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ABSTRACT We have investigated graphene-based three various refractive index sensors (split ring resonator
(SRR), split ring resonator with thin wire (SRRTW), and thin wire (TW) refractive index sensors) for the
encoding and sensing-based applications. The sensors are designed to detect the presence of hemoglobin
biomolecules with high sensitivity. The results are analyzed in the form of transmittance, and electric
field and detailed sensitivity analysis is also carried out for the proposed graphene-based refractive index
sensors for four various concentrations of hemoglobin biomolecules. We have also investigated the sensor’s
performance in terms of quality factor, Q, and figure of merit (FOM). The encoding of ‘0’ and ‘1’ is attained
by varying the graphene chemical potential fulfilling the one-digit coding. An array of these sensors can
then be used for encoding-based applications. The detailed analysis of reported sensors is also carried
out by checking the effect of varying physical parameters such as substrate thickness, split ring gap, and
thin wire width on tunability. These sensors can be applied in biomedical or encoding-based applications.
Experiments are performed using XGBoost regressor to determine, whether simulation time and resources
can be reduced by using regression analysis to predict the transmittance values of intermediate frequency or
not. Experimental results prove that regression analysis using XGBoost Regressor can reduce the simulation
time and resources by at least 70 percent.

INDEX TERMS Encoding, graphene, refractive index sensor, machine learning, sensing, tunable, XGBoost
regressor.

I. INTRODUCTION
Metamaterials have been the area of interest for decades
due to their remarkable physical characteristics [1]. While
studying the characteristics of metamaterials, Veselago [2]
anticipated the extraordinary phenomenon associated with
optical manipulation, biomimetic plastic, and effective ther-
moelectric materials [3]–[5]. The progressive research on
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metamaterial has been paced since the 21st century but is
still in the primary stage. These metamaterials properties are
due to the interaction between the structure and the incident
electromagnetic waves. Even if there are various available
technologies for biomarker sensing detection [6], [7] i.e.,
surface plasmon resonance (SPR) [8], localized surfacer plas-
mon resonance (LSPR) [9], surface-enhanced Raman scat-
tering (SERS) [10] and terahertz (THz) [11]. THz wave’s
frequency range (0.1 THz to 10 THz) corresponds to the
vibrational frequencies of various essential biomolecules [12]
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such as proteins, RNA, DNA, making it possible to detect
biomolecules vibrations. Terahertz spectroscopy has emerged
as a potential technique for label-free, non-contact, and non-
destructive analysis of chemical and biological compounds
in recent years [13], [14]. The newly established portable
THz spectroscopic tool, in particular, can detect and identify
object materials on-site with a high signal-to-noise ratio [15],
further promoting terahertz detection technology advance-
ment. Although due to the low power of the terahertz source,
the detection sensitivity available for quantitative and qual-
itative analysis is currently limited. Using a blend of meta-
material and terahertz time-domain spectroscopy devices to
boost detection sensitivity is a smart option. This combination
approach has been used bymany researchers in the disciplines
of medicine [16], [17], food safety [18], [19], and other fields.

Biosensors are used for multiple purposes including sens-
ing, and encryption-based applications [20]–[22]. Biosensors
are basically classified into labeled biosensors and label-
free biosensors [23]. Due to the selectivity and affinity-
like features, label-free biosensors are widely in demand.
Hemoglobin biomolecules from blood can also be detected
using label-free biosensors [24]. The sensing properties of
label-free biosensors [25] are improved due to the recent
advancements in carbon nanotubes and graphene material
and as a reason, graphene is highly used for sensing appli-
cations [26]. In the diagnosis of bacterial and viral infections,
biosensors are extremely quick and accurate [27], [28]. These
diseases can also be detected with high sensitivity using grat-
ing sensors [29]. Photovoltaic devices, defense, and therapeu-
tic applications can all benefit from graphene biosensors [30].
The graphene-based biosensor can also be constructed with
a metasurface, which lowers the fabrication cost while pro-
viding good stability and sensitivity [31], [32]. Infrared and
terahertz areas are well controlled by a graphene-based meta-
material sensor. They are cost-effective because they can
be easily nanofabricated using the electron beam lithogra-
phy technique [33]. In these metasurface-based graphene
structures, optical properties including transmittance, absorp-
tion, and reflection aid in boosting overall sensitivity and
efficiency [34]. Graphene sensors can be utilized for both
encoding and decoding, allowing them to be employed in
encryption applications.

Patel et al. presented a highly sensitive and tunable
biosensor using phase change material for the detec-
tion of hemoglobin biomolecules with the sensitivity of
1000 nm/RIU [35]. The environmental crisis can also be ana-
lyzed using a graphene peptide-based absorber sensor [36].
Hemoglobin biomolecules with high sensitivity can also be
detected using graphene-based leaky-wave optical absorber
sensor design [37]. Raman signals at various combination
which is used for biomedical diagnosis can also be detected
using graphene gold nanoribbons substrate in an absorber
sensor [38]. The basic parameters defining a sensor’s perfor-
mance are sensitivity, quality factor, Q, and figure of merit
(FOM). Wang designed a sensor that achieved a Q factor of
14.2 and FOM of 3.3 [39]. Various biosensor applications

have been discussed in detail by Patel and co-authors [40].
Barzegar-parizi et al. presented a refractive index sensor in
which the absorptance bands were sensitive to the coating
layer’s refractive index [41]. Harnsoongneon et al. reported
a glucose-composition detector based on a hybrid system of
ELC resonator and coplanar waveguide, particularly for D-
glucose sensing [42]. Varshney and co-authors presented a
highly sensitive differential sensor based on ELC that can
detect the purity of a product which is proved by detecting
termite infestation in wood with 150 MHz of absolute sen-
sitivity [43]. Li et al. presented a biosensor for the detec-
tion of ethanol solution using THz-based metamaterials and
achieved the highest sensitivity of 112 GHz/RIU [44].

In this paper, we have explored three various graphene-
based refractive index sensors of three different metasurface
patterns of the split ring resonator, split ring resonator with
thin wire, and thin wire. Among these three designs of refrac-
tive index sensors, we have achieved encoding and tuning
characteristics for two designs that are split ring resonator and
split ring resonator with thin wire refractive index sensors.
For these designs, encoding is achieved by varying graphene
chemical potential values for coding of ‘0’ and ‘1’. We have
also achieved the sensing properties that can help to detect
hemoglobin biomolecules of four various concentrations. The
designs and mathematical models of the sensors are pre-
sented in section II. Section III contains the detailed analysis
of sensors w.r.t variation in different physical parameters
and sensitivity, FOM, and Q factor analysis for all the pro-
posed sensors. The encoding and tunability characteristics
are illustrated in this section. Section IV contains a detailed
description of behavior prediction using XGBoost Regressor.
Behavior prediction can be used to reduce the simulation time
and resources. Concluding notes are presented in section V.

II. DESIGN AND MODELING
The graphic illustrations of the split ring resonator graphene-
based refractive index sensor are represented in Fig. 1. The
proposed structure is varied for three resonator variations 1)
Split ring resonator (SRR) design, 2) Split ring resonator with
thin wire (SRRTW) design and 3) Thin wire (TW) design.
The designs of SRR, SRRTW, and TW are represented in
Fig. 1(a), Fig. 1(d), and Fig. 1(e), respectively. Fig. 1(b)
and Fig. 1(c) represent the top view and front view of the
proposed structure, respectively. The structures are designed
by placing a ground plane of glass followed by various meta-
surface patterns using graphene material. The parameters of
the designs are: the structure size, L × L is 10 µm× 10 µm,
glass layer thickness, Sh, is 1.5 µm, thickness of hemoglobin
layer, Hh, is 1.5 µm, the graphene material is allotted to the
SRR, SRRTW, and TW and the height of graphene layer is
set to 0.34 nm. The gap, hg, of SRR is set to 0.5 µm, the
width of SRR, W , is 3 µm, and the size of SRR, CL × CL ,
is set as 8 µm × 8 µm, the length and width of thin wire,
IL and IW , are 4 µm and 1 µm, respectively. Here we have
designed a metasurface based refractive index sensor. For
the structure to be metasurface, it is mandatory to have at
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least one dimension less than or equal to lambda/4, lambda
being the wavelength of operation. In the samemanner, all the
sensors can be designed. Split ring resonator (SRR) design is
having a gap that provides capacitive effect which is required
for metasurface enabled sensors. The comparison of the same
design is also providedwith the less capacitive thinwire (TW)
design. The sensitivity should be higher for substrates with
lower permittivity [45].

Sensitivity is calculated by measuring the difference
between the peak of two biomolecules and used as a perfor-
mance measure for sensors. As the difference between peak
increases the quality of the sensor is increased due to the
improved sensitivity. Sensitivity can be calculated using the
following equation (1) [46]:

S =
1f
1n

(1)

where 1f is the frequency difference between two trans-
mittance peaks and 1n is the difference of refractive index
between these two points.

A figure of merit (FOM) is the ratio of the sensitivity and
the resonance frequency line width which is highly used to
specify sensing proficiency. FOM is described as [47]:

FOM =
S

FWHM
(2)

where s stands for the sensitivity and the FWHM indicates
the full width at half maximum.

A quality factor Q is another merit to ensure sensor’s
performance and it is defined as [44]:

Q =
fr

FWHM
(3)

The conductivity σs of graphene is derived from equations
(1-4) [48]

ε (ω) = 1+
σs

ε0ω∇
(4)

σintra =
−je2kBT

π}2(ω − j20)

(
µc

kBT
+ 2 ln

(
e
µc
kBT + 1

))
(5)

σinetr =
−je2

4π}
ln
(
2 |µc| − (ω − j20)}
2 |µc| + (ω − j20)}

)
(6)

σs = σintra + σinter (7)

where permittivity is indicated using ε, vacuum’s permittivity
is indicated by ε0, angular frequency is labeled as ω, and
the thickness of the monolayer graphene sheet is labeled as
∇. The conductivity of graphene can be classified into two
different parts, intraband conductivity (σintra) and interband
conductivity (σinetr ). Boltzmann’s constant is indicated by
its usual symbol, kB, } stands for the reduced plank’s con-
stant, room temperature is labeled as T, and the graphene
chemical potential indicated by µc, can be defined as µc =
}νF
√
πCVDC/e, where the gate voltage is labeled as VDC ,

νF is identified as the Fermi velocity, and C stands for the
capacitance.

The permittivity and permeability equations of metasur-
faces are presented in equations (6-10). These parameters

FIGURE 1. Illustrations of THz metamaterial-based refractive index
sensor (a) 3D view of SRRTW sensor design, (b) top view of SRRTW sensor
design, (c) front view of SRRTW sensor design, (d) top view of SRR sensor
design, (e) top view of TW sensor design.

are obtained from the impedance and the refractive index as
presented in the equations [49]:

z = ±

√
(1+ S11)2 − S221
(1− S11)2 − S221

(8)

eink0d =
S21

1− S11 z−1z+1

(9)

n =
1
k0d

[{[
ln (eink0d )

]′′
+ 2mπ

}
− i

[
ln (eink0d )

]′]
(10)

ε =
n
z

(11)

µ = nz (12)

where the impedance is referred to as z, S11 and S21 are
referred to reflection and transmission coefficients, respec-
tively, the refractive index is labeled as n, the maximum
length of the unit element is labeled as d, wavenumber is
labeled using k0, a branch due to the periodic characteristics
of sinusoidal function is labeled using m, permittivity and
permeability are labeled by their usual symbols, ε, and µ,
respectively.
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FIGURE 2. Transmittance band for proposed refractive index sensors for various GCP values where 0.1 eV and 0.9 eV can be encoded
as ‘0’ and ‘1’, respectively. GCP variation for (I) in normalized scale: (a) SRR sensor design, (b) SRRTW sensor design, and (c) TW sensor
design. (II) in dB scale: (a) SRR sensor design, (b) SRRTW sensor design, and (c) TW sensor design.

III. RESULTS AND DISCUSSION
Designs presented in Fig. 1 are simulated using COMSOL
Multiphysics software using Finite Element Method (FEM)
and the results in the terms of transmittance and electric field
are reported in Fig. 2-8. The transmittance plots of all the
three designs SRR, SRRTW, and TW refractive index sensors
are illustrated in Fig.2 for the frequency range of 0.2 THz
to 0.6 THz, respectively. The plot shows the transmittance
plot for all three designs for two different values of graphene
chemical potential (GCP) of 0.1 eV and 0.9 eV, respectively.
For SRR refractive index sensor, the transmittance drops to
0.578 for GCP of 0.9 eV at the frequency value of 0.411 THz
and for GCP value of 0.1 eV, the near-perfect transmittance
is achieved as observed in Fig. 2 (a). The same phenomena
follow for the SRRTW refractive index sensor. For SRRTW
the transmittance value drops to 0.622 at 0.41 THz for the
GCP of 0.9 eV and the near-unity transmittance is achieved
for the GCP value of 0.1 eV as observed in Fig. 2(b). For
the TW refractive index sensor, we only achieved the near-

perfect transmittance response for both the values of GCP of
0.1 eV and 0.9 eV. As represented in Fig. 2(c), there is no drop
in the transmittance plot for the TW sensor in the frequency
range of 0.2 THz to 0.6 THz. Due to the drop at 0.9 eV GCP
value, we can use SRR and SRRTW refractive index sensors
as encoders as the GCP values of 0.1 eV and 0.9 eV can be
encoded as ‘0’ and ‘1’, respectively. Fig. 2(I) and Fig. 2(II) are
provided for two different scales including normalized and
dB, respectively. This concept can be expanded by producing
an array of these sensors and can be used to code the entire
surface with various codes. This coded surface can be used
to generate the signal that will be transmitted and decoded by
another coded surface.

Later we checked if the tuning can be achieved using
varying some of the physical parameters such as SRR and
SRRTW gap, the width of TW, substrate thickness, etc., and
the particular results are presented in Fig. 3 and Fig. 4, respec-
tively. Fig.3 (a), (c) illustrates the variation in transmittance
plot w.r.t to increment in the split ring gap of SRR, and

24800 VOLUME 10, 2022



S. K. Patel et al.: Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor With Behavior Prediction

FIGURE 3. Variation in transmittance band for proposed refractive index sensor (a) variation in transmittance w.r.t variation
in the gap of SRR. (b) The right shift and increment in transmittance are observed as the gap of SRR is increased as observed
in the fermi energy plot. (c) variation in transmittance w.r.t variation in the gap of SRRTW. (d) The right shift and increment in
transmittance are observed as the gap of SRRTW is increased as observed in the fermi energy plot. (e) variation in
transmittance w.r.t variation in the width of TW. There is no variation in transmittance for the given frequency range for TW
refractive index sensor. (f) There is no variation in transmittance except for W = 500 nm w.r.t increment in width of TW as
observed in the fermi energy plot.

SRRTW refractive index sensor design, respectively. Fig. 3(e)
represents the variation in transmittance plot w.r.t change in
the width of the TW refractive index sensor. It is observed
from Fig. 3(a) that for SRR refractive index sensor, as the gap
of the split ring is increased, the transmittance starts to shift
towards the right and the transmittance starts to increase as
well. The highest drop of 0.578 in transmittance is achieved
for the split ring gap of 500 nm and it gradually decreases as
the split ring gap is varied in the range of 500 nm to 5000 nm
in the step of 500 nm. The right shift and increment in trans-
mittance are clearly visible in the fermi energy plot presented
in Fig. 3(b). The main reason behind the transmission shift
is as we increase the SRR gap, due to the capacitive effect
the resonance changes which in a way affect the transmission
response. Due to this reason as we increase the SRR gap
the transmission shifts towards the right. It is deduced from

Fig. 3(c) that for the SRRTW refractive index sensor, as the
split ring gap is increased, the transmittance starts to shift
towards the right and the transmittance starts to increase as
well. The highest drop of 0.622 in transmittance is achieved
for the split ring gap of 500 nm and it gradually decreases
as the split ring gap is varied in the range of 500 nm to
5000 nm in the step of 500 nm. The right shift and increment
in transmittance are clearly visible in the fermi energy plot
presented in Fig. 3(d). It is observed in Fig. 3(e) that there
is no effect of increasing TW width on transmittance plot in
the frequency range of 0.2 THz to 0.6 THz. A slight drop
is achieved at the end of the band for the thin wire width of
500 nm which is observable in Fig. 3(f).

Fig. 4 shows the variation in transmittance w.r.t substrate
thickness for all the three SRR, SRRTW, and TW refrac-
tive index sensor designs. Substrate thickness is varied from
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FIGURE 4. Variation in transmittance band for proposed refractive index sensor (a) variation in transmittance w.r.t variation
in substrate thickness of SRR. (b) There is no variation in transmittance band but as substrate thickness reaches 1900 nm
transmittance slightly shifts right as observed in the fermi energy plot. (c) variation in transmittance w.r.t variation in
substrate thickness of SRRTW. (d) There is no variation in transmittance band but as substrate thickness reaches 1800 nm
transmittance slightly shifts right as observed in the fermi energy plot. (e) variation in transmittance w.r.t variation in
substrate thickness of TW. There is no variation in transmittance for the given frequency range for TW refractive index sensor.
(f) There is no variation in transmittance w.r.t increment in substrate thickness of TW as observed in the fermi energy plot.

1500 nm to 2000 nm with the step increment of 100 nm and
the results are obtained for the frequency range of 0.2 THz
to 0.6 THz. Fig. 4(a) shows the change in transmittance plot
w.r.t increment in substrate thickness for SRR refractive index
sensor. It is observed that there is a very slight change in
transmittance as we increase the substrate thickness.

The Fermi plot represented in Fig. 4(b) indicates the slight
right shift in transmittance plot after substrate thickness
reaches 1900 nm. The variation in transmittance plot w.r.t
increasing substrate thickness for SRRTW refractive index
sensor is reported in Fig. 4(c). It is observed that there is a very
slight change in transmittance as we increase the substrate
thickness. The plot also indicates that the transmittance drop
starts to reduce slightly as the substrate thickness reaches
1800 nm which can also be observed in Fig. 4(d). Fermi
plot represented in Fig. 4(d) also indicates the slight right

shift in transmittance plot after substrate thickness reaches
1800 nm. The change in transmittance plot w.r.t increasing
substrate thickness for TW refractive index sensor is reported
in Fig. 4(e). It is observed that there is no change in transmit-
tance as we increase the substrate thickness which can also
be observed in the fermi plot represented in Fig. 4(f). Thus,
We achieved the optimal structural parameters to achieve
maximum sensitivity that is SRR gap G = 500 nm, and
substrate thickness, St = 1500 nm. We have also checked the
impact of the angle of incidence on the transmittance plot
to verify if the transmittance reaches unity or not for any
angle for all the three refractive index sensor designs and
the related results are reported in Fig. 5. The results were
obtained for the angle of incidence from 0◦ to 80◦ with the
step increment of 10◦. Fig. 5(a) shows the impact of the
angle of incidence on the transmittance plot for the SRR
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FIGURE 5. Variation in transmittance band for proposed refractive index sensor (a) variation in transmittance w.r.t
variation in the angle of incidence for SRR. (b) The decrement in transmittance is observed as the angle of incidence
for SRR is increased as observed in the fermi energy plot. (c) variation in transmittance w.r.t variation in the angle of
incidence for SRRTW. (d) The decrement in transmittance is observed as the angle of incidence for SRRTW is increased
as observed in the fermi energy plot. (e) variation in transmittance w.r.t variation in the angle of incidence for TW.
There is no variation in transmittance for the given frequency range for TW refractive index sensor. (f) There is no
variation in transmittance except for θ = 70◦, 80◦ w.r.t increment in the angle of incidence for TW as observed in the
fermi energy plot.

TABLE 1. Analysis of sensitivity of proposed refractive index sensors for
the various concentration of hemoglobin.

refractive index sensor. It is observed that the transmittance
drop starts to increase as the angle of incidence increases as

TABLE 2. Sensor’s performance analysis in terms of q factor and FOM.

we can observe in Fig. 5(b). The highest transmittance drop
is observed for 80◦ and the transmittance drops to 0.217 at
0.411 THz. Fig. 5(c) shows the effect of angle of incidence
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FIGURE 6. Transmittance band for proposed refractive index sensors for
the various concentration of hemoglobin of 10 g/l, 20 g/l, 30 g/l, 40 g/l
with refractive indices of 1.34 RIU, 1.36 RIU, 1.39 RIU, 1.43 RIU,
respectively. variation of transmittance spectrum for the various
concentration of hemoglobin in the frequency range of 0.2 THz to 0.6 THz
for (a) SRR sensor design, (b) SRRTW sensor design, and (c) TW sensor
design.

FIGURE 7. Electric field intensity for SRR refractive index sensor for
various frequencies (a) 0.2 THz, (b) 0.35 THz, (c) 0.41 THz, (d) 0.48 THz, (e)
0.6 THz.

on transmittance plot for SRRTW refractive index sensor. The
same phenomenon of the transmittance drop to increase as the
angle of incidence increases follows here as we can observe in

TABLE 3. Comparison table of proposed structures with previously
published work.

FIGURE 8. Electric field intensity for SRRTW refractive index sensor for
various frequencies (a) 0.2 THz, (b) 0.35 THz, (c) 0.41 THz, (d) 0.48 THz, (e)
0.6 THz.

Fig. 5(d). The highest transmittance drop is observed for 80◦

and the transmittance drops to 0.249 at 0.411 THz. Fig. 5(e)
shows the effect of angle of incidence on transmittance plot
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FIGURE 9. Predicted absorption value by XGBoost regressor vs. actual absorption value for SRR angle of incidence (a) 0◦ (T.C.-0.6) (b) 0◦ (T.C.-0.7) (c) 0◦
(T.C.-0.8) (d) 0◦ (T.C.-0.9) (e) 10◦ (T.C.-0.6) (f) 10◦ (T.C.-0.7) (g) 10◦ (T.C.-0.8) (h) 10◦ (T.C.-0.9).

for TW refractive index sensor. It is observed that the trans-
mittance remains at near-unity as the angle of incidence
increases and slightly decreases for the angle of incidence of
70◦, and 80◦ as we can observe in Fig. 5(e) and 5(f). The
proposed refractive index sensor is wide-angle insensitive for
0◦ to 60◦ which is a plus point of the proposed structure.
Many previously available works are not so wide-angle insen-
sitive [50]–[53]. Our structure’s transmittance response varies
(20% to 30%) only for the angle of incidence of 70◦ and 80◦.
To resolve this issue, we can construct a platform to avoid the
incidence of the rays at these particular angles and achieve
the proper transmittance response and avoid cross-sensitivity,
and in the same manner the measurement error.

The standard range used for hemoglobin and urine
biomolecule concentrations is 10 g/l, 20 g/l, 30 g/l, 40 g/l,
50 g/l, 60 g/l, and so on. For the purpose of this exper-
iment, we have used the first four of these concentra-
tions for hemoglobin biomolecules with refractive indices of
1.34 RIU, 1.36 RIU, 1.39 RIU, 1.43 RIU, respectively and
the particular results for all three designs are presented in

Fig. 6. The variation in the transmittance plot is clearly visible
for the various concentration of hemoglobin and sensitivity
analysis is also carried out for all the three SRR, SRRTW, and
TW refractive index sensors. The detailed sensitivity analysis
is also presented in the form of a table in Table 1 and the
sensitivity is calculated from the change in transmittance drop
at various frequencies and the change in the refractive index
for those particular drops. The results for SRR refractive
index sensor are reported in Fig. 6(a) and the maximum sensi-
tivity of 150 GHz/RIU is achieved. The same analysis for the
SRRTW refractive index sensor is carried out and the related
result is illustrated in Fig. 6(b). The maximum sensitivity
of 133 GHz/RIU is achieved for this particular design. It is
distinctly clear from Fig. 6(c) that there is no tuning observed
for the TW refractive index sensor in the frequency range of
0.2 THz to 0.6 THz. From Fig. 6 and Table 1, it is evidently
clear that the highest tuning of 150 GHz/RIU is achieved for
SRR refractive index sensor design.

The electric field results for SRR refractive index sensor
are reported in Fig. 7. Five results for various frequencies
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FIGURE 10. Prediction accuracy (R2 Score) of XGBoost Regressor models trained for various values of SRR angle of incidence and (a) Test Case T.C.-0.9
(b) Test Case T.C.-0.8 (c) Test Case T.C.-0.7 (d) Test Case T.C.-0.6.

are illustrated and these frequencies are chosen to showcase
the behavior of the sensor for the selected frequency range of
0.2 THz to 0.6 THz. We have selected five various frequen-
cies from this span 0.2 THz, 0.35 THz, 0.411 THz, 0.48 THz,
and 0.6 THz. It is distinctly clear that as the frequency reaches
from 0.2 THz to 0.411 THz the absorption gradually increases
due to the decrement in transmittance. And the absorption
starts to reduce as frequency reaches from 0.411 THz to
0.6 THz due to the near-unity transmittance response. We can
see the red color indicating the absorption of a wave near
the metasurface in Fig. 7(c) for 0.411 THz frequency. The

electric field results of the SRRTW refractive index sen-
sor are presented in Fig. 8 for five various frequencies of
0.2 THz, 0.35 THz, 0.410 THz, 0.48 THz, 0.6 THz. It is
distinctly clear that as the frequency reaches from 0.2 THz
to 0.410 THz the absorption increases gradually because
of the decrement in transmittance. Meanwhile, the absorp-
tion starts to reduce as frequency reaches from 0.410 THz
to 0.6 THz due to the near-unity transmittance response.
We can see the red color indicating the absorption of a wave
near the metasurface in Fig. 7(c) and 8(c) for 0.411 THz
frequency.
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FIGURE 11. Predicted absorption value by XGBoost regressor vs. actual absorption value for SRR gap
(nm) (a) 500 (T.C.-0.6) (b) 500 (T.C.-0.7) (c) 500 (T.C.-0.8) (d) 500 (T.C.-0.9) (e) 1000 (T.C.-0.6) (f) 1000
(T.C.-0.7) (g) 1000 (T.C.-0.8) (h) 1000 (T.C.-0.9).

FIGURE 12. Prediction accuracy (R2 Score) of XGBoost Regressor models trained for various values
of SRR gap and (a) Test Case T.C.-0.9 (b) Test Case T.C.-0.8 (c) Test Case T.C.-0.7 (d) Test Case T.C.-0.6.
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FIGURE 13. Predicted absorption value by XGBoost regressor vs. actual absorption value for SRR substrate thickness (nm) (a) 1500 (T.C.-0.6)
(b) 1500 (T.C.-0.7) (c) 1500 (T.C.-0.8) (d) 1500 (T.C.-0.9) (e) 1600 (T.C.-0.6) (f) 1600 (T.C.-0.7) (g) 1600 (T.C.-0.8) (h) 1600 (T.C.-0.9).

We have also justified the sensor’s performance using the
main parameters such as the figure of merit and quality factor,
Q. The detailed analysis is shown in Table 2. In recent times,
researchers are investigating the highly sensitive metamate-
rial structures with high Q value and low FOM. From the
results obtained in Table 2, we can indistinctly deduce that
the proposed SRR and SRRTW refractive index sensors are
highly sensitive with high Q factor and low FOM as we
have achieved the Q factor of 10.54 and 9.32 and FOM of
3.85 and 3.02 for SRR and SRRTW refractive index sensors,
respectively. We have combined the TW and SRR arrays for
the purpose of comparing the results of all three structures.
And it is clear from the results that for desired frequency
range, the SRR resonators are achieving better sensitivity
compared to the other two structures. Thus, it is clear that
the proposed SRR and SRRTW refractive index sensors are
highly sensitive and check for the basic evaluation param-
eters such as quality factor Q, and figure of merit (FOM).
Furthermore, we have compared the proposed designs with
previously published in a form of a table and presented them
in Table 3.

IV. BEHAVIOR PREDICTION USING XGBoost REGRESSOR
Regression analysis is a machine learning approach to pre-
dict the value of a dependent variable using the value(s) of

independent/correlated variable(s). Experiments are designed
and performed using simulation data and XGBoost regres-
sor to predict the absorption values for intermediate/missing
frequency values. In these experiments, frequency is used as
an independent variable and absorption value is used as a
dependent variable.

A. XGBoost REGRESSOR
XGBoost is one of the most widely used and efficient
Machine Learning methods of recent time. It uses a series of
weak tree-based regressors with low efficiency to construct
a strong regressor with high prediction performance [64].
Consider the dataset used to train the regression model is D=
{{xi, yi: i= 1 to n}, here xi is independent variable and yi is a
dependent variable (actual target value). XGBoost regressor
uses equation (13) to compute the predicted target value

ȳi =
K∑
k=1

fk (xi), fk ∈ F (13)

Here, fk is kth regression tree and fk(xi) is the output of fk for
ith input sample from dataset D and ȳi is the predicted target
value. The objective function of equation (14) is used to train
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FIGURE 14. Prediction accuracy (R2 Score) of XGBoost regressor models trained for various values of SRR substrate thickness and (a) Test Case T.C.-0.9
(b) Test Case T.C.-0.8 (c) Test Case T.C.-0.7 (d) Test Case T.C.-0.6.

the regression tree fk.

Obj =
n∑
i=1

l
(
yi, ȳi

)
+

K∑
k=1

�(fk ) (14)

�(fk) = γT +
1
2
λ [[w]]2 (15)

Here, function ‘l’ computes the loss using actual, predicted
value whereas λ and T are regularization arguments to avoid
overfitting of the regressor model.

Covariance, Pearson’s Correlation, Spearman’s Correla-
tion between frequency and absorption values for assorted
SRR hemoglobin refractive index, SRR substrate thickness,
SRR angle of incidence, SRR gap is shown in supplementary

Fig. S1 (a-d) respectively. It indicates that linear correlation
between frequency values and absorption values is absent and
higher degree polynomial feature values of frequencymust be
used in the regression analysis process. Higher degree poly-
nomial features for an independent variable ‘X are calculated
using equation (16).

[1, x1i , x
2
i , x

3
i , . . . , x

m
i ] (16)

Here, m is the required degree of polynomial features. Sta-
tistical metric R2 score is used to determine the prediction
effectiveness of the XGBoost regressor. Equation (17) is used
to compute the value of the R2 score.

R2 = 1−
SSred
SS tot

(17)
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FIGURE 15. Predicted absorption value by XGBoost regressor vs. actual absorption value for SRR hemoglobin refractive index (n) (a) 1.34 (T.C.-0.6)
(b) 1.34 (T.C.-0.7) (c) 1.34 (T.C.-0.8) (d) 1.34 (T.C.-0.9) (e) 1.36 (T.C.-0.6) (f) 1.36 (T.C.-0.7) (g) 1.36 (T.C.-0.8) (h) 1.36 (T.C.-0.9).

SS tot =
N∑
i=1

(Actual Target i − Average Target Value)
2 (18)

SSred =
∑N

1
(Predicted Target Valuei

−Actual Target Valuei)
2 (19)

XGoost Regressor models are implemented using Python
3.8, scikit machine learning library version 0.23.1, and
xgboost library version 1.5.0. R2 score values are rounded
off to 3 decimal places while presenting the results.

Four Test cases T.C.-0.6, T.C.-0.7, T.C.-0.8, and T.C.-
0.9 are designed to evaluate the prediction effectiveness of
the XGBoost regressor when it is trained using a minimum
number of samples. In Test case T.C.-N, XGBoost regressor
is trained using randomly selected (1-N) ∗ 100 percentage of
simulation samples, and prediction effectiveness of trained
regressor is tested using remaining N∗100 percentage sim-
ulation samples.

Scatter plots of predicted absorption values by XGBoost
regressor vs actual absorption values obtained during sim-
ulation for SRR angle of incidence 0◦ and test cases T.C.-
0.6, T.C.-0.7, T.C.-0.8, T.C.-0.9 are shown in Fig. 9 (a-d)
respectively. Similarly, for SRR angle of incidence 10◦ and
test cases T.C.-0.6, T.C.-0.7, T.C.-0.8, T.C.-0.9 are shown in
Fig. 9 (e-h) respectively.

Prediction proficiency (R2 Score) of XGBoost regres-
sor models trained for various values of SRR angle of
incidence and test cases T.C.-0.9, T.C.-0.8, T.C.-0.7, T.C.-
0.6 is made known in Fig. 10 (a-d) respectively. It can be
observed that, even though the regressor model is trained
using only 10 percent of simulation samples (T.C. 0.9),
it can predict the absorption values for the remaining 90 per-
cent frequency values with high accuracy (more than or
equal to 0.999 R2 score). Whereas, when the regressor
model is trained using 40 percent simulation samples (T.C.-
0.6), it can predict the absorption values for remaining fre-
quency values with extremely high accuracy (R2 score of
1.0). These results show that the use of XGBoost regressor
can reduce the simulation time and resources by at least
60 percent.

Scatter plots of predicted absorption values by XGBoost
regressor vs actual absorption values obtained during simu-
lation for SRR gap 500 nm (T.C.-0.6), 500 nm (T.C.-0.7),
500 nm (T.C.-0.8), 500 nm (T.C.-0.9), 1000 nm (T.C.-0.6),
1000 nm (T.C.-0.7), 1000 nm (T.C.-0.8), 1000 nm (T.C.-0.9)
is shown in Fig. 11 (a-h) respectively.

Prediction proficiency (R2 Score) of XGBoost regres-
sor models trained for various values of SRR gap and test
cases T.C.-0.9, T.C.-0.8, T.C.-0.7, T.C.-0.6 is made known in
Fig. 12 (a-d) respectively. It can be observed that, even though

24810 VOLUME 10, 2022



S. K. Patel et al.: Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor With Behavior Prediction

FIGURE 16. Prediction accuracy (R2 Score) of XGBoost regressor models trained for various values of SRR hemoglobin refractive index and (a) Test
Case T.C.-0.9 (b) Test Case T.C.-0.8 (c) Test Case T.C.-0.7 (d) Test Case T.C.-0.6.

the regressormodel is trained using only 10 percent of simula-
tion samples (T.C. 0.9), it can predict the absorption values for
the remaining 90 percent frequency values with high accuracy
(more than or equal to 0.999 R2 score). Whereas, when
the regressor model is trained using 30 percent simulation
samples (T.C.-0.7), it can predict the absorption values for
remaining frequency values with extremely high accuracy
(R2 score of 1.0). These results show that the use of XGBoost
regressor can reduce the simulation time and resources by at
least 70 percent.

Scatter plots of predicted absorption values by XGBoost
regressor vs actual absorption values obtained during simula-
tion for SRR substrate thickness 1500 nm (T.C.-0.6), 1500 nm
(T.C.-0.7), 1500 nm (T.C.-0.8), 1500 nm (T.C.-0.9), 1600 nm
(T.C.-0.6), 1600 nm (T.C.-0.7), 1600 nm (T.C.-0.8), 1600 nm

(T.C.-0.9) is shown in Fig. 13 (a-h) respectively. Predic-
tion proficiency (R2 Score) of XGBoost regressor models
trained for various values of SRR substrate thickness and test
cases T.C.-0.9, T.C.-0.8, T.C.-0.7, T.C.-0.6 is made known in
Fig. 14 (a-d) respectively. These results show that the use
of XGBoost regressor can reduce the simulation time and
resources by at least 70 percent.

Scatter plots of predicted absorption values by XGBoost
Regressor vs actual absorption values for SRR hemoglobin
refractive index 1.34 n (T.C.-0.6), 1.34 n (T.C.-0.7), 1.34
n (T.C.-0.8), 1.34 n (T.C.-0.9), 1.36 n (T.C.-0.6), 1.36 n
(T.C.-0.7), 1.36 n (T.C.-0.8), 1.36 n (T.C.-0.9) is shown in
Fig. 15 (a-h) respectively. Prediction proficiency (R2 Score)
of XGBoost regressor models trained for various values of
hemoglobin concentration and test cases T.C.-0.9, T.C.-0.8,
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T.C.-0.7, T.C.-0.6 is made known in Fig. 16 (a-d) respec-
tively. These results show that the use of XGBoost regressor
can reduce the simulation time and resources by at least 70
percent.

V. CONCLUSION
Three graphene-based refractive index sensors with different
metasurface patterns of SRR, SRRTW, and TW are pre-
sented. Among these three designs, SRR and SRRTW can be
used for encoding and tuning purposes due to their various
plot for GCP values of 0.1 eV and 0.9 eV and frequency
shift response w.r.t various concentrations of hemoglobin
biomolecules. The SRR and SRRTW refractive index sen-
sors achieved the highest sensitivity of 150 GHz/RIU and
133 GHz/RIU, respectively. The transmittance results are
also then analyzed for various physical parameters and the
results distinctly show that the frequency spectrum tunes for
the variation in split ring gap, and angle of incidence. The
results also indicate a slight tuning in frequency spectrum
w.r.t substrate thickness of sensor. The electric field results
also confirm the presented results of the sensor. The GCP is
varied for 0.1 eV and 0.9 eV and can be encoded as ‘0’ and
‘1’, respectively. This concept then can be expanded by using
an array of these types of sensors and applied in encoding and
decoding-based applications. We have covered all the basic
parameters defining the high quality of the sensor and we can
conclude that the proposed sensors are highly sensitive and
tunable based on the sensitivity, the figure of merit (FOM),
and quality factor Q analysis. The proposed sensor with
its tuning and encoding characteristics can be applied for
biomedical and encoding-based applications. Experiments
performed using XGBoost regressor prove that regression
analysis using XGBoost Regressor can reduce the simula-
tion time and resources by at least 70 percent. Experimental
results further support that high prediction accuracy can be
achieved (0.999 R2 score) even if simulation time is reduced
by 90 percent.
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