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ABSTRACT Today the industry depends on various types of three-phase induction machines, requiring
operating at variable speeds to perform more complex processes. Therefore, it is vital to monitor their
operation conditions to maintain the optimal efficiency of the processes they perform and avoid significant
economic losses. The proposed work presents the design and development of a method for bearing damage
detection based on Maximal Overlap Discrete Wavelet Transform and image processing for edge detection.
Accuracies achieved with three types of damage exceed 90%. The signals for the test are acquired from
seven different operating conditions for each type of damage. Supply comes from a power grid source and an
adjustable speed drive. The Maximal Overlap Discrete Wavelet Transform is applied with different filtering
levels to the three phases of the stator current, the magnitude of the filtered signals is acquired, a periodic
two-dimensional array is generated and further smoothed by a Gaussian filter allowing the observation
of patterns at the edges. Finally, the obtained images are scanned with a 2-D mask aiming to detect and
count patterns associated to the fault detection process. Statistical analysis is performed over characteristic
signatures obtained from the current magnitude of the three phases at different classes of damage and several
mechanical load conditions.

INDEX TERMS Bearing fault detection (BFD), edge detection (ED), induction machine (IM), maximal
overlap discrete wavelet transform.

I. INTRODUCTION
An induction machine (IM) takes advantage of electromag-
netism to convert electrical energy into mechanical energy
in order to provide mechanical work [1]. Consequently,
the invention of IM has generated increased demand in
diverse industrial processes or applications such as drink-
ing water supply, wastewater treatment plants, purification
plants, water desalination plants [2], cooling, heating, build-
ing elevators, underground electric transport, electric trains,
and electric cars, among others. These processes or applica-
tions require mostly asynchronous IM due to its robustness,
standardization, and their ease of maintenance. However, the
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unexpected interruption of some processes or applications
has generated significant economic losses, so it has been
considered vital to create models and monitor the current
state of IM [3]. This motivates the scientific community to
develop different detection methods. IM failures can occur
because of internal or external causes. Among the internal
causes are bearing damage, broken bars and loss of insula-
tion in the windings, etc. [4], while external causes are due
to sequence failures, phase loss or unbalance, undervoltage
or overvoltage, harmonic distortion, among others [5]–[7].
Approximately 53% of IM failures are caused by bearing
failures [4], [8]. The unexpected failures can lead to signif-
icant economic losses; therefore, it is essential to study the
Bearing Failure (BF) that allows the development of new
timely detection techniques.
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In the relevant literature, several investigations have been
made to address various methodologies and techniques for
IM damage detection using digital signal processing; among
them are recent works addressing rotor broken bar detec-
tion [9]–[11], damaged bearing detection [12]–[15], stator
winding insulation fault detection [16]–[18], and multiple
fault detection [19]–[22]. Many of these works have imple-
mented several digital processing techniques, for example,
the use of the Maximum Overlap Discrete Wavelet Trans-
former (MODWT) [11], [23], and Motor Current Signature
Analysis (MCSA) [10] for rotor broken bar detection, the use
of the Stockwell transformer [13], [14], DWT [24], and sta-
tistical analysis [12] for damaged bearing detection, as well
as the use of spectral resolution analysis for multiple fault
detection [21], [25], andmore. As a result, it can be concluded
that the subject has already been meticulously researched,
reporting accuracies ranging from 85 % to 100 % in damaged
bearing detection [12], [26], [27]; however, many of these
works are only adapted to specific failure conditions, but
not to real faults, and the algorithms currently employed
are specialized in finding failures under specific operating
conditions, so it is necessary to subject any developedmethod
to various operating and failure conditions in order to evaluate
its accuracy correctly.

Other creative works that analyze the vibration signal,
using techniques such as analysis for Squared Envelope
Based Spectral Kurtosis (SESK) [28]. Up to now, the
vibration-based bearing fault diagnostic is widely used [13],
[24], [29]–[32], recent research has been found that takes
advantage of the benefits of the MODWT for the detection of
damage in gearboxes or bearings mainly by vibration signals,
because the MODWT is suitable for the decomposition of
the complete cycle signal of bearings and gears. The authors
who use the MODWT or some of its variants as the MOD-
WPT emphasize that one of the main advantages is that it
does not use subsampling, which gives a higher resolution of
the signal [33]–[35]. Nevertheless, very few MODWT-based
works have been found for current signals when the motor is
powered by adjustable speed drive (ASD) or other electronic
drive equipment [23].

This work presents a method to detect localized and
distributed damage in the front bearing of a three-phase asyn-
chronous induction machine by using MODWT in combina-
tion with some linear transformations, filtered texture image
processing, and statistical classifiers for stator current analy-
sis. As a result, the type of localized and distributed damage
in the front bearing of the induction machine is detected and
discerned in power grid source (PGS) or ASD applications.
The methodology is based on analyzing the torque variation
using the current magnitude of the three phases. The obtained
results show accuracies greater than 90% for all cases.

II. THEORETICAL BACKGROUND
Localized bearing damage is generally associated with a
frequency band that is observed as a vibration frequency or
in the frequency components that modulate the stator current.

Various models have been presented to represent this based
on their structure. The mechanical frequency fm caused by
the passage of the ball, which produces a vibration generated
by the damage at a single point located in the various zones
of the bearing, can be determined by (1), while the current
frequency in the sidebands corresponding to the damage is
obtained from (2) [36].
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whereNb is the number of balls in the bearing,Rb is the radius
of the ball, fr is the rotation frequency, Rc is the pitch radius,
β is the contact angle between the ball and the ball bearing
races (see Fig. 1), fi, fb, fo, and fc are the mechanical frequen-
cies due to the inner raceway fault, the ball fault, the outer
raceway fault, and the cage effect respectively, k is a natural
number, fs is the electrical frequency at which the motor is
powered, fbf is the frequency observed as the sidebands of
the BF in the current signal. The absolute value is used in (2)
because negative frequencies are not considered.

