page, where Mi2,p denotes SNR margin of the i2th channel

and pth mode, and SNRreqi2,p is the required SNR of the i2th
channel and pth mode. Therefore, the minimum SNR margin
maximization problem can be expressed in (29), as shown at
the bottom of the page, where the second constraint means
that the total power at the s-th FM-EDFA should be less
than the saturation power of the s-th FM-EDFA, and the
third constraint means that the s-th FM-EDFA gain should
be less than the maximum possible gain. The optimization
problem (29) is equivalent to the optimization problem (30),
as shown at the bottom of the next page, as the min-max of
a function is equivalent to the max-min of its inverse. (30) is
a non-convex optimization problem. To solve this problem,
we replace Pi2,p,Gi with e

P̂i2,p , egi in (30) and note that log(x)
is a monotonic function in x; thus, we get in (31), as shown at
the bottom of the next page, with the same minimum as (30).
By defining the slack variable β, (31) can be rewritten in (32),
as shown at the bottom of the next page.

We use the gradient descent algorithm in vector form to
solve (32). This is performed by introducing a vector p of
dimension DNch whose elements Pl; l = 1, 2, . . . ,DNch
are given by Pn,m, n = 1, 2, . . . ,Nch, m = 1, 2, . . .D.
In order to incorporate the values of Bn, we use a vector with
the same dimension as p defined as B = [B1,B1, . . . ,B1,
B2,B2, . . . ,B2, . . . ,BNch ,BNch , . . . ,BNch ] in which each Bn
has been repeated D times. Also, let X be a Nch ×
D × Nch × Nch × Nch × D dimensional tensor with
elements X (.)

l2,p
(k2,m2, n2, q). To match the latter dimen-

sions with p, we define a NchD × NchD × NchD × NchD
tensor, H , whose elements, H (.)

l (l1, l2, l3), are equal to
X (.)
l2,p

(k2,m2, n2, q) in different subscripts. Thus, (32) can be
expressed as (33). (33) is a convex optimization problem
(see Appendix B) and can be solved using many different
methods, e.g., the Bisection method [33]. The Bisection
method converts the main problem into a feasibility prob-
lem by selecting a region and choosing a candidate for
the objective function. The feasibility problem can then be
solved using the Lagrangian method [34]. In each step, the
region boundaries are updated based on the obtained solution

max
Gi,Pi2,p

min
i2,p,i

Pi2,p
Ns∏
n=1

(Gn Ln)/
( Ns∏
n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+
Ns∑
s=1

[(F(Gs − 1)hνBi2 )
Ns∏

n=s+1

(Gn Ln)]+
Ns∑

s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

[
3/4

∑
k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,p

Xai2,p(k2,m2, n2, q)+ 1/4
∑
k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX

c
i2,p(k2, n2, k2, q))

+1/4
∑
n2

κ
(n2)
3 P2n2,qPn2,pX

d
i2,p(n2, n2, n2, q)

]
+ σ 2

RxN

)
1

SNRreqi2,p

s.t.


Pi2,p,s = Pi2,p,s−1Gs Ls∑

i2,p
Pi2,p

∏s−1

n=1
(Gn Ln) ≤ P

FM−EDFAs
sat

Gs ≤ GFM−EDFAsmax

(29)
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for the feasibility problem from the previous step. In this
manner, the Bisection method converges to the optimum
objective.

Algorithm 1 summarizes the Bisection method for solv-
ing (33). The first step in this algorithm is to define appro-
priate upper (u) and lower (l) bounds for the search region

min
Pi2,p,Gi

max
i2,p,i

SNRreqi2,p

( Ns∏
n=1

(Gn Ln)(F(GBA − 1)hνBi2 )+
Ns∑
s=1

[(F(Gs − 1)hνBi2 )
Ns∏

n=s+1

(Gn Ln)]+
Ns∑

s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

[
3/4

∑
k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,qPn2,pX

a
i2,p(k2,m2, n2, q)

+1/4
∑
k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX

c
i2,p(k2, n2, k2, q))+ 1/4

∑
n2

κ
(n2)
3 P2n2,p

×Pn2,qX
d
i2,p(n2, n2, n2, q)

]
+ σ 2

RxN

)
/

(
Pi2,p

Ns∏
n=1

(Gn Ln)
)

s.t.


