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ABSTRACT Deep convolutional neural networks are highly efficient for computer vision tasks using plenty
of training data. However, there remains a problem of small training datasets. For addressing this problem
the training pipeline which handles rare object types and an overall lack of training data to build well-
performing models that provide stable predictions is required. This article reports on the comprehensive
framework XtremeAugment which provides an easy, reliable, and scalable way to collect image datasets
and to efficiently label and augment collected data. The presented framework consists of two augmentation
techniques that can be used independently and complement each other when applied together. These are
Hardware Dataset Augmentation (HDA) and Object-Based Augmentation (OBA). HDA allows the users to
collect more data and spend less time on manual data labeling. OBA significantly increases the training data
variability and remains the distribution of the augmented images being close to the original dataset.We assess
the proposed approach for the apple spoil segmentation scenario. Our results demonstrate a substantial
increase in the model accuracy reaching 0.91 F1-score and outperforming the baseline model for up to
0.62 F1-score for a few-shot learning case in the wild data. The highest benefit of applying XtremeAugment
is achieved for the cases where we collect images in the controlled indoor environment, but have to use the
model in the wild.

INDEX TERMS Image augmentation, computer vision, image segmentation, data collection, Internet of
Things, few-shot learning.

I. INTRODUCTION
In recent years deep convolutional neural networks proved
to reach the state-of-the-art performance on computer
vision (CV) tasks such as classification [1], semantic segmen-
tation [2], object detection [3], domain adaptation [4], pose
estimation [5], etc.

In comparison with classic CV algorithms, deep learn-
ing (DL) models are trained rather than programmed [6].
It makes them more flexible for different domains and
requires less domain-specific knowledge from the devel-
oper because the model retrieves patterns directly from data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Essam A. Rashed .

The drawback of DL models is that they heavily rely on data
and require comprehensive training datasets [7]. The more
parameters the model has, the more complex features it can
learn [8], but with sufficient training samples only [9].

Indeed, there are many CV related datasets both in the gen-
eral domain [10] and in specific domains such as autonomous
vehicles [11], remote sensing [12], medicine [13], precision
agriculture [14], environmental study [15]. However, datasets
cannot cover all the existing tasks for every specific prob-
lem [16]. Recent research works report that data scientists
spend up to 80% of time for data preparation [17]. At the
same time, the number of research papers about data in CV
is much lower than the percentage of time spent on data in
practice (see Figure 1). As expected, we see that this gap
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FIGURE 1. Comparison of the total number of papers in CV with the
number of papers about data in CV according to WoS. To reproduce the
result, one can query the number of papers with at least one of the
following keywords: ‘‘computer vision’’, ‘‘convolutional network’’, ‘‘pattern
recognition’’, ‘‘image’’, ‘‘CNN’’. To get the number of CV papers that focus
on data, we propose to add at least one ‘‘data’’, ‘‘dataset’’,
‘‘augmentation’’, ‘‘collection’’ obligatory keywords to the previous query.

reduces over time, and one can see the exponential increase in
the number of research works focused on data in accordance
with Web of Science (WoS) [18]. In general, data-centric
computer vision methods are aimed to create the data pro-
cessing pipelines that will increase the overall performance
without altering the model. In practical problems, pipelines
are essential because they serve as a bridge between the
datasets and models.

The primary goal of the papers that focus on dataset prepa-
ration is to increase the diversity of training data and improve
themodel generalization. Someworks propose themodel pre-
training methods [19] or aim to collect new datasets [16].
Other works present the image augmentation techniques [20]
or feature-engineering approaches [21]. However, to the best
of our knowledge, no studies provide the comprehensive
pipelines that cover all the steps from the image collection
and labeling to the image augmentation.

In this article, we present the XtremeAugment framework
that handles and improves both image collection and image
augmentation for the cases when a data scientist has to collect
images for the experiment. The article shows the efficiency
of the framework when applied to the digital agriculture
domain. Digital agriculture is the technological paradigm
which addresses the global hunger problem by improving the
crop cultivation productivity [22] at all stages from seeding
to storing. It includes the intelligent plant condition sens-
ing, measuring responses to external impacts, treatment opti-
mization, yield prediction, spoiling detection, etc. The main
limitation of this domain is the insufficient amount of well-
annotated data [23]. To overcome this issue, we present the
XtremeAugment framework.

The framework consists of two independent parts: the
Image Collection System (ICS) and the Object-Based Aug-
mentation (OBA) library. The ICS part is designed to be
flexible, reliable, and easy to use. It is built on a declarative
programming paradigm [24] which allows its application

without the coding skills. The key feature of the ICS is
the support of the Hardware dataset augmentation (HDA).
HDA denotes taking images from multiple viewpoints and
changing the lighting conditions during imaging to increase
the number of natural images from the same scene. It is a
powerful technique to expand the dataset size because all
the images collected from the same viewpoint and various
lighting conditions share the same labeling. It, therefore,
requires neither additional time to collect the data nor aux-
iliary manual labeling.

OBA is the image augmentation approach that exploits the
instance segmentation masks to cut objects from the original
scene and then paste them to the new background [25]. It is
called object-based because it treats each object individually.
This approach provides a way to augment objects separately,
to explicitly control the number of objects in the scene and to
manage the overlapping of objects.