A. MAXIMAL OVERLAP DISCRETE WAVELET
TRANSFORM (MODWT)
This transformation enables multi-resolution analysis (MRA)
similar to DWT. One of the main advantages of MODWT
over DWT are: the use of vectors of the same length as the
original signal x(n) to represent decomposition levels [11],
thanks to its lack of downsampling, more information is
retained and the acquired signals are smoothed out for higher
levels of transformation, and the use of MODWT to create an
MRAmakes the choice of wavelet filter less critical, so easier
to process filters such as Haar with only two points can be
chosen. However, its main disadvantage is the amount of
memory resources it requires compared to DWT.

Figure 2 shows the construction process of a MODWT as
well as the corresponding filters. Take special attention to the
fact that due to upsampling, for a Daubechies wavelet it is

FIGURE 1. Structure of bearing 6205, its properties and main parts.
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FIGURE 2. Basic structure of MODWT, in the upper part is shown the
expansion process of the scale and wavelet function by means of
upsampling, in the lower part is shown the value of the filter coefficients
where the maximum amplitude is 1/

√
2 for all cases.

not necessary to decrease the amplitude of the filter ratios
as would be done in a conventional wavelet transform. It is
no longer necessary to worry about filling in the missing
spaces in the discretization to dilate the function. Therefore,
the MODWT is a particular type of wavelet transform that is
easy to implement.

III. METHODOLOGY
A. DATA ACQUISITION
Figure 3 shows the block diagram used for bearing dam-
age detection by MODWT. A DAS acquisition stage is also
required, which is carried out employing hardware and con-
sists of an analog conditioning stage, a digital conversion,
and acquisition stage, which is responsible for sending the
signals to a Personal Computer (PC). As can be seen in the
block diagram, the current signals are studied in two modes,
the current acquired from the stator and the current squared
from the stator can be studied; only in the latter case must the
signal be considered as doubling its frequency.

The fixed sampling length and full-cycle acquisition pro-
cedure allow a fixed data acquisition analysis. This procedure
aims to set a fixed acquisition of 614.4 cycles per sample as
shown in (3). This is obtained with a fixed 65535 data length
(Datalen), and a normalized data rate acquisition (Datarate)
(6400 data/s). As a result, the adjustable sampling rate (fsamp),
for any IM operational frequency (fs), is calculated in (4). The
fsamp is used in the data acquisition system as sampling rate
configuration.

Cyclesamp =
Datalen
Datarate

60Hz = 614.4(cyc/sample) (3)

fsamp =
Datarate
60Hz

fs (4)

B. SIGNAL TREATMENT
When analyzing the MCSA, five sets three-phase signals
will be generated whose magnitude is determined by (5).
This magnitude is used to form a bidimensional array in
which some bands that repeat periodically can be seen.

The array must be built so that the total number of pixels of
width corresponds to the exact cycles of the signal. Later a
little noise and spurious components are eliminated using a
Gaussian filter in 2D. The filtered signal is binarized, where
if desired, a small hysteresis to eliminate unwanted noise
can be included. Once the signal is binarized, it is possible
to obtain fine edges of one-pixel width using the Laplacian.
These edges are analyzed by a set of masks that determine the
number of matching patterns in the two-dimensional array,
which allows obtaining a characteristic distribution function
for each type of case utilizing the calibration with known
signals.

The signals are classified by a detection stage that iden-
tifies the test signals according to their similarity to the
calibrated probability distribution, whose typical behavior is
a log-normal, using hypothesis tests with a = 0. 1%, giving
an idea of the low overlap between the categories to be tested.
This is done for both the original signal and the fourMODWT
decomposition levels. The results of all decomposition levels
and the original signal must be classified in the same category
to which they are assigned. Priority is given to healthy classi-
fication, so if it falls into an overlap region between healthy
and damaged, it will be classified as healthy as a priority,
provided that all levels have also been classified in the same
way, so it is possible for a damaged bearing to be classified as
healthy if all levels were classified as such, but not vice versa.
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To obtain good results with the proposed methodology,
it is necessary to eliminate the DC-Offset components and
normalize the phase currents in amplitude. This is possible
if the signals are subtracted from their mean and divided by
their standard deviation.

If the three current phases are squared or multiplied by
themselves, a three-phase set of signals is produced that
oscillates at 120 Hz, whose phase balance is considered ideal.
The above steps can be performed for both the current and
square current of the motor. It should be noted are that when
the current is squared, it tends to change its amplitude and
also adds a DC-offset value which is recommended to be
eliminated in order to appreciate better the variations in the

magnitude of the
−→
i2abcmotor’s square current vector. The block

diagram in Fig. 3 shows that both MCSA and MSCSA can be
used.

C. SELECTION OF LEVELS 4 TO 7 OF THE MODWT
The wavelet levels of the signal are extracted by the mat-
lab function modwt, which generates a multi-resolution
array containing the detail coefficients D1,D2,D3, · · · ,D15,
of whose in this case only D4,D5,D6, and D7 are of interest.
Figures 4 and 5 show the information content of the levels of
interest, where the signal elongation between levels 4 and 7
is greatest. The Haar-type Wavelet transform has been used.
In addition, in the first levels of the transformation, this
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FIGURE 3. (a) Block diagram explaining the methodology used. (a)b) Principle to obtain the magnitude
of the current vector.

FIGURE 4. MRA using MODWT levels D1 to D9, it is observed that the
phase current information is retained in the shaded region corresponding
to levels 4 to 7.

type of filter eliminates much of the high-frequency noise
introduced by the switching of the frequency converter.

D. IMAGE PROCESSING
The signal acquired by the motor current magnitude has a
periodic behavior, so if exact cycles are repeated in each line
of a two-dimensional array, a stripe pattern will be observed
(see Fig. 6). Since the signal is sampled at 6,400 samples per
second, one cycle of the signal at 60 Hz cannot be represented
with a whole number of samples, but three cycles require
320 exact samples, which defines the number of pixels wide
used in the two-dimensional array. Therefore, the height is
defined as 100 pixels so that the 2D array is made up of
a total of 32,000 pixels; this is equivalent to 5 seconds of
signal for a 60 Hz operating frequency. For other operating
frequencies, the sampling frequency is set so that an array
of 320 pixels wide is always maintained, that is, if a motor is
working at 30Hz, its current will be sampled at 3,200 samples
per second.