Pi2,p,s = Pi2,p,s−1Gs Ls∑

i2,p
Pi2,p

∏s−1

n=1
(Gn Ln) ≤ P

FM−EDFAs
sat

Gs ≤ GFM−EDFAsmax

(30)

min
P̂i2,p,gi

max
i2,p,i

log(SNRreqi2,p)+ log
( Ns∏
n=1

(egnLn)(F(GBA − 1)hνBi2 )+
Ns∑
s=1

[(F(egs − 1)hνBi2 )
Ns∏

n=s+1

(egnLn)]+
Ns∑

s,s′=1

s−1∏
n=1

(egn Ln)3/2
Ns∏
n=s

(egn Ln)1/2
s′−1∏
n=1

(egn Ln)3/2
Ns∏
n=s′

(egn Ln)1/2
[
1
4

D∑
q=1

Nch∑
k2,m2,n2=1

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 eP̂k2,p+P̂m2,q+P̂n2,q

3Xai2,p(k2,m2, n2, q)+
1
4

D∑
q=1

Nch∑
k2,n2=1

κ
(k2)
2 κ

(n2)
1 (e2P̂k2,q+P̂n2,p5Xbi2,p(k2, k2, n2, q)+ e

P̂k2,p+P̂k2,q+P̂n2,q

X ci2,p(k2, n2, k2, q))+
1
4

D∑
q=1

Nch∑
n2=1

κ
(n2)
3 e2P̂n2,q+P̂n2,pXdi2,p(n2, n2, n2, q)

]
+ σ 2

RxN

)
− (P̂i2,p +

Ns∑
n=1

gnlog(Ln))

s.t.


P̂si2,p = P̂s−1i2,p

+ gs + log(Ls)∑
i2,p

eP̂i2,p
∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(GFM−EDFAsmax )

(31)

min
β,P̂i2,p,gi

β

s.t.



log(SNRreqi2,p)+ log
(∏Ns

n=1
(egnLn)(F(GBA − 1)hνBi2 )+

∑Ns

s=1
[(F(egs − 1)hνBi2 )

∏Ns

n=s+1
(egnLn)]+

∑Ns

s,s′=1∏s−1

n=1
(egn Ln)3/2

∏Ns

n=s
(egn Ln)1/2

∏s′−1

n=1
(egn Ln)3/2

∏Ns

n=s′
(egn Ln)1/2

[
1
4

∑D

q=1

∑Nch

k2,m2,n2=1
κ
(k2)
1 κ

(m2)
1

κ
(n2)
1 eP̂k2,p+P̂m2,q+P̂n2,q3Xai2,p(k2,m2, n2, q)+

1
4

∑D

q=1

∑Nch

k2,n2=1
κ
(k2)
2 κ

(n2)
1 (e2P̂k2,q+P̂n2,p5Xbi2,p(k2, k2, n2, q)

+eP̂k2,p+P̂k2,q+P̂n2,qX ci2,p(k2, n2, k2, q))+
1
4

∑D

q=1

∑Nch

n2=1
κ
(n2)
3 e2P̂n2,q+P̂n2,pXdi2,p(n2, n2, n2, q)

]
+ σ 2

RxN

)
−(P̂i2,p +

∑Ns

n=1
gnlog(Ln)) ≤ β

P̂si2,p = P̂s−1i2,p
+ gs + log(Ls)∑

i2,p
eP̂i2,p

∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(GFM−EDFAsmax )

(32)
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for β. The defined upper bound is assigned to β, and the
problem (30) is converted to a feasibility problem. The feasi-
bility problem is solved using the Lagrangian method. If the
defined upper bound is lower than the optimal solution for
β, the feasibility problem does not have a solution. In other
words, the feasible set is empty and a higher upper bound
should be used. The defined lower bound can be tested and
adjusted in the same manner.

In the second step, the upper bound (u + l)/2 is assigned
to β. As with the first step, we test whether (u + l)/2 is the
upper or lower bound of the feasible set. Then, the upper and

lower bounds are updated. The second step is repeated until
we reach convergence.

At each iteration of Algorithm 1, the feasibility problem
is solved by the Lagrange duality method as summarized
in Algorithm 2. Furthermore, the second constraint can be
relaxed since it is satisfied by the objective function. The
Lagrangian function of (33), as shown at the bottom of the
page, is given by (34), as shown at the bottom of the page,
where λl, µs, and νs ∈ R+ are the Lagrangian multipliers.
Accordingly, the Lagrangian dual function of (33) can be
expressed as (35), as shown at the bottom of the page.

min
β,P̂l ,gs

β

s.t.



[
log(SNRreql )+ log

(∏Ns

n=1
(egnLn)(F(GBA − 1)hνBl)+

∑Ns

s=1
[(F(egs − 1)hνBl2 )

∏Ns

n=s+1
(egnLn)]+

∑Ns

s,s′=1∏s−1

n=1
(egn Ln)3/2

∏Ns

n=s
(egn Ln)1/2

∏s′−1

n=1
(egn Ln)3/2

∏Ns

n=s′
(egn Ln)1/2

[
1
4

∑DNch

l1,l2,l3=1
κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l3

3Ha
l (l1, l2, l3)+

1
4

∑DNch

l1,l2,l3=1
κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l25Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1
4

∑DNch

l1,l2=1
κ
′(l1)

3

e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]
+ σ 2

RxN

)
− (P̂l +

∑Ns

n=1
gnlog(Ln))

]
≤ β

P̂sl = P̂s−1l + gs + log(Ls)∑
l
eP̂l
∏s−1

n=1
(egnLn) ≤ P

FM−EDFAs
sat

gs ≤ log(GFM−EDFAsmax )

(33)

β +

DNch∑
l=1

λl

([
log(SNRreql )+ log

( Ns∏
n=1

(egnLn)(F(GBA − 1)hνBl2 )+
Ns∑
s=1

[(F(egs − 1)hνBl2 )
Ns∏

n=s+1

(egnLn)]+
Ns∑

s,s′=1

s−1∏
n=1

(egn Ln)3/2
Ns∏
n=s

(egn Ln)1/2
s′−1∏
n=1

(egn Ln)3/2
Ns∏
n=s′

(egn Ln)1/2
[
1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l25Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1
4

DNch∑
l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]
+ σ 2

RxN

)

−(P̂l +
Ns∑
n=1

gnlog(Ln))
]
− β

)
+

Ns∑
s=1

µs

(∑
l

eP̂l
s−1∏
n=1

(egnLn)− P
FM−EDFAs
sat

)
+

Ns∑
s=1

νs(gs − log(GFM−EDFAsmax )) (34)

inf
P̂l ,gi

β +

DNch∑
l=1

λl

([
log(SNRreql )+ log

( Ns∏
n=1

(egnLn)(F(GBA − 1)hνBl2 )+
Ns∑
s=1

[(F(egs − 1)hνBl2 )
Ns∏

n=s+1

(egnLn)]+
Ns∑

s,s′=1

s−1∏
n=1

(egn Ln)3/2
Ns∏
n=s

(egn Ln)1/2
s′−1∏
n=1

(egn Ln)3/2
Ns∏
n=s′

(egn Ln)1/2
[
1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l25Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1
4

DNch∑
l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]
+ σ 2

RxN

)

−(P̂l +
Ns∑
n=1

gnlog(Ln))
]
− β

)
+

Ns∑
s=1

µs

(∑
l

eP̂l
s−1∏
n=1

(egnLn)− P
FM−EDFAs
sat

)
+

Ns∑
s=1

νs(gs − log(GFM−EDFAsmax )) (35)
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Algorithm 1: Bisection Method to Solve Convex Opti-
mization Problem (33)
Initialization: upper bound u = 100, and lower bound
l = −10;
β ← u;
Solve convex problem (33) by Lagrangian method;

if P̂
∗(t)
== NAN then break;

β ← l;
Solve convex problem (33) by Lagrangian method;

ifP̂
∗(t)
== NAN then break;

while u− l ≤ ε do
β ← (u+ l)/2;
Solve convex problem (33) by Lagrangian method;

if P̂
∗(t)
== NAN then l ← β else u← β

end

(35) is a convex problem with respect to P̂l, gi, since the
dual problem is a convex optimization problem [34]. Note
that at each iteration of Algorithm 2, λl, µs, and νs are
updated based on the derivative of (35) with respect to λl, µs,
and νs which are shown in (36).

The convergence proof and complexity analysis of
Algorithms 1 and 2 are presented in Appendices C and D,
respectively.

V. SIMULATION RESULTS
In the first part of this section, the accuracy of the proposed
EGNmodel is examined for both weak and strong linear cou-
pling regimes using the well-known SSFM. The second part
of this section presents the simulation results of the proposed
joint optimized power and gain allocation problem. Note that
in the second part, we consider strong linear coupling as the
link ranges are long. The simulation parameters and their
values are presented in Tables 1, 2, and 3.

Algorithm 2: Lagrangian Duality Method to Solve the
Convex Problem (35)
Initialization: iteration counter t = 0, step size
parameter a > 0, b > 0, c > 0, and λ(0) � 0, µ(0)

� 0,
ν(0) � 0;
while achieving convergence do

Solve convex problem (35) with fixed λ,µ, and ν
values, and obtain optimized power P̂

∗(t)
, and

optimal gain g∗(t);

λ(t+1) =

[
λ(t)−a1λ

]+
;

µ(t+1)
=

[
µ(t)
−b1µ

]+
;

ν(t+1) =

[
ν(t)−c1ν

]+
;

update t = t + 1
end

TABLE 1. Simulation parameters.

A. ACCURACY OF THE PROPOSED EGN MODEL
FORMULATION
In this section, the signal propagation in weak and strong
linear coupling is simulated by approximating the output of
the Manakov equation (7) using the well-known SSFM with

1λl =

[
log(SNRreql )+ log

( Ns∏
n=1

(egnLn)(F(GBA − 1)hνBl2 )+
Ns∑
s=1

[(F(egs − 1)hνBl2 )
Ns∏

n=s+1

(egnLn)]+
Ns∑

s,s′=1

s−1∏
n=1

(egn Ln)3/2

Ns∏
n=s

(egn Ln)1/2
s′−1∏
n=1

(egn Ln)3/2
Ns∏
n=s′

(egn Ln)1/2
[
1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1

(e2P̂l1+P̂l25Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1
4

DNch∑
l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]

+σ 2
RxN

)
− (P̂l +

Ns∑
n=1

gnlog(Ln))
]

−β

1µs =
∑
l

eP̂l
s−1∏
n=1

(egnLn)− P
FM−EDFAs
sat

1νs = gs − log(GFM−EDFAsmax ) (36)
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FIGURE 2. SNR versus launched power per channel-mode, based on the proposed EGN model, IGN model [4], and the SSFM
simulation, for a) weak coupling (Ns = 1, Ls = 80 km) and b) strong coupling (Ns = 8, Ls = 80 km), considering MDM-WDM
system (D = 3,Nch = 3).

FIGURE 3. SNR versus number of channels for a) weak (Ns = 1, Ls = 80 km) and b) strong (Ns = 8, Ls = 80 km) coupling,
considering MDM-WDM system (D = 3).

TABLE 2. Nonlinear coupling coefficient (γ fpq(1/W /km)) [36].

TABLE 3. Attenuation (αp (dB/km)), and dispersion terms (β1p (ps/km),

β2p (ps2/km), and β3p (ps3/km)) [36].

logarithmic step-size [35] in the Python/Tensorflow environ-
ment.

As an example, we consider an MDM-WDM system with
(D = 3,Nch = 3). Fig. 2 compares the SNR versus launch
power per channel-mode, calculated using the proposed EGN

model, the IGN model presented in [4], and the SSFM sim-
ulation, for weak coupling (Ns = 1,Ls = 80 km), Fig. 2a,
and strong coupling (Ns = 8,Ls = 80 km), Fig. 2b. Note that
only the SNR of the central channel is plotted, and that QPSK
modulation is considered in the SSFM simulation. The results
highlight the accuracy of the proposed EGN model in both
weak and strong coupling regimes at all power levels. The
IGN model [4] matches with the SSFM in the linear regime
(i.e., at low power) and pseudo-linear regime (i.e., moderate
power). However, the accuracy of the IGN model decreases
when the power is increased to the nonlinear regime (high
power). Considering the optimum launch power per channel-
mode, the difference between the IGN and SSFM is almost
0.1 dB and 0.9 dB for weak coupling and strong coupling
regimes, respectively.

Figs. 3a and 3b show the SNR versus number of channels
for weak (Ns = 1,Ls = 80 km) and strong (Ns = 8,Ls =
80 km) coupling, respectively. In both plots, we consider the
optimum (best equal) launched power per channel-mode in
an MDM-WDM system with D = 3 spatial modes. The
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FIGURE 4. A 4-node linear network with 6 lightpaths.

proposed EGN model and SSFM simulation are in agree-
ment for differing number of channels. However, the differ-
ence between the IGN model and the SSFM simulation is
0.1 dB and 0.9 dB in the weak and strong coupling regimes,
respectively.

B. MINIMUM SNR MARGIN MAXIMIZATION
In this section, the results of joint optimized power and
gain allocation based on minimum SNR margin maximiza-
tion are presented. Three scenarios are compared including

a) best equal power, b) optimized power, and c) joint opti-
mized power and gain. In the first scenario, equal powers
are considered for the different channels and modes with
equal FM-EDFA gain in all spans. It is worth mentioning
that the FM-EDFA gain is equal to the span loss. In the sec-
ond scenario, different powers are allocated to the different
channels and modes with equal FM-EDFA gain in all spans.
In the third case, the allocated powers to each channel and
mode are different. Moreover, the FM-EDFA gain for each
span is optimized separately. Tomaximize theminimumSNR
margin based on the optimized power and gain allocation,
the 4-node linear network [37] with 6 lightpaths shown in
Fig. 4 is considered. Moreover, the SMF-WDM (D = 1,
Nch = 11) and MDM-single channel (D = 4,Nch = 1)
systems are considered [3], [4]. For the aforementioned sys-
tems, the lightpath number propagated by each channel and
mode is presented in Table 4. Furthermore, Binary PSK
(BPSK) modulation with 5.5 dB the corresponding required
SNR is considered [38]. There are 1, 3 and 4 spans respec-
tively between nodes 1 to 2, 2 to 3 and 3 to 4, and the span
length is Ls = 100 km. Therefore, the 4-node linear network
we consider is composed of 8 spans where at the end of each
span is an FM-EDFA. We consider strong coupling in all of
the simulations shown in this section as all of the channels and

FIGURE 5. a) Channel power and b) SNR margin versus channel number, and c) FM-EDFA gain versus span number, for joint optimized
power and gain allocation, optimized power allocation and best equal power allocation, considering SMF-WDM system.
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FIGURE 6. a) Mode power and b) SNR margin versus mode number, and c) FM-EDFA gain versus span number, for joint optimized
power and gain allocation, optimized power allocation and best equal power allocation, considering MDM-single channel system.

TABLE 4. Lightpath number propagated by each channel and mode.

modes propagate through long-range links. It is worth noting
that the point-to-point links often have a homogeneous set
where different channels/modes experience the same interact-
ing channels/modes. However, in multi-node linear networks,
the channels/modes may propagate different distances so that
they accumulate different NLI noise, experience fragmen-
tation/partial utilization (and hence see different interacting
channels/modes), and observe different FM-EDFA gains.

The results for the SMF-WDM system are summarized in
Fig. 5. Figs. 5a and 5b depict respectively the channel power
and SNRmargin versus channel number, while Fig. 5c shows
the FM-EDFA gain versus span number for joint optimized
power and gain allocation, optimized power allocation, and

best equal power allocation. The best equal power alloca-
tion, optimized power allocation, and joint optimized power
and gain allocation achieve 15.6 dB, 16.7 dB, and 17.3 dB
minimum SNR margin improvement, respectively. The joint
optimized power and gain allocation obtains improvements of
0.6 and 1.7 dB in minimum SNR margin compared with the
optimized power allocation and best equal power allocation,
respectively. This is due to the joint optimized power and gain
allocation havingmore degrees of freedom. Note that the cen-
tral channel indices have higher NLI noise (lower SNR mar-
gins); correspondingly, they should be allocated higher power
to have a reliable link. Moreover, channels that propagate
through longer lightpaths should be allocated higher power,
since longer lightpaths involve more ASE/NLI noise power.
In the joint optimized power and gain scenario, the last FM-
EDFA gain is set to its maximum possible value. This result
can be deduced from the SNR formulation where all terms
except for receiver noise are scaled withGNs (to minimize the
contribution of the receiver noise term, themaximumpossible
value should be chosen for GNs ).
The results for the MDM-single channel system are sum-

marized in Fig. 6: 6a and 6b demonstrate the mode power and
SNRmargin versusmode number, respectively, while 6c plots
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FIGURE 7. The SNR margin of the central channel in SMF-WDM scenario as a function of iteration number of
a) Algorithms 1 and b) Algorithm 2.

the FM-EDFA gain versus span number, for joint optimized
power and gain allocation, optimized power allocation, and
best equal power allocation. The minimum SNR margins
are 19.1 dB for best equal power allocation, 19.7 dB for
optimized power allocation, and 20.5 dB for joint optimized
power and gain allocation showing that the latter results in
improvements of 0.8 and 1.4 dB compared with optimized
power allocation and best equal power allocation, respec-
tively. The main difference between the different modes of
the same channel is their spatial profile. The LP11a/b mode
has a larger spatial profile and therefore, a higher overlap
with the other modes. Therefore, this mode has more NLI
noise power and lower SNR margin. Accordingly, it should
be allocated higher power than the other modes. Neither the
allocated powers nor the FM-EDFA gains are not symmetric,
since different modes have different NLI noise power which
is not symmetric due to the nonlinear coupling.

Figs. 7a and 7b plot the SNR margin of the central channel
in the SMF-WDM scenario as a function of iteration num-
ber of Algorithms 1 and 2. Although we consider the SNR
margin of the central channel in the SMF-WDM scenario,
the convergence speeds for the other channels and for the
MDM-single channel case are essentially the same. More-
over, due to the fact that Algorithm 2 is inside the while loop
of Algorithm 1, we consider the last iteration of Algorithm
1 for plotting the convergence speed of Algorithm 2, but the
same convergence speed can be observed for other iterations
within Algorithm 1. Algorithms 1 and 2 converge after 20 and
30 iterations, respectively. It should be noted that since we
consider the FMF nonlinear channel as an AWGN channel
with deterministic noise variance, we only need to deploy the
joint optimized power and gain allocation once (and offline).
Thus, the computational complexity and convergence speed
do not impact practical implementations at scale.

VI. CONCLUSION
The GN model for FMF nonlinearity overestimates the NLI
noise power in practical scenarios where the signal does not

TABLE 5. Valid combinations yielding non-zero E [ζ∗k ζmζnζlζ
∗

j ζ
∗
o ].

have a Gaussian distribution. For instance, in power alloca-
tion applications, this inaccuracy results in around 0.5 dB
error on predicting the optimum launch power so that the
obtained gains with respect to the best equal power allocation
are too conservative and fall within the inaccuracy of the GN
model. In the first part of this paper, we derived the EGN
model for FMF nonlinearity. Compared with the GN model
and based on SSFM simulations, our proposed EGN model
is capable of providing very accurate estimates of NLI noise
power at different number of spans in both the weak and
strong coupling regimes, as well as for any launch power
and modulation format. Achieving reliable communication
over different channels and modes is one of the main goals
in MDM-WDM networks, and the reliability is generally
quantified through the minimum SNR margin. Based on
the proposed EGN model, we formulated and solved the
joint optimized power and gain allocation problem using the
minimum SNR margin maximization in a multi-node linear
network. The joint optimized power and gain allocation com-
pared with best equal power allocation achieved 1.4 dB and
1.7 dB minimum SNR margin improvement in MDM-single
channel and SMF-WDM systems, respectively.

Two main directions can be continued in future MDM-
WDM investigations: (1) nonlinearity modelling and (2)
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TABLE 6. Computational complexity of Algorithms 1 and 2.

resource allocation. First, in terms of modelling, it should be
noted that we provided a series of investigations over IGN,
GN, and the EGN models for MDM-WDM systems. These
works are based on the Manakov equation which considers
the average of the FMF linear and nonlinear interactions.
Therefore, the derivation of IGN, GN, and EGN models
based on the nonlinear Schrodinger equation is a topic for
future work. Moreover, we derived the EGN formulation for
the observed NLI noise after CPE; it will also be important
to derive the EGN model for the NLI noise before CPE.
Finally, the existing IGN, GN, and EGN models only esti-
mate the amplitude of NLI noise and should be extended to
account for the phase. Second, different resource allocation
problems can be formulated based on our proposed IGN,
GN, and EGN models, including marginal (or joint) routing,
mode-wavelength assignment, and power allocation. These
problems can be solved by iterative optimization algorithms
or by deep learning methods. We also only considered a
linear multi-node network while nonlinear multi-node net-
works, dynamic networks, and flex-grid networks can also
be explored.

APPENDIX A: THE NLI NOISE VARIANCE OF THE i2TH
CHANNEL AND pTH MODE
The GN, FON, and HON terms in the EGN model can be
expressed in (37), (38), and (39), as shown at the top of the
next page, respectively.

κ1 = µ2,

κ2 = µ4 − 2µ2
2,

κ3 = µ6 − 4µ4µ2 + 12µ3
2,

µn = E[|ζk|n]. (40)

Table 5 shows valid combinations yielding non-zero
E[ζ ∗k ζmζnζlζ

∗

j ζ
∗
o ] where FONb, FONc, and GNa are the

removed terms from the EGN model formulation due to
the CPE assumption. Moreover, σ (i3,odd)

EGN (f ) = σ
(i3,even)
EGN (f ),

and σ (p)
EGN (f ) = σ

(i3,odd)
EGN (f ) + σ (i3,even)

EGN (f ). Therefore, the
GN, FON, and HON contributions of the NLI noise variance
of the i2th channel and pth mode can be written in (41),
(42), and (43), as shown at the bottom of the 15th page,
respectively.

The power spectral density of the optical signal launched
into the fiber can be written as G̃i2,pTx (f ) = Pi2,pgi2,p(f ).

Accordingly, the GN, FON, and HON contributions of the
NLI noise variance of the i2th channel and pth mode can be
expressed in (44), (45), and (46), as shown at the bottom of
the 15th page, respectively. Therefore, the NLI noise variance
can be written in (47), as shown at the top of the 17th page.

APPENDIX B: CONVEXITY PROOF OF OPTIMIZATION
PROBLEM (33)
The expression (48), as shown at the top of the 17th page is
convex in P̂l, gs, since log−sum−exp(x) is a convex function
in x [34]. The constraint function of (33) is the summation
of some convex functions, therefore, it is convex [34]. The
objective and constraint functions of (33) are convex, there-
fore, (33) is a convex optimization problem [34].

APPENDIX C: CONVERGENCE OF ALGORITHMS 1 AND 2
In Algorithm 2, (35) is solved at each iteration as a function
of P̂l and gn using the gradient descent algorithm which will
converge to its optimum solution due to the convexity of the
dual problem [34]. This procedure is repeated by Algorithm 1
in the ‘‘While loop’’, by which the minimum SNR margin
is improved successively until convergence to the maximum
value. Note that Algorithm 1 will stop searching while the
difference between the upper and lower bounds becomes less
than ε.

APPENDIX D: COMPUTATIONAL COMPLEXITY OF
ALGORITHMS 1 AND 2
For computational complexity analysis of Algorithms 1
and 2, we will count the total number of additions and
multiplications per iteration. Note that exp(x) =

∑n1
i=0 x

i/i!
and log(x) =

∑n1
i=1(−1)

i+1(x − 1)i/i can be computed
by 2n1 multiplications and n1 additions, with n1 as an
integer where we get better accuracy for a larger n1. The
computational complexity of Algorithms 1 and 2 is pre-
sented in Table 6. Each iteration of Algorithm 1 is com-
posed of updating the search boundaries and solving the
convex problem (33) by the Lagrangian method described in
Algorithm 2 in a while loop. Therefore, the complexity of
Algorithm 1 is (Niter1 + 1) × (complexity of Algorithm2 +
1 addition +1multiplication) with Niter1 as total iterations.
Each iteration of Algorithm 2 is composed of solving (35) by
the gradient descent algorithm and updating the Lagrangian
variables in a while loop. Therefore, the complexity of
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Algorithm 2 is Niter2 × (complexity of gradient descent+
3 additions +3multiplications) with Niter2 as total iterations.
To compute the complexity of the gradient descent algo-
rithm, we should note that it updates P̂l and gn within Niter3
iterations according to the following formula

P̂(i+1)l = P̂(i)l − µ∇P̂l ,

g(i+1)n = g(i)n − µ∇gn , (49)

with µ as the step size, ∇P̂l and ∇gn as the gradient of
objective function of (35) regarding P̂l and gn, respectively.
Therefore, each iteration of the gradient descent algorithm
has DNch[Ns{2Ns + n1(9 + 6Ns + 19DNch)} + DNch{10n1
+5}]+Ns[Ns{n1(6+6Ns+25DNch)}+2+Ns] multiplications
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Ns∑
s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

1
4

∑
n2

κ
(n2)
3 P2n2,qPn2,p

∫∫∫
∞

−∞

ηs(f , f1, f2)

η∗s′ (f , f1, f2)g
n2,q(f + f1 + f2)gn2,q(f + f2)gi2,p(f )gn2,p(f + f1)df1df2df (46)
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σ 2
EGN ,i2,p

=

Ns∑
s,s′=1

s−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s

(Gn Ln)1/2
s′−1∏
n=1

(Gn Ln)3/2
Ns∏
n=s′

(Gn Ln)1/2
D∑
q=1

3
4

∑
k2,m2,n2

κ
(k2)
1 κ

(m2)
1 κ

(n2)
1 Pk2,qPm2,q

Pn2,pX
a
i2,p(k2,m2, n2, q)+

1
4

∑
k2,n2

κ
(k2)
2 κ

(n2)
1 (P2k2,qPn2,p5X

b
i2,p(k2, k2, n2, q)+ Pk2,pPk2,qPn2,qX

c
i2,p(k2, n2, k2, q))+

1
4

∑
n2

κ
(n2)
3 P2n2,qPn2,pX

d
i2,p(n2, n2, n2, q)

where



Xai2,p(k2,m2, n2, q) =
∫∫∫

∞

−∞

ηs(f , f1, f2)η∗s′ (f , f1, f2)g
m2,q(f +f2)gk2,q(f +f1+f2)gn2,p(f +f1)gi2,p(f )df1df2df

Xbi2,p(k2, k2, n2, q) =
∫∫∫

∞

−∞

ηs(f , f1, f2)η∗s′ (f , f1, f2)g
k2,q(f +f1+f2)gk2,q(f +f2)gi2,p(f )gn2,p(f +f1)df1df2df

X ci2,p(k2, n2, k2, q) =
∫∫∫

∞

−∞

ηs(f , f1, f2)η∗s′ (f , f1, f2)g
n2,q(f +f1+f2)gk2,q(f +f2)gi2,p(f )gk2,p(f +f1)df1df2df

Xdi2,p(n2, n2, n2, q) =
∫∫∫

∞

−∞

ηs(f , f1, f2)η∗s′ (f , f1, f2)g
n2,q(f +f1+f2)gn2,q(f +f2)gi2,p(f )gn2,p(f +f1)df1df2df

(47)

log
( Ns∏
n=1

(egnLn)(F(GBA − 1)hνBi2 )+
Ns∑

s,s′=1

[(F(egs − 1)hνBi2 )
Ns∏

n=s+1

(egnLn)]+
Ns∑

s,s′=1

s−1∏
n=1

(egn Ln)3/2
Ns∏
n=s

(egn Ln)1/2
s′−1∏
n=1

(egn Ln)3/2
Ns∏
n=s′

(egn Ln)1/2
[
1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

1 κ
′(l2)

1 κ
′(l3)

1 eP̂l1+P̂l2+P̂l33Ha
l (l1, l2, l3)+

1
4

DNch∑
l1,l2,l3=1

κ
′(l1)

2 κ
′(l2)

1 (e2P̂l1+P̂l25

Hb
l (l1, l1, l2)+ e

P̂l1+P̂l2+P̂l3H c
l (l1, l2, l3))+

1
4

DNch∑
l1,l2=1

κ
′(l1)

3 e2P̂l1+P̂l2Hd
l (l1, l1, l2)

]
+ σ 2

RxN

)
− (P̂l +

Ns∑
n=1

gnlog(Ln)) (48)

DNch[Ns{14+ 11DNch+n1(5+4Ns+46DNch)}]+Ns[Ns{9+
10DNch + n1(5+ 7Ns + 25DNch)}] additions.
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