It is important to note that both HDA and OBA can be used
separately. Their sequential combination forms XtremeAug-
ment. Moreover, OBA does not exclude other generic types
of augmentations (such as rotation, flip, Gaussian noise,
Mixup [20], Cutout [26], Mobius transformations [27]) and
can use them as building blocks. Accumulating the advan-
tages of hardware and software augmentations, XtremeAug-
ment provides much more training data and, therefore,
ensures better model generalization.

The main contributions of this paper are:
• we revise the definition of dataset augmentation and
extend it with the data collection techniques;

• we introduce the reliable and easy-to-use image collec-
tion system (ICS) which supports the hardware dataset
augmentation (HDA);

• we study the effectiveness of the object-based augmenta-
tion (OBA) using the apple rotten segmentation problem
as an example;

• we propose the state-of-the-art XtremeAugment algo-
rithm which unites HDA with OBA;

• we collect and share the apples rotting image dataset and
the auxiliary backgrounds dataset.

The code for HDA and OBA is available online. The
dataset is available on the Kaggle platform.1

The rest of the paper is organized as follows. In Section II
we discuss the state-of-the-art in the area. Section III presents
the methodology of hardware and object-based image aug-
mentation. The Experimental setup is described in details
in Section IV. Section V provides the results with the
XtremeAugment framework. Appendix A explains the general
hardware related methodology. Appendix B shows the details
of the current system implementation.

II. RELATED WORK
In this section, we overview existing image collection sys-
tems and image augmentation methods. They are described

1Kaggle (https://www.kaggle.com/) is a popular platform in the machine
learning community, which allows sharing datasets, hosting competitions,
and discussing results.
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separately because, before our paper, they were not combined
into a single framework.

A. IMAGE COLLECTION SYSTEMS
As mentioned in the previous section, the data collection
process plays a crucial role in Data Science. In many domains
and cases, dataset collection is not a just time-consuming pro-
cedure but also is complicated due to the following reasons:
• historical (sequential) data is required for each object;
• multiple views are required (for images/videos/point
clouds), or multiple sources of the data are required, e.g.,
camera images and sensor data;

• conditions changing is required, e.g., light conditions or
plant treatment; item-specific actuation is required, e.g.,
plant watering.

In this paper, we focus on the precision agriculture domain.
The specific difficulty in plant phenomics is the complex
plant structure and rapid variability of this structure. Thus,
many works are dedicated to datasets or IoT systems for dig-
ital agriculture [28]. In [29], authors collected a dataset that
contains images of different plant species cultivated under
three different growth conditions in a semifield setting. The
imaging system mounted on the railing system contains a
global shutter camera, Xenon ring flash, Nvidia Jetson TX2
based computer, and solid-state drive (SSD) storage. Some
sensors and actuation were embedded in the construction of
the setup for automated rain protection.

In [30] authors collected a large dataset of images of
species in greenhouses captured in various conditions. Three
types of cameras were used in this work: IoT cameras, mobile
cameras, and smartphone cameras, which are capable of
tracking the growth process of a single type of crop and a
variety of crops. The watering process was automated using
an autonomousmobile robot, and pinkingwas also automated
using a robot. Images are uploaded from devices to cloud
servers.

In [31] authors propose a dataset that contains images
of different species at several growth stages acquired with
comparable light conditions. A camera mounts on a special
rig setup. Along with the specific construction of the rig,
an embedded camera flash was used to achieve comparable
light conditions, and an external trigger was used to avoid
vibrations. To track the species, they use a barcode-based
system.

The work [32] is dedicated to the collection of Australian
rangelands species dataset for robotic weed control appli-
cation authors used custom data logging device for record-
ing images and Global Positioning System (GPS) data. This
device consists of a Raspberry Pi 3 board, high-resolution
Ethernet RGB camera, Arduino board with custom electron-
ics shield, GPS receiver with external antenna, and touch-
screen display module. All components are mounted on a
tripod.

The work [33] is dedicated to the collection of the dataset
of Fuji apple trees point clouds for the fruit detection task.
The authors used a special mobile system that consists of

a laser imaging, detection, and ranging device (LiDAR),
a real-time kinematics global navigation satellite system, and
an air-assisted sprayer. The dataset was recorded under differ-
ent views and air-flow conditions generated by the sprayer.

There is a number of other works that consider application
of mobile platforms like human-controlled vehicles [34]–[36]
and special field robots [37]–[40] for recording agricultural
datasets in the field. Besides RGB cameras, those systems
contain RGB-D cameras [34], [39], [40], LiDARs [39], ther-
mal and hyperspectral cameras [40].

Digital agriculture is not the only example of areas where
data collection requires sophisticated systems. One can also
mention retail industry [41], medicine [42], electrical sys-
tems [43], [44], industrial manufacturing [45] and many
others.

One can see that data collection can be challenging.
In many cases, it is performed manually [46], which requires
hundreds of hours and much effort. Many papers automate
the data collection process, but they have to use custom
software solutions. Thus, implementing a unified and flexible
framework that can be reused between different domains and
applications can dramatically simplify the process of such
datasets collection.

B. IMAGE AUGMENTATION
It is important to have training samples that cover cases that
the model should be able to predict [9]. Nomodel can classify
a type of object that was not in the training set. Therefore,
collecting more training data is always beneficial for model
accuracy [8]. However, it is not always possible to collect
more data [16]. Moreover, in practical tasks, regardless of the
number of collected samples, it is usually possible to generate
more samples via image augmentation [47] if there are no
domain-specific restrictions [48]. Researches show that such
architectures as generative adversarial networks (GANs) and
such training approach as metric learning highly rely on
image augmentation [49].

Image augmentation is applied from the beginning of com-
puter vision. It mainly included generic image transforma-
tions such as rotation, flipping, color shifting, etc. With the
rise of deep learning and the dramatic increase of modern
models’ capacity, augmentation techniques became indis-
pensable in computer vision. Models with many learnable
weights require more training data to reach an accuracy
plateau. Augmentation is also performed as a regularizer
during the training process [50]. More researches started to
focus on model training pipelines, but not only model archi-
tectures (see Figure 1), so image augmentation approaches
become more advanced. One of the first definitions of image
augmentation may be stated as is a technique that applies var-
ious transformations to original images to increase training
data variability [51]. The critical point is that it was assumed
that new samples were obtained from the existing data. Now,
apart from image augmentations via transformations, we can
distinguish new sample synthesis and other approaches [52].
In [53], authors use GANs to vary training samples.
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In [54], they used 3D modeling to generate new artificial
scenes with sweet peppers. Therefore, augmentation is no
longer restricted to the processing of the original data. In [55]
authors show an efficient way to augment data of various
modalities, including images in latent space. This is another
showcase where augmentation is applied not to the original
dataset. In [56] authors show that emitting supplementary
green light during data collection is beneficial in some plant
phenotyping computer vision problems. This technique also
can be considered image augmentation. Another case when a
model is trained not on the collected data is the dataset distil-
lation. The training dataset consists of distilled image repre-
sentations rather than original images in this approach [57].
In this paper, we use the term dataset augmentation as a gen-
eral way to describe data manipulations used to pre-process
data before or during training. According to our definition,
dataset augmentation is a set of techniques that artificially
increase the number of data samples used for model training
or evaluation. It includes data collection, image augmenta-
tion, feature space manipulation, and other techniques. Also,
note that usually, augmentation is used for model training,
but some methods can be successfully applied for test-time
augmentation (TTA).

In recent years many new image augmentation algorithms
have been introduced. In [25], authors propose to split them
into image-based and object-based augmentations. Image-
based approaches target whole images. It can be either basic
geometrical and color transformations or combining multi-
ple images like in Mixup [20]. Object-based augmentations
target separate objects. They utilize available instance seg-
mentation masks or bounding boxes to cut objects from the
original images and paste them to a new scene. For example,
Mixup has an object-based adaptation called CutMix that cuts
objects by their bounding boxes before pasting them to a
new scene [58]. Direct manipulation with objects of interest
provides more flexibility and enables substituting the visual
domain [59]. It is an up-and-coming concept, and in this
work, we focus on it.

First object-based augmentations started by modeling the
visual context around the object of interest. [60]. The authors
in [61] stated that it is the key to performing augmentation
for object detection successfully. However, in [25] and [62],
authors show that naive cutting and pasting also improve the
model performance sufficiently. While first papers on object-
based augmentation focused on single computer tasks like
object detection [63] or instance segmentation [62], in [25]
authors extend this idea to solve many problems such as
classification, semantic segmentation, object detection, and
object counting simultaneously.

III. XTREMEAUGMENT METHODOLOGY
Almost all the practical and research computer vision prob-
lems require image augmentation. Nevertheless, it is vital to
understand that not all transformations improve the quality
of the training set. Having several copies of the same image
increases the quantity of the available data. However, to be

helpful for the model training, new samples must differ
from the original image to add variability, and at the same
time, the target object must be recognizable. Figure 2 reflects
the difference between augmentation approaches. One can
see that without any augmentation, the training set entirely
belongs to the set of natural images. It means that these are
images that can be obtained if one makes some image with
a camera. The problem with leaving the training set as it
is in its small size for most real-world problems. Apply-
ing regular augmentation adds variability and remains the
distribution of the extended set close to the distribution of
the original one. However, the provided enlargement is not
efficient. It is particularly crucial for the few-shot learning
cases [64]. In contrast, if the substantial augmentation is
applied, it adds much variability, but many samples will differ
from the original distribution too much. In [65], authors show
that it is beneficial when the augmented set aims to match
the original one. In [66], the authors demonstrate that too
strong augmentation makes an object not recognizable, and
it is better to treat it as a negative training sample. The goal
of XtremeAugment is to significantly increase the number of
training samples and leave augmented set distribution closer
to the original training set. To achieve this, XtremeAugment
combines hardware and object-based image augmentations.

A. HARDWARE DATASET AUGMENTATION
Hardware dataset augmentation denotes altering natural
scene setup during image collection. In paper [67], authors
show that changing artificial lighting direction is significant
to improve model performance in greenhouse conditions.
In [68], authors report that controlling lighting conditions can
improve outdoor results as well. We do not expect it to be
a universal key to boost computer vision, although it looks
promising for the cases where it is possible to control lighting
conditions manually.

There are many other ways to add variability to origi-
nal images. We propose to use different types of cameras:
web cameras, Single-lens reflex (SLR) cameras, night-vision
cameras, multispectral cameras, and other types depending
on the problem. Another valuable modification is to place
multiple cameras to catch the scene from different viewpoints
simultaneously (Figure 4).

B. OBJECT-BASED AUGMENTATION
Object-based augmentations use object masks to crop the
object of interest from the original image and paste it to a new
background. Among existing OBA mechanics, as a baseline,
we choose one reported in [25]. It is a naive solution that does
not model the visual context on the scene, but it is easy to use
and can be effective for many cases. Some interesting features
of this approach are as follows:
• the ability to control objects overlapping;
• the ability to control the scene’s orientation;
• support of the scene perspective transform;
• the ability to generate target masks for multiple com-
puter vision problems.
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FIGURE 2. XtremeAugment concept. The outer blue oval represents the set of all possible images. The green oval in the middle represents the set of all
natural images. A small red oval represents the original training set. The bigger translucent red oval represents the augmented training set obtained with
different approaches.

FIGURE 3. Example of a base image and images obtained by different
augmentation approaches. The number of augmented samples can vary.
Baseline data is a single image. HDA data is images collected from
multiple viewpoints and with different light conditions. OBA composes
multiple separate objects and adds a new complex background.
XtremeAugment combines HDA and OBA.

This framework allows performing the task that we call
Lab2Wild adaptation. It means collecting images in a lab-
oratory or some other controlled indoor environment and

enabling successful model inference in the wild. To achieve
this, we can combine several cropped objects in a back-
ground from the general domain or the target domain if
possible.

The overall idea behind XtremeAugment is to use both
HDA and OBA (Figure 3). The motivation is as follows.
HDA is performed during data collection and captures a
real scene with various imaging settings. It guarantees to
add extra information to the dataset and keeps all of the
samples in the set of natural images. Some viewpoints and
light conditions can contribute more than others, but no noise
is added at this stage. OBA provides more flexibility. It adds
new backgrounds to the data and augments objects separately.
As a result, we can get the combinatorial effect by altering
backgrounds and replacing objects. The core idea with many
possible generated scenes is that every step adds variability,
and we do not need very strong augmentation to have many
slightly different training samples.

The hypothesis that we test further in this paper is that
many modest transformations can work better than a small
number of significant transformations.
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FIGURE 4. Multi-view data collection example.

We set the following ranges for the regular augmenta-
tions (modest transformations). For contrast [0.9, 2.1]; for
brightness [0, 60]; for saturation [0.5, 2]. Their combinations
are also considered. Strong augmentations are outside the
aforementioned ranges. Examples of image transformations
with different intensities are shown in Figure 5.

IV. EXPERIMENTAL SETUP
A. DATA COLLECTION
To check the performance of XtremeAugment, we test it on
the apple spoiling segmentation problem. For data collection,
we use ICS implemented on Raspberry Pi 4 (see Figure 6).
The system frame comprises the aluminum beams and has

a 1 m length, 1 m width, and 1.7 m height. Apples lay on
a white tray at the height of approximately 1.3 m above the
floor. We use four web cameras Logitech920c and one SLR
camera Canon M50. One web camera is placed in the middle
top of the frame. Three other web cameras are attached at

different sides of the frame at the height of 1.5 m above the
floor. An SLR camera is attached at the middle top of the
frame. All the cameras are connected to the Raspberry Pi via
a USB hub. Raspberry Pi also controls lighting. We use two
light modes for this experiment: LED light from the sides,
and from the top. The system makes sequential images from
all cameras and both lighting conditions.

For the experiment, we choose four apple varieties with
four apples each (see Figure 7). The varieties are Golden
Delicious, Fuji, Gala, Reinette Simirenko (from up to down).
Within one variety, every apple has different treatments (from
left to right):
• untouched;
• well washed;
• damaged;
• supercooled under −20 ◦C .
An untouched apple serves as a reference for each variety.

Well washed means the removal of the natural protective wax
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FIGURE 5. Example of base augmentations with different intensities.

FIGURE 6. ICS implementation for the apple spoiling segmentation
problem.

layer from an apple. Damaged apple simulates wrong carriage
conditions. Supercooled apple simulates wrong storing con-
ditions. The ICS made images every six hours for about three
weeks. During the experiment, some apples that were spoiled
too much were removed.

To conduct a computer vision experiment, we have to split
data into a training set, a validation set, and a holdout set.
The training set is used to update the weights of a model
via backpropagation. The validation set is used to check the
model performance after each training iteration, but it is not
used for actual training. The holdout set is used after the
training process to report the final result. This type of split
implies that only the training set amount of all three sets is
used for actual training. Therefore effectively, we have less
training data than it was collected. It is especially tangible for

FIGURE 7. Top view examples.

the problems characterized by the small datasets. However,
it is required to separate the validation set to avoid overfitting
and separate the holdout set to check model generalization
on the unseen data, increasing the reliability of the result. The
presence of several viewpoints in our collected dataset allows
us to split the dataset according to that viewpoints. It prevents
potential data leakages and also increases the reliability of the
result.

To get a better understanding of the data leakage problem,
we refer to Figure 8. D denotes the whole dataset. Di is the
ith element of the set D. N is the number of images in the set
D. V (1) denotes the subset with viewpoint 1. V (2) denotes the
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subset with viewpoint 2. d(·, ·) is the distance between two
images. Here, the distance function measures the semantic
dissimilarity between the images. In our showcase, it is an
abstract function that has a zero value between an image
and itself and raises according to the semantic differences
between the compared images. In practice, it can be approx-
imated by the distance between embeddings of a metric
learning model [69]–[71]. However, we use it only to reflect
the essence of the data leakage problem and qualitatively
compare principal approaches to solve it.

Note that the presented case dataset contains the time-
series images of the same objects, and images are sorted by
time. Moreover, the apple rotting process is one-directional.
Considering the irreversibility of apple modifications and the
stationarity of camera viewpoints, we can state that:

• d(V (k)
i ,V (k)

i ) = 0;
• d(V (k)

i ,V (k)
j ) 6= 0, where i 6= j;

• d(V (k)
i ,V (m)

i ) 6= 0, where k 6= m;
• d(V (k)

i ,V (k)
i+1) ≤ d(V

(k)
i ,V (k)

i+2).

In our dataset, the time between images is short, and cam-
eras are placed far from each other; therefore: d(V (k)

i ,V (k)
j ) <

d(V (k)
i ,V (m)

i ).

We showcase the dataset splitting procedure on the exam-
ple of splitting into two sets: a training subset S(train) and a
test subset S(test). Note that S(train)+ S(test) = D. The subsets
must follow a number of major requirements:

1) Training and test subsets must not have intersections or
very similar cases.

2) Both training and test subsets must cover the cases that
the model aims to predict.

If the first requirement is not satisfied, it is impossible
to detect the model overfitting. Very similar or precisely
the same images are not suitable for checking the model
generalization. If the second requirement is not satisfied, the
user cannot expect a model to work on uncovered cases. For
example, if the training subset has only healthy apples and
no rotten apples are included, a model would not predict
the spoilage. If the test subset has no rotten apples, it is
impossible to evaluate model performance on the spoiled
samples.

In Figure 8, we consider three principal approaches for
dataset splitting on a simplified example. The first approach
splits the samples from a single viewpoint uniformly between
training and test sets. To simplify the notation, let the training
set contain odd elements from V (1), and the test contains
the even elements from V (1). When images are taken often,
and the difference between them is negligible, this approach
violates the first requirement because the distance between
the training and the test sets is very low d(S(train)i , S(test)i ) ≈ 0.
Taking images rarely is not a good option as well since extra
data is beneficial in tasks with complex cases.

The second approach assigns the first part of the images
from viewpoint 1 to the training set and the second half to
the test set. In general, proportions and the exact split may

differ, but the main point is that the subsets will uncover
chunks of the dataset that can contain unique cases. In terms
of the distance function, if the overall distance covered in
a subset is much less than the distance covered by the
whole dataset, the split will violate the second requirement:
d(S(train)min(i) , S

(train)
max(i)) � d(D0,DN−1) and d(S

(test)
min(i), S

(test)
max(i)) �

d(D0,DN−1).
The third approach assigns all the data from the first

viewpoint to the training subset and the second viewpoint
to the test subset. It satisfies both the first and the second
requirements and enlarges the amount of available training
data. Beyond this example, more than two viewpoints can
be used.

Certainly, splitting data by viewpoint is not the only way
to obtain the correct splits. Having different available view-
points simplifies this task.WithHDA, a data scientist does not
have to manually set a threshold of image similarity between
the subsets without the risk of improper splitting results.

As we noted, the proper data splitting is vital to get the cor-
rect results, but it reduces the training set. Themost expensive
part of data collection is usually manual data labeling. It is
demanded to do manual work to get the ground truth; in fact,
it is labor-intensive. The feature of the HDA augmentation is
that we collect more data altering the light conditions, but for
various lighting, the position of the target objects remains the
same. In practice, it means that we get supplementary images,
but we do not have to label them because their masks will
match.

The design of the experiment allows testing different setups
of HDA and OBA and then unites them into XtremeAugment.
To have HDA augmentation options, we include or exclude
the corresponding parts from the dataset into the training
subset. To vary OBA augmentation, we change the probabil-
ity of using it for every batch. We mix the natural samples
with the generated samples with a predefined ratio in OBA
experiments. More precisely, we describe the experiments
in Table 1.

B. APPLE SEGMENTATION
To assess the proposed augmentation approach, we apply it in
a semantic segmentation task. For this task, a convolutional
neural network ascribes one of three classes’ labels for each
pixel: damage, healthy, and background. ‘Background’ shows
the accuracy of the separation of apples from the background.
It is important in agricultural problems where the background
is usually very complex. ‘Healthy’ shows the accuracy of
finding health regions of apples. ’Damaged’ shows the accu-
racy of finding cracks or rotten regions on apples. The ground
truth data is obtained by manual annotation. For each pixel,
the corresponding class is assigned. For each image, the
target is a tensor with the spatial resolution of the input
image and with a channel for each class. Only a single value
across all channels for every pixel equals one in a channel
which number coincides with the number of the class. The
rest values are zeros. Batch for model training consists of
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FIGURE 8. The importance of the correct data splitting strategy illustration.
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TABLE 1. Experiments description. Rows represent experiments. Columns show which viewpoints or lighting conditions are included in the training set.
The validation and the test set are the same for all the experiments.

ten patches (512 per 512 pixels each) randomly sampled
from the dataset. As a neural network architecture, we chose
Deeplab [72], which shows high performance in semantic
segmentation tasks. Encoder is Resnet34 [73]. Optimizer is
Adam with the initial learning rate value equal to 0.001.
An exponential scheduler decreases the learning rate during
training. The activation function for the last layer is softmax.
As a loss function, weighted cross-entropy loss is used with
weights set proportionally to the classes distribution. Mod-
els are trained for 200 epochs with early stopping after ten
epochs without loss improving. The model with the lowest
loss value is used for further analysis. To evaluate model
performance on the test images set, we use F1-score and
weighted F1-score [74](Equation 1). F1-score for each class
is weighted by the number of samples (pixels) from that class
to provide a more balanced final averaged assessment.

F1i =
TP

TP+ 1
2 (FP+ FN )

,

F1weighted =

∑M
i F1i ∗ weighti

N
(1)

where F1i – F1-score for the i-th class, M – the number
of classes, weighti – the number of pixels of the i-th class,
N – the number of all pixels, TP is True Positive (number
of correctly classified pixels of the given class), FP is False
Positive (number of pixels classified as the given class while
in fact being of other class, and FN is False Negative (number
of pixels of the given class, missed by the method).

In our experiment, we apply repeated random subsampling
validation with three repetitions. It means that we repeat the
data splitting and model training procedure three times with
different dataset splits and average the results.

V. XTREMEAUGMENT RESULTS
Results for the semantic segmentation task are shown in
Table 2. It includes predictions separately for indoor test
images and wild outdoor images. The baseline in the table
corresponds to the subset that was used for model training.
More precisely, it is data from a single logitech_right view-
point. Baseline_no_augment means that no augmentation
was used during training. Baseline_regular_augment means

training on the baseline data with commonly-used augmenta-
tion. Baseline_strong_augment means training with a higher
number of augmentations and with higher transformations
magnitudes. Note that experiments without augmentation and
with too strong augmentations are added for demonstration
purposes. The proposed XtremeAugment approach allows us
to improve the baseline F1-score from 0.949 to 0.97. The
best probability of using OBA during training is 50%, which
means that only half of training samples are augmented using
new backgrounds. Original images are vital for robust model
performance, and they should not be excluded from the train-
ing as it leads to an F1-score decrease to 0.895. We also show
the contribution of HDA and OBA approaches separately
in the segmentation task. In the Lab test set, HDA allows
prediction improvement from an F1-score of 0.949 to 0.963.
OBA achieves an F1-score of 0.959.

The results clearly indicate that the baseline model fails
to predict wild images (averaged F1-score is 0.29). The
proposed approach exhibits significantly higher results for
the wild test set (F1-score is 0.91). Models’ predictions for
wild images are presented in Figure 9. Although the training
dataset does not include images with apples taken outside
in various conditions, the XtremeAugment approach performs
more confidently even on wild images.

Beyond the mean values of accuracy across three cross-
validation repetitions, the standard deviation also provides
essential statistics. In our experiment, it dropped from
0.082 in the baseline to 0.0054 with XtremeAugment on
images in the wild. The decrease in results standard deviation
indicates the increase in model stability.

The reason for the substantial improvement with our
approach when the test subset is more complex than the train-
ing subset is in narrowing the gap between these domains (see
Figure 2). More precisely, in the presented case, a model
without OBA is not robust to complex backgrounds because
only the uniform background is in the original training subset.
HDA contributes to the robustness to change in illumination
conditions and view angles.

OBA andHDA separately also improve the baseline as they
provide more diverse training data. However, experiments
indicate that OBA outperforms HDA in the wild images
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FIGURE 9. Results of the baseline, HDA, OBA, and XtremeAugment.
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TABLE 2. Apple segmentation results (F1-score).

segmentation task (F1-score 0.89 and 0.35) compared to the
Lab test set. One can also see that baseline without any
augmentation or with too strong augmentation performers
poorly.

VI. CONCLUSION
In this article, we have proposed the comprehensive frame-
work which provides an easy, reliable, and scalable way to
collect image datasets and to efficiently augment the collected
data. The proposed approach is called XtremeAugment and
consists of the hardware dataset augmentation (HDA) which
performs during the data collection stage, and the object-
based augmentation (OBA) which performs after image
labeling.

We prove the efficiency of our method using the apple
rotten segmentation problem as an example. XtremeAugment
is designed for the few-shot computer vision problems. It is
especially promising for the type of the domain adaptation
tasks where the target domain is more difficult in terms of
the surrounding of the objects than a source domain. In our
experiment we collect images in the laboratory conditions
with good illumination, uniform background, and a large
distance between the apples. To test the models we use, on the
contrary, images in the wild. XtremeAugment outperforms the
baseline by a 0.62 F-score providing an accurate model with
very limited training data.

The separate components of XtremeAugment have their
limitations. HDAmust be used during the data collection and
requires additional control over the imaging process. OBA
can be only applied if the dataset is accompanied by the
instance segmentation masks. However, we also show that
HDA and OBA can be applied independently and still ensure
an increase in the model accuracy. Although our method
requires labeled images, it allows for significant simplifica-
tion of the labeling process. First, it can use images with
uniform backgrounds and without overlapping that are faster
to label. Also, some images obtained with HDA can share the
same segmentation mask.

Along with the code for HDA and OBA, we share the
collected dataset of multiview apples spoil segmentation and
the dataset on various backgrounds in the wild.

In our future work, we will explore the context-based OBA
approaches and vary camera and lighting parameters, and
combinations of XtremeAugment with other image augmen-
tation techniques. Another promising topic to investigate is
the curriculum learning. Curriculum learning changes the
‘hardness’ of the samples during model training. Typically,
it is difficult to mine samples of a certain ‘‘hardness’’; how-
ever, the OBA algorithm allows controlling it explicitly by
tuning the objects overlapping and other hyperparameters.
It is also worth mentioning that the augmentation hyperpa-
rameters can be further optimized, but even with a naive
setup, XtremeAugment proves its efficiency.

APPENDIX A
IMAGE COLLECTION SYSTEM METHODOLOGY
In this section, we explain the concepts behind the image
collection system. We aim to design a system that can be
easily used by a wide range of researchers to collect data and
automate processes in labs. Therefore our system must meet
the following requirements:
• consists of cheap equipment;
• is reliable;
• is easy-to-use.
In practice, there is a trade-off between the device cost

and reliability. To have an opportunity to work with non-
expensive industrial-level equipment but obtain a stable sys-
tem as a whole, we adhere to the fault-tolerant design.
To simplify the usage and, by implication, reduce the num-
ber of potential user-related mistakes, we use a declarative
programming project design approach.

A. FAULT-TOLERANT DESIGN
To reach a smooth program execution and ensure its sustain-
ability, we propose and apply the following techniques.

1) RELAUNCHING ON FAULT
There are different reasons why a system can turn off. Usu-
ally, it is due to power outages. We recommend adding an
extra battery to the system circuit to address this issue, but
we relaunch a project if accidental halting occurs regardless
of its presence.
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2) GRACEFUL DEGRADATION
Another vital concept that we use in our design is called
graceful degradation: even if some parts of a system fail, the
rest will operate smoothly. For example, if any single sensor
stops responding, it should not affect the other ones.

3) CRITICAL ISSUES ALERTING
Even though it is preferable to continue system operation
when a component does not respond, it is necessary to inform
a user that something expects a fix or replacement. For this
purpose, we use an alert bot.

4) DATA BACKUPPING
If the project’s goal is to collect data, then data is the most
valuable part of the whole system. Tomake sure that collected
data is saved, we schedule its backup to another device.

5) CONFLICTS PREVENTION
A common issue that is difficult to debug arises when multi-
ple scripts or pipelines attempt to access the same resource.
To exclude this type of problem, we check all the device
usages in Scheduler before running any pipelines. If any
different pipelines share the same devices, a user will see
an alert.

6) STATELESS CHILD NODES
A controller device makes it possible to manage the logic of
the system. Sensors cannot operate without a controller. The
reported system provides an opportunity to have more than
one controller. It can be useful either if there are too many
sensors to connect to a single controller or when sensors have
to be distributed over a wide area. In such a case, one of the
nodeswill act as amain, and the others will be the child nodes.
The child nodes are designed to be stateless, so they do not
store any data or past transaction history. This interaction sim-
plification allows the user to easily add, remove, or replace
child nodes without main flow interruption.

7) LOGGING
In order to investigate incidents, we log all the actions within
the system, including system start, system restart, sensor
measurements status, image capturing status, every pipeline
execution time, errors during execution, and others.

B. DECLARATIVE PROGRAMMING
Our system is designed according to the declarative program-
ming paradigm and guarantees configuring of projects with
different goals easily. Each project is a system in a concrete
configuration that will perform the defined actions according
to a schedule. Moreover, it is possible to launch multiple
projects simultaneously.

The project description in the proposed system is config-
based. It allows creating new projects by defining the
sequence of sensors to activate and the rule to start these
actions. In other words, we declare what to do instead of how

to do it. This approach helps both to simplify the modifica-
tions and avoid errors and side effects, which is vital when
the project complexity starts to grow. For more details, refer
to Appendix A.

C. FRAMEWORK ABSTRACTION LAYERS
In this section, we present the abstraction layers of the frame-
work from the user perspective. We aim to show what users
can do without diving into implementation details and also
what can be modified using every next abstraction layer.
In Figure 10, the upper plane corresponds to the highest
abstraction layer, and the bottom plane is for the low-level
functional.

When a project is already configured, all that users have to
do is tomonitor its performance using the functional of Super-
vision layer. It is easy to do via a Web User Interface (UI).
It allows choosing what data to monitor and interactively
shows collected images, plots sensors measurements, and
describes auxiliary information about project configuration.
We can place a monitor directly near the system in indoor
projects and view its last collected data and state. While Web
GUI is an appropriate solution for the collected data control
and the cameras and sensors calibration, we use an alert bot
for urgent notifications caused by failures. It will send a
message to a user if any check or fix is required.

To start an experiment, a typical user will need to use
only the highest two abstraction layers. The Supervision layer
described above enables continuous project monitoring, and
the Project Configuration layer provides a straightforward
way to set up a project with concrete goals and existing
hardware. We propose a config-based project description that
does not require any programming skills from the users for a
usual project. It means that all that the user has to do is to list
his hardware in sensors and camera configuration files and to
list the sequence of actions. We describe it in more detail in
Appendix A.

Another feature of this layer is the system state con-
figuration. It provides an opportunity to create aggregated
states and reuse them. State reusing operates in the same
way as the reusing functions, but instead of code, a state
can include other low-level states. For instance, a user may
need to switch several actuators simultaneously many times.
To avoid unnecessary code repetitions, we can aggregate all
simultaneous actions in a single state and switch states in
a pipeline. An aggregated state will contain instructions for
all the involved devices, and all of that instructions will be
executed every time when the state is called.

If the Project Configuration layer allows to aggregate
system states, the Functional layer can aggregate and add
new functions. Here we can define the actions that will be
further used in configuration files. The basic functions needed
for most of the projects are already implemented. If one
needs some specific operations, it is easy to add them in the
Functional layer having basic Python programming skills.

The Peripheral layer can be used to add new types of hard-
ware. It needs a more advanced programming level; however,
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FIGURE 10. Image collection system abstraction layers.
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most of the hardware has some description or ready-to-use
drivers.

The Framework Core layer consists of the modules that
empower system operation. The system logic and various
platform support are implemented within this layer. Usually,
the users do not have to worry about this level’s details and
do not have to make any modifications here.

APPENDIX B
IMAGE COLLECTION SYSTEM IMPLEMENTATION
In this section, we go through the implementation details
and describe the relations between system modules. The
system is developed in Python 3 programming language and
is suitable to use with Linux-driven devices. The working
prototype is deployed on Raspberry Pi 4 single-board com-
puter. Some of the system features, such as general-purpose
input/output (GPIO) pins access, are now implemented only
for the Raspberry Pi boards family and Troyka Cap extension
boards.

A child node can be any device that can communicate
over Wi-Fi. So, if your main node is not Raspberry and you
needGPIO functionality, you can attach, for example, another
Arduino or ESP266 micro-controller to the system.

The high-level system architecture is reflected in Figure 11.
Rectangles in the figure represent modules; ovals represent
data.

If we want to add more than one controller node, a single
main node will send commands to all the child nodes. From
the users’ point of view, devices on child nodes are accessible
the same as any device on the main node, but they are called
remote devices.

D. CONFIGURATION FILES
To create a new project, we have to prepare configuration
files (configs). The configs are stored as JavaScript Object
Notation (JSON) files.

We distinguish three types of configs: hardware configs,
state configs, and pipelines.

1) HARDWARE CONFIGS
We have separate configuration files for sensors and cameras.
To add a sensor, we define its name and bind it to some pin on
a board. Now the system supports Raspberry Pi and Amperka
Troyka Cap boards. Also, we set a device type, and it is ready
to use. To add a camera, we separately list web cameras and
SLR cameras and define their unique names.

2) STATE CONFIGS
A state is a way to describe multiple simultaneous actions
that do not require any feedback. For example, if we have
many actuators such as lamps or water pumps, and we need to
switch all of them at once, we can define one state with all the
actuators switched on and another state with all the actuators
switched off. Another opportunity that appears with states is
access to the current state from any task. Thus, states enable
pipelines to communicate to each other with the mediator

instead of direct communication. In Section IV, we outline a
case where we switch lighting conditions to alter the resulting
images. In this case, the lighting state is known to the task that
makes images, and we can add this state name to the image
name or record.

To make state configuration flexible, we introduce three
types of states. A permanent state type is assigned to the sys-
temwhen triggered and becomes available from any pipeline.
It both switches the actuators and assigns itself to be the cur-
rent system state as described above. An interrupt state type,
in the opposite, only switches actuators without changing the
current state name. A recovery state type is used to return the
system to the latest permanent state after an interruption.

3) PIPELINES
A pipeline in our system is a logically connected sequence
of actions that a system must start at some time or start with
some intervals. A pipeline is also stored in a JSON file [75].
The user starts defining a pipeline by setting a rule to trigger a
pipeline in cron notation [76]. It is a flexible and widespread
way to schedule scripts that allow repetitive and one-time
tasks to schedule. A pipeline’s body consists of blocks with
task type, optional device name, and optional parameters.

There are several predefined types of tasks, but users can
extend them with new ones. The basic task types are:
• actuator;
• sensor;
• state switching;
• sleeping.
An actuator is any attached device that performs some

action. Lamps and various motors are typical examples of
actuators.

A sensor is a device that makes somemeasurements. In our
implementation, any call to a sensor is automatically deco-
rated for saving collected data with a timestamp. So, a user
does not have to worry about data saving from each sensor
separately.

Another feature that sensor abstraction provides is an auto-
matic repetition of multiple measurements in a row with
further outlier removal and averaging.

State switching means changing a state, as described in this
section above. The user chooses a list of predefined states and
picks one of them.

Sleeping is the most generic task type. It is used to stay idle
for a certain amount of time.

An important feature is that we can activate multiple
pipelines simultaneously. Each pipeline solves its indepen-
dent problem, and they communicate with other pipelines via
the system state.

E. SCHEDULER
The system core unit is the Scheduler. It is based on a standard
Python APScheduler. For its functioning, Scheduler requires
configs and pipelines. Scheduler sets up a project, creates
all the necessary directories, checks pipelines, and launches
them. A vital job of the Scheduler is to check that different
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FIGURE 11. High-level system architecture.

pipelines do not use the same equipment to ensure that no
conflicts will occur. This core module orchestrates the work
of all other modules, starts and finishes the project.

An internal part of the Scheduler is a Pipeline Executor.
It parses and completes concrete pipelines received from the
Scheduler. In Figure 10, Pipeline Executor is referred to as
a Functional layer because here, all the user functions are
implemented.

F. LOGGER
The Logger is used to write down all system operations.
The Logger is based on a standard Python logging module.
It records actions for the system in general and each pipeline
independently. Actions and errors can have different impor-
tance. Depending on the importance, log records can be
handled differently. For instance, critical errors are alerted to
the users by a bot, and warnings can be shown during the
system initialization.

G. DRIVERS
Drivers can be perceived as adapters that enable a uniform
interface for all the devices. To reach that, every sensor or
camera must be inherited from the abstract base sensor or
camera classes accordingly. These base classes oblige to
implement necessary functions to return the measured values.

H. BACKUPPER
The goal of the Backupper is to send the collected data to
some other cloud or local device to increase reliability by
adding the redundancy.

I. DASHBOARD
The Dashboard is aWeb interface that provides easy access to
the collected data. To create an interactive interface, we wrote
a server based on the Streamlit framework. A user can choose

what data to load. Images are shown for each camera sepa-
rately in different tiles. A slider near each tile allows scrolling
to the requested image capturing time. The sensors’ mea-
surements are shown as plots. We can also load the project
configuration details and logs to an interface.
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