FIGURE 5. Waveforms of the detail coefficients D4 to D7 of the MODWT,
and original signal obtained from a motor fed by an ASD tuned to 60 Hz,
the amplitude of the original current signal has been attenuated at a rate
of 2/3.

Figure 6 shows six two-dimensional arrays, the first 4 in
the upper part correspond to the 2D array for each level of
MODWT decomposition (D4,D5,D6, and D7). The last two
in the lower part corresponding to the original signal, where
one is the magnitude of the vector measured from the center
of the path formed by the current vector and measures the
normal variations to the circular path (radial variations ir ).
While the figure on the right at the bottom shows the binormal
variations (axial variations iγ ), it is usually made up of only
undesirable noise.

Figure 7 shows the relief of magnitude variations for level 6
of the transformation and the original signal. It can be noticed
that when the signal is concatenated with itself, a periodic
pattern is formed, in which it is possible to appreciate that
there is too much noise, producing a very rough surface.
In Fig. 6, it is clear that the behavior is less rough as the
transformation level increases, so each transformation level
contributes different patterns; however, the binormal compo-
nents (axial) only contribute unwanted noise.
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FIGURE 6. Two-dimensional arrangements corresponding to the detail
coefficients for the transformation levels 4, 5, 6, 7 and current magnitude
of the original signal and its binormal variation, as indicated in the
header of each image.

FIGURE 7. Reliefs of the two-dimensional arrays generated from the
current vector, the level of DC offset has been eliminated. (a) Magnitude
variation of D6. (b) Magnitude variation of the original signal.

E. GAUSSIAN FILTER
The 2D arrays were filtered by a Gaussian function to
reduce noise. The Gaussian filter is defined by the following
equation:

G(p, k) =
1

2πσpσk
e
−

1
2

(
(p−po)2
σp
+

(k−ko)2
σk

)
(6)

FIGURE 8. Reliefs of the two-dimensional arrays once filtered.
(a) Magnitude variation of D6. (b) Magnitude variation of the original
signal.

where σp and σk are the standard deviations in the two
directions that define the bell’s opening in the horizontal
and vertical directions respectively, po and ko indicate the
location of the pixel that corresponds to the bell’s maximum.
In this case the values were chosen: po = 50, ko = 160,
σp = 200 and σk = 1800.

Figure 8 shows the two dimensional arrays (of fig. 7)
filtered, it can be seen the smoother surfaces where periodic
patterns are easily distinguishable.

F. BINARIZATION WITH THRESHOLD AND HYSTERESIS
As shown in Fig. 7 and Fig. 8 the DC component has been
removed, allowing the threshold to be zero. Since the plots
have a reasonably smooth behavior, the hysteresis value
for the threshold can be minimal or zero compared to the
oscillation amplitude of the observed surfaces. Perhaps the
hysteresis could be more useful in the case of Fig. 8.b,
which corresponds to the magnitude variation of the original
signal.

The threshold allows everything above the set threshold
value to become one, while everything below is zero. The hys-
teresis level reduces the generation of islands or points near
the transition region that could be considered as unwanted
noise. Fig. 9 shows the 2D pattern before binarization and
Fig. 10 shows the binarized pattern in image format.
Once the image has been binarized using Laplacian, it is

possible to obtain a fine edge one pixel wide. By analyzing
these fine edges, it is possible to determine the condition
of the bearing. Figure 11 shows the behavior of the edges
obtained from the 2D arrays.
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FIGURE 9. Filtered unbiased two-dimensional arrays corresponding to
the detail coefficients for the transformation levels 4, 5, 6, 7 and current
magnitude of the original signal and its binormal variation, as indicated
in the header of each image.

FIGURE 10. Two-dimensional arrangements in values 0 and 1
corresponding to the detail coefficients for the transformation levels 4, 5,
6, 7 and current magnitude of the original signal and its binormal
variation, as indicated in the header of each image.

G. IDENTIFYING PATTERNS WITH MASKS
The edge behavior analysis is performed by scanning
a 9-pixel combinatorial square mask containing a central
horizontal strip of pixels of value 1 (see Fig. 12), while the
other pixels are zero, by scanning the two-dimensional matrix
for patterns identical to it, leaving a 2-pixel margin at the
boundaries (as there may be unwanted distortion at the matrix
margin). As the mask scans the array, the number of patterns
matching the mask is counted as a cumulative sum. Figure 12
shows the basic principle of using the mask. The sweep is
first done horizontally; each time it stops, it compares the
bits in the region against the mask being tested. If all the bits

FIGURE 11. Detection of edges in arrays corresponding to the detail
coefficients for the transformation levels 4, 5, 6, 7 and current magnitude
of the original signal and its binormal variation, as indicated in the
header of each image.

FIGURE 12. Basic principle for sweeping and comparison of the mask
with the two-dimensional arrangement containing edges.

are the same, the counter increases; otherwise, it continues to
traverse the array.

Other 9-pixel masks were also studied in which the pat-
tern is not horizontal, and even 15-pixel rectangular masks
were tested, but the mask with the most relevant results are
obtained is the one with the horizontal edge; however, it is
left to future research to test different combinations of masks
simultaneously.

In the graphs of Fig. 11 it is observed that each of the
figures contains different number of horizontal patterns, these
horizontal patterns are counted for each bearing condition
behaving as a fingerprint for each case, the detector uses the
number count of horizontal patterns observed and thus by
means of the log-normal probability distributions classifies
the type of damage.

The number of patterns matching the mask corresponds
typically to some damage condition so that if the experiment
is repeated, a log-normal probability distribution is produced.
This was determined by observing the shape of the acquired
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FIGURE 13. Fitting the data to four possible probability distributions,
in this case, the distribution that best fit is the log-normal, given the
skewness of the data distribution.

data asymmetric distribution, and the accuracy was tested
using normal and log-normal distributions, with the accuracy
in all cases being exceeded by the log-normal distribution
(see Table 2).

Figure 13 shows the counting behavior of one of the masks
tested for a specific batch of 50 healthy case signals. In this
case, to illustratively highlight the log-normal behavior,
a mask with a diagonal band of negative slope was used,
and a wavelet filtered signal was also used, which presents
mostly horizontal patterns, so the pattern count was not higher
than 42 patterns. Hypothesis tests were performed to 3 types
of distributions: Normal, Log-Normal and Gamma, which
determined that the best fit was the Log-Normal distribution.
In addition to the same tests performed in Table 1, there
were also performed with Normal distribution, noting a slight
decrease in the accuracy achieved. As we can observe, the
normal distribution does not present an adequate accuracy
value for fault type classification, however it is worth noting
that the accuracy achieved for only damage condition detec-
tion exceeded the accuracy of the log-normal distribution.

Aswe can observe, the normal distribution does not present
an adequate accuracy value for fault type classification, how-
ever it is worth noting that the accuracy achieved for only
damage condition detection slightly exceeded the accuracy
of the log-normal distribution only by a few tenths (see
Table 1). As a result, it was decided to choose the log-normal
distribution instead of the normal one, leaving as future work
the study with the normal distribution.

In Figure 13 the vertical axis corresponds to the probability,
while the horizontal axis is the count of matching patterns in
each test. The characteristic probability distribution is estab-
lished for a relatively high acceptance region since the value
of α = 0.1%.On the other hand, the use of a log-normal prob-
ability distribution allows a better fit to the rejection regions
(distribution tails) in an asymmetric way, which increases the
accuracy and avoids unnecessary overlaps. Finally, once the
sum of the patterns found has been accumulated, it must be
compared with the limits established for the case of healthy
bearing and damaged bearing, thus classifying the set of

signals tested. In order to assign a healthy category to a
bearing, all the accumulators, for each level of wavelet and
the original signal, must be classified simultaneously in that
category, which makes the test more rigorous. Furthermore,
using the MODWT allows a search for faults under different
resolutions.

IV. EXPERIMENTAL SETUP
A. TEST BENCH SETTINGS
For this work, the experimental tests are carried out through a
three-phase IMWEG00118ET3EM143TW, 1HP, 1800RPM,
220VAC@60Hz, and 2.98A. The IM nominal current is
used as the maximum value of the load applied. The
load is mechanically generated; this sets the loaded condi-
tion when the rotor is attached with the belt, consuming
60% of the IM nominal current. One healthy bearing and
three different damaged bearings are used for bearing 6204
(see FIGURE14). The first damage presented is the outer
raceway with a hole of 1.58 mm diameter (HOLE)
(FIGURE14.a). Next, the bearing BALL damage (BALL)
is obtained by a drilling tool with a diameter of 1.58mm
(FIGURE14.b). Finally, Distributed Damage Case (DDC)
is presented employing a corroded bearing (FIGURE14.c).
Each damaged bearing is placed on the front cover of an IM
set. The power source is configured under seven conditions.
The first one is the power grid source (PGS); the rest are
obtained from an adjustable speed drive (ASD) configured at
2.5kHz switching frequency, the lowest frequency available,
which allows a high ripple order; the operational frequency
is set to 60Hz, 50Hz, 40Hz, 30Hz, 20Hz, and 10Hz. The
three-phase current data are measured by a digital acqui-
sition system (DAS) and FPGA set. The DAS subsystem
is comprised of: three ACS758LCB-050B current sensors,
a hardware signal conditioning stage is implemented using
the OP177, and the ADS7841P is used as an analog to digital
converter stage for the three-phase currents. The digital data
are sent to an FPGA Xilinx family on a Digilent Genesis-2
board through serial port interface (SPI) protocol. The FPGA
stores the acquired data using the (fsamp) configuration
shown in (4). In order to enable/disable the PGS or the
ASD, the FPGA also sends the RUN/STOP command to an

TABLE 1. Optimization of the α value using normal distribution.
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FIGURE 14. Bearing damages studied. (a) Outer-race damage (1.58mm
hole). (b) Bearing BALL damage (1.58mm hole). (c) Corrosion damage
(distributed damage).

TABLE 2. Optimization of the α value using log-normal distribution.

electromagnetic switch. This is done by a relay board that
allows the selection of the IM power source.

B. ALGORITHMS USED
Two algorithms (MCSA and MSCSA), based on the method-
ology proposed in section III, have been programmed in
MATLAB. ForMCSA, the damage detection results obtained
from the distributed damage analysis are presented in Table 1
(where the GEN label refers to the overall accuracy to distin-
guish between different types of damage, while S.P. refers to
the ability to distinguish single point damage versus healthy,
DSTR refers to the ability to distinguish distributed damage
from healthy and FAULT refers only to distinguishing any
damaged case from healthy case). To determine the accuracy
of the presented algorithms, the bearing damage was com-
pared with the healthy bearing under the same operating and
loading conditions. The experiment is repeated ten times at
random.

C. COMPARISON WITH OTHERS METHODS
In Table 4 several methodologies studied in the last 5 years
are presented and compared with this work. Many of
the methodologies presented reach higher accuracies than
the present work, however some of them are based on

TABLE 3. Accuracy with and without load for α = 0.1.

artificial intelligence which implies a much higher compu-
tational cost than this technique. Nevertheless, there are also
quite simplemethodologies presented here with quite promis-
ing, such as [41]. All in all, however the proposed methodol-
ogy is interesting and novel and can be applied in other fields
of study. In the appendix A, a study of the computational
cost of this technique in comparison with others is made,
see Table 11.

V. DISCUSSION
In order to analyze the accuracy of the test and to study its
ability to distinguish between the different classes of dam-
age at mechanical load conditions, confusion matrices were
performed. The best results to distinguish between classes
are obtained using the log-normal distribution reaching an
overall accuracy of 91.18% for a value of α = 0.1. However,
it should be kept in mind that if it is a matter of distinguish the
damaged case from the healthy case, the appropriate value of
α is 0.3 reaching an overall accuracy of 96.36% (this accu-
racy is based on classifying the damage for 50 healthy and
150 damaged cases of three types according to the generated
confusion matrices), see Table 2. The method was tested to
distinguish between various bearing conditions to evaluate
the test.

Table 3 shows the performance of the test with and without
load, the results without load are quite promising. How-
ever it is observed that when the IM is subjected to load
it costs the method to achieve a good accuracy for the
DDC (84.14%), also the methodology presents problems
to distinguish various classes of damage (GEN 88. 5%),
but the accuracy is high for detecting damage at a single
point (HOLE 92.48%). In addition to these disadvantages
with a α = 0.1 a high accuracy is achieved to discern
between a healthy and a damaged case (FAULT 92.6%),
this is good since what is sought is to detect the dam-
age condition and not what type of damage the bearing
has.

Tables 5 and 6 also use α = 0.1, in them the accuracy of
the method to classify between the different types of damage
is obtained, however with the data presented the other accu-
racies presented in Table 3 can be obtained, the accuracies
in Table 5 are good most of the different feed conditions
either PGS or ASD. For the loaded case (Table 6) there is a
decrease in accuracy for the 60 Hz PGS because the DDC is
classified as a healthy bearing 30% of the attempts, likewise
for the 30 Hz ASD the DDC is classified as healthy 18%of
the attempts, for the 20 Hz ASD 44% of the attempts and
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TABLE 4. Comparison between the proposed technique and other existing methods in the literature. (ORW: Outer Raceway; IRW: Inner Raceway; RE:
Rolling Element; PGS: Power Grid Source; ASD: Adjustable Speed drive).

TABLE 5. Confusion matrix for unloaded tests using log-normal
distribution (α = 0.1).

for the 10 Hz ASD 50% of the attempts. However, for 60,
50 and 40 Hz ASD the DDC is not classified as healthy any
of the occasions, these data show that it is more complex but

TABLE 6. Confusion matrix for loaded tests using log-normal distribution
(α = 0.1).

not impossible to detect DDC than point damage caused in
the laboratory.
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TABLE 7. Summary of all unloaded test for MCSA.

TABLE 8. Summary of all loaded test for MCSA.

TABLE 9. Summary of all unloaded test for MSCSA.

In order to subject the method to a more rigorous analysis,
a value of α = 0.3 was used to classify healthy and damaged
bearing signals, using a set of 100 signals of which, 50 were
with damage and 50 without damage, also different power
supply sources were used, obtaining the results in Tables 7
and 8. Tests again reveal that accuracy decreases when load
is applied to MI.

When performing experiments with MSCSA the opposite
becomes evident, the accuracy without load decreases and the
accuracy with load increases, see Tables 9 and 10, it is impor-
tant to note that the signal frequency doubles as the signal is
squared and regions of the signal that were previously ignored
with MCSA are analyzed.

On the other hand, note in Tables 7 to 10 that the accuracy
at 50 Hz decreases because there were amplitude oscillation
problems with the ASD output at that specific frequency,
affecting the quality of the database at that specific frequency.

TABLE 10. Summary of all loaded test for MSCSA.

TABLE 11. Theoretical computational complexity of the methodology
utilized.

TABLE 12. Comparison between fault Detection Methods.

Table 8 shows the values of accuracy reached for tests
performed with mechanical load, and here it is possible to
notice that at 50 Hz specifically, the accuracy decreases when
the IM is fed from an ASD, the accuracy at 30Hz decreases
slightly, and for the rest of the cases it is presented in a value
that exceeds 94 % (except for the BALL damage at 10 Hz).
Thus, the MCSA methodology achieves an overall value of
92.43 % with the mechanical load.

Table 10 shows the values of accuracy achieved for
MSCSA tests performed with a load. It can be seen that,
especially at 60 Hz, the accuracy increases when the IM is
fed from an ASD, unlike MCSA, in the case of 50 Hz, the
accuracy decreases only for the case of HOLE damage, the
accuracy does not decay at 30 Hz as withMCSA, theMSCSA
methodology reaches overall values of 95.67 %. If the 50 Hz
tests that presented problemswere discarded, the accuracy for
would be 97.74%.

VI. CONCLUSION
The experimental results confirm the success of the pro-
posed methodology implemented; they can be competitive
compared with the state of the art results. In this work,
current signals are used as input to the algorithms. As a
result, MSCSA shows better accuracy results than MCSA.
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FIGURE 15. Comparison between various types of patterns generated by MCSA for each type of damage using signals from a loaded IM fed by 60Hz ASD.

Furthermore, combining both methodologies according to
the loading condition is recommended to ensure satisfactory
accuracy results under general operating conditions. Further-
more, the ability to discern between different types of bearing
damage shows the potential of the test to diagnose different
types of damage according to their distribution, e.g., bearing
damage, bar damage, short-circuit damage, among others.
Furthermore, using simple statistical techniques by pattern
counting shows the advantages of the presented methodology
in BFD. Finally, the proposed algorithm has the flexible abil-
ity to work together with other BFD methodologies, such as
using artificial neural networks to identify patterns in the two-
dimensional arrays, facilitating the possibility of achieving
accuracy improvements in future work.

APPENDIX A
COMPUTATIONAL COMPLEXITY
Table 11 shows the computational cost of this methodology,
which is high compared to others as a consequence of the
wavelet transforms of 5 seconds of signal. In addition it is
required to obtain the magnitude from the three phases of
current to five sets of signals that come from the original
signal and the four levels of wavelet transform.

Also, quite a lot of resources are consumed in the pro-
cessing of the two-dimensional arrays through the FFT 2D,
filtering, binarization and the Laplacian, once the masks are
analyzed very simple binary operations of type X-OR and
AND that manipulate the counter are performed, then the
detector only uses comparison operations to classify based
on the calibration parameters.

Table 12 shows the comparison between different methods
according to their computational complexity. As can be seen,
the computational cost is not low but neither is it as excessive

as the computational cost used by Deep Learning methods
in [23]. In [43] there is also an analysis of computational
costs prior to 2017 and it is worth noting the work published
in [1] manages to reduce the computational cost by an order
of magnitude with respect to the work published in [43].

APPENDIX B
LINK BETWEEN THE FAULT TYPE AND THE STUDIED
EDGE PATTERNS
Figure 7 is a 3D representation of two of the texture signals
shown in figure 6, these when processed by the Gaussian
filter change to a smoother texture shown in figure 8 and 9.
Figure 10 is a two dimensional arraywith binary data: 0 (blue)
and 1 (Yellow), these serve to detect 1 pixel wide edges
presented in Fig 11 which is here where it is relevant to
observe the various bearing conditions.

Fig. 15 shows the edge arrays obtained for each particular
damage condition for a loaded IM, it can be clearly seen that
the BALL and DDC are most easily distinguished by their
patterns at the L4 and L5 wavelet levels, while the L6 level
helps to distinguish the HOLE damage.

However, this is visible to the naked eye in the patterns,
but the use of a mask to scan and quantify the patterns and
compare them with a probability distribution uses each of the
levels L4 to L6 as well as the original signal to determine
the condition of the bearing or the type of damage that is
present.

REFERENCES
[1] V. Avina-Corral, J. Rangel-Magdaleno, C. Morales-Perez, and

J. Hernandez, ‘‘Bearing fault detection in adjustable speed drive-
powered induction machine by using motor current signature analysis
and goodness-of-fit tests,’’ IEEE Trans. Ind. Informat., vol. 17, no. 12,
pp. 8265–8274, Dec. 2021.

VOLUME 10, 2022 24191



V. Aviña-Corral et al.: BFD in ASD-Powered Induction Machine Using MODWT and Image Edge Detection

[2] M. C. Pagaimo, J. F. P. Fernandes,M. Pérez-Sánchez, P. A. López-Jiménez,
H. M. Ramos, and P. J. Costa Branco, ‘‘Transient study of series-connected
pumpsworking as turbines in off-grid systems,’’EnergyConvers.Manage.,
vol. 245, Oct. 2021, Art. no. 114586.

[3] A. Fourati, A. Bourdon, N. Feki, D. Rémond, F. Chaari, and M. Haddar,
‘‘Angular-based modeling of induction motors for monitoring,’’ J. Sound
Vib., vol. 395, pp. 371–392, May 2017.

[4] P. Balakrishna and U. Khan, ‘‘An autonomous electrical signature analysis-
based method for faults monitoring in industrial motors,’’ IEEE Trans.
Instrum. Meas., vol. 70, pp. 1–8, 2021.

[5] R. R. Singh, R. Selvaraj, H. Mohan, and T. R. Chelliah, ‘‘Dynamic perfor-
mance of doubly fed hydroelectric machines under voltage unbalance—
A relative electrothermomechanical analysis,’’ IEEE Trans. Ind. Appl.,
vol. 54, no. 5, pp. 4156–4166, Sep./Oct. 2018.

[6] J. L. Gonzalez-Cordoba, R. A. Osornio-Rios, D. Granados-Lieberman,
R. D. J. Romero-Troncoso, and M. Valtierra-Rodriguez, ‘‘Correlation
model between voltage unbalance and mechanical overload based on
thermal effect at the inductionmotor stator,’’ IEEE Trans. Energy Convers.,
vol. 32, no. 4, pp. 1602–1610, Dec. 2017.

[7] P. Gnaciński, D. Hallmann, P. Klimczak, A. Muc, and M. Pepliński,
‘‘Effects of voltage interharmonics on cage induction motors,’’ Energies,
vol. 14, no. 5, p. 1218, Feb. 2021.

[8] Q. Lei, J. Yu, and Q.-G. Wang, ‘‘Discrete-time command filtered adaptive
fuzzy fault-tolerant control for induction motors with unknown load dis-
turbances,’’ J. Franklin Inst., vol. 358, no. 5, pp. 2765–2779, Mar. 2021.

[9] T. Yang, H. Pen, Z. Wang, and C. S. Chang, ‘‘Feature knowledge based
fault detection of induction motors through the analysis of stator current
data,’’ IEEE Trans. Instrum. Meas., vol. 65, no. 3, pp. 549–558, Mar. 2016.

[10] J. de Jesus Rangel-Magdaleno, H. Peregrina-Barreto,
J. M. Ramirez-Cortes, P. Gomez-Gil, and R. Morales-Caporal, ‘‘FPGA-
based broken bars detection on induction motors under different load
using motor current signature analysis and mathematical morphology,’’
IEEE Trans. Instrum. Meas., vol. 63, no. 5, pp. 1032–1040, May 2014.

[11] B. Patnaik, M. Mishra, R. C. Bansal, and R. K. Jena, ‘‘MODWT-XGBoost
based smart energy solution for fault detection and classification in a smart
microgrid,’’ Appl. Energy, vol. 285, Mar. 2021, Art. no. 116457.

[12] J. E. Garcia-Bracamonte, J. M. Ramirez-Cortes,
J. de Jesus Rangel-Magdaleno, P. Gomez-Gil, H. Peregrina-Barreto,
and V. Alarcon-Aquino, ‘‘An approach on MCSA-based fault detection
using independent component analysis and neural networks,’’ IEEE Trans.
Instrum. Meas., vol. 68, no. 5, pp. 1353–1361, May 2019.

[13] B. Li, P. Zhang, D. Liu, S. Mi, G. Ren, and H. Tian, ‘‘Feature extraction for
rolling element bearing fault diagnosis utilizing generalized S transform
and two-dimensional non-negative matrix factorization,’’ J. Sound Vib.,
vol. 330, no. 10, pp. 2388–2399, 2011.

[14] M. Singh and A. G. Shaik, ‘‘Faulty bearing detection, classification and
location in a three-phase inductionmotor based on stockwell transform and
support vector machine,’’Measurement, vol. 131, pp. 524–533, Jan. 2019.

[15] A. Rai and S. H. Upadhyay, ‘‘A review on signal processing techniques
utilized in the fault diagnosis of rolling element bearings,’’ Tribol. Int.,
vol. 96, pp. 289–306, Apr. 2016.

[16] A. K. Verma, S. Nagpal, A. Desai, and R. Sudha, ‘‘An efficient neural-
network model for real-time fault detection in industrial machine,’’ Neural
Comput. Appl., vol. 33, no. 4, pp. 1297–1310, Feb. 2021.

[17] S. Das, P. Purkait, D. Dey, and S. Chakravorti, ‘‘Monitoring of inter-
turn insulation failure in induction motor using advanced signal and data
processing tools,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 18, no. 5,
pp. 1599–1608, Oct. 2011.

[18] M. Malekpour, B. T. Phung, and E. Ambikairajah, ‘‘Online technique for
insulation assessment of induction motor stator windings under different
load conditions,’’ IEEE Trans. Dielectr. Electr. Insul., vol. 24, no. 1,
pp. 349–358, Feb. 2017.

[19] M. Hernandez-Vargas, E. Cabal-Yepez, and A. Garcia-Perez, ‘‘Real-time
SVD-based detection of multiple combined faults in induction motors,’’
Comput. Electr. Eng., vol. 40, no. 7, pp. 2193–2203, Oct. 2014.

[20] A. G. Garcia-Ramirez, R. A. Osornio-Rios, D. Granados-Lieberman,
A. Garcia-Perez, and R. J. Romero-Troncoso, ‘‘Smart sensor for online
detection of multiple-combined faults in VSD-fed induction motors,’’ Sen-
sors, vol. 12, no. 9, pp. 11989–12005, 2012.

[21] A. Garcia-Perez, R. de Jesus Romero-Troncoso, E. Cabal-Yepez, and
R. A. Osornio-Rios, ‘‘The application of high-resolution spectral analysis
for identifyingmultiple combined faults in inductionmotors,’’ IEEE Trans.
Ind. Electron., vol. 58, no. 5, pp. 2002–2010, May 2011.

[22] R. J. Romero-Troncoso, R. Saucedo-Gallaga, E. Cabal-Yepez, A. Garcia-
Perez, R. A. Osornio-Rios, R. Alvarez-Salas, H. Miranda-Vidales, and
N. Huber, ‘‘FPGA-based online detection of multiple combined faults in
induction motors through information entropy and fuzzy inference,’’ IEEE
Trans. Ind. Electron., vol. 58, no. 11, pp. 5263–5270, Nov. 2011.

[23] M. Jimenez-Guarneros, C. Morales-Perez, and J. Rangel-Magdaleno,
‘‘Diagnostic of combined mechanical and electrical faults in ASD-
powered induction motor using MODWT and a lightweight 1D
CNN,’’ IEEE Trans. Ind. Informat., early access, Oct. 19, 2021, doi:
10.1109/TII.2021.3120975.

[24] Z. Liu, L. Zhang, and J. Carrasco, ‘‘Vibration analysis for large-scale wind
turbine blade bearing fault detection with an empirical wavelet threshold-
ing method,’’ Renew. Energy, vol. 146, pp. 99–110, Feb. 2020.

[25] A. Djebala, M. K. Babouri, and N. Ouelaa, ‘‘Rolling bearing fault detec-
tion using a hybrid method based on empirical mode decomposition and
optimized wavelet multi-resolution analysis,’’ Int. J. Adv. Manuf. Technol.,
vol. 79, nos. 9–12, pp. 2093–2105, 2015.

[26] Z. Wang, Q. Zhang, J. Xiong, M. Xiao, G. Sun, and J. He, ‘‘Fault diagnosis
of a rolling bearing using wavelet packet denoising and random forests,’’
IEEE Sensors J., vol. 17, no. 17, pp. 5581–5588, Sep. 2017.

[27] M. E. Iglesias Martínez, J. A. Antonino-Daviu, P. F. de Córdoba, and
J. A. Conejero, ‘‘Higher-order spectral analysis of stray flux signals for
faults detection in induction motors,’’ Appl. Math. Nonlinear Sci., vol. 5,
no. 2, pp. 1–14, Jul. 2020.

[28] L. Saidi, J. Ben Ali, M. Benbouzid, and E. Bechhoefer, ‘‘The use of SESK
as a trend parameter for localized bearing fault diagnosis in induction
machines,’’ ISA Trans., vol. 63, pp. 436–447, Jul. 2016.

[29] Q. Ni, J. C. Ji, K. Feng, and B. Halkon, ‘‘A fault information-guided
variational mode decomposition (FIVMD) method for rolling element
bearings diagnosis,’’ Mech. Syst. Signal Process., vol. 164, Feb. 2022,
Art. no. 108216.

[30] P. Ewert, T. Orlowska-Kowalska, and K. Jankowska, ‘‘Effectiveness anal-
ysis of PMSM motor rolling bearing fault detectors based on vibration
analysis and shallow neural networks,’’ Energies, vol. 14, no. 3, p. 712,
Jan. 2021.

[31] A. Youcef Khodja, N. Guersi, M. N. Saadi, and N. Boutasseta, ‘‘Rolling
element bearing fault diagnosis for rotating machinery using vibration
spectrum imaging and convolutional neural networks,’’ Int. J. Adv. Manuf.
Technol., vol. 106, nos. 5–6, pp. 1737–1751, Jan. 2020.

[32] I. Attoui, B. Oudjani, N. Boutasseta, N. Fergani, M.-S. Bouakkaz, and
A. Bouraiou, ‘‘Novel predictive features using a wrapper model for rolling
bearing fault diagnosis based on vibration signal analysis,’’ Int. J. Adv.
Manuf. Technol., vol. 106, nos. 7–8, pp. 3409–3435, Jan. 2020.

[33] K. Saini and S. S. Dhami, ‘‘MODWT and VMD based intelligent gearbox
early stage fault detection approach,’’ J. Failure Anal. Prevention, vol. 21,
pp. 1821–1837, Sep. 2021.

[34] Y. Cao, M. Jia, P. Ding, and Y. Ding, ‘‘Transfer learning for remaining
useful life prediction of multi-conditions bearings based on bidirectional-
GRU network,’’Measurement, vol. 178, Jun. 2021, Art. no. 109287.

[35] F. Gougam, C. Rahmoune, D. Benazzouz, A. Afia, and M. Zair, ‘‘Bearing
faults classification under various operation modes using time domain
features, singular value decomposition, and fuzzy logic system,’’ Adv.
Mech. Eng., vol. 12, no. 10, 2020, p. 1687814020967874.

[36] E. Elbouchikhi, V. Choqueuse, and M. Benbouzid, ‘‘Induction machine
bearing faults detection based on a multi-dimensional MUSIC algorithm
and maximum likelihood estimation,’’ ISA Trans., vol. 63, pp. 413–424,
Jul. 2016.

[37] C. Morales-Perez, J. Grande-Barreto, J. Rangel-Magdaleno, and
H. Peregrina-Barreto, ‘‘Bearing fault detection in induction motors
using MCSA and statistical analysis,’’ in Proc. IEEE Int. Instrum. Meas.
Technol. Conf. (I2MTC), May 2018, pp. 1–5.

[38] W. Deng, S. Zhang, H. Zhao, andX. Yang, ‘‘A novel fault diagnosis method
based on integrating empirical wavelet transform and fuzzy entropy for
motor bearing,’’ IEEE Access, vol. 6, pp. 35042–35056, 2018.

[39] L. Bo, G. Xu, X. Liu, and J. Lin, ‘‘Bearing fault diagnosis based on subband
time-frequency texture tensor,’’ IEEE Access, vol. 7, pp. 37611–37619,
2019.

[40] Q. Jiang, F. Chang, and B. Sheng, ‘‘Bearing fault classification based on
convolutional neural network in noise environment,’’ IEEE Access, vol. 7,
pp. 69795–69807, 2019.

[41] W. Fontes Godoy, D. Morinigo-Sotelo, O. Duque-Perez, I. Nunes da Silva,
A. Goedtel, and R. H. C. Palácios, ‘‘Estimation of bearing fault severity in
line-connected and inverter-fed three-phase induction motors,’’ Energies,
vol. 13, no. 13, p. 3481, Jul. 2020.

24192 VOLUME 10, 2022

http://dx.doi.org/10.1109/TII.2021.3120975


V. Aviña-Corral et al.: BFD in ASD-Powered Induction Machine Using MODWT and Image Edge Detection

[42] L. Yuan, D. Lian, X. Kang, Y. Chen, and K. Zhai, ‘‘Rolling bearing
fault diagnosis based on convolutional neural network and support vector
machine,’’ IEEE Access, vol. 8, pp. 137395–137406, 2020.

[43] A. Naha, A. K. Samanta, A. Routray, and A. K. Deb, ‘‘Low complexity
motor current signature analysis using sub-nyquist strategy with reduced
data length,’’ IEEE Trans. Instrum. Meas., vol. 66, no. 12, pp. 3249–3259,
Dec. 2017.

[44] Y. Trachi, E. Elbouchikhi, V. Choqueuse, andM. E. H. Benbouzid, ‘‘Induc-
tionmachines fault detection based on subspace spectral estimation,’’ IEEE
Trans. Ind. Electron., vol. 63, no. 9, pp. 5641–5651, Sep. 2016.

VICTOR AVIÑA-CORRAL (Graduate Student
Member, IEEE) was born in Mexico City,
Mexico. He received the B.E. degree in electronics
engineering (specialty in digital systems) from
the Instituto Tecnológico de Durango, Durango,
Mexico in 2008, and the M.Sc. degree in elec-
tronics from the Instituto Nacional de Astrofísica,
Óptica y Electrónica, Puebla, Mexico, in 2019,
where he is currently pursuing the Ph.D. degree.

His research interests include FPGAs, DSP,
instrumentation, control and automation, and power electronics.

JOSE DE JESUS RANGEL-MAGDALENO
(Senior Member, IEEE) received the B.E.
degree in electronics engineering and the M.E.
degree in electrical engineering on hardware
signal processing from the Universidad de
Guanajuato, Mexico, in 2006 and 2008, respec-
tively, and the Ph.D. degree from the Universidad
Autónoma de Queretaro, Mexico, in 2011.

He is currently a Tenured Researcher at the
Electronics Department, INAOE, Mexico. He has

authored one book, and more than 100 works published in book chapters,
journals, and conferences. His research interests include FPGAs, signal and
image processing, and instrumentation.

Dr. Rangel-Magdaleno is a member of the Mexican National Research
System (SNI), Level 2. He received the 2018 IEEE I&MSOutstandingYoung
Engineer Award.

HAYDE PEREGRINA-BARRETO (Senior Mem-
ber, IEEE) received the bachelor’s degree in com-
puter science from the Instituto Tecnologico de
Cuautla, in 2006, the master’s degree in engineer-
ing from the Universidad de Guanajuato, in 2008,
and the Ph.D. degree in engineering from the
Universidad Autonoma de Queretaro, Mexico,
in 2011. She made a postdoctoral research in
medical imaging at the INAOE, Mexico, in 2014,
where she is currently a Titular Researcher. She

has authored more than 40 works published in book chapters, journals, and
conferences. Her research interests include image processing and medical
imaging. She is a member of the Mexican National Research System (SNI).

JUAN MANUEL RAMIREZ-CORTES (Senior
Member, IEEE) received the B.Sc. degree in elec-
trical engineering from the National Polytechnic
Institute, Mexico, the M.Sc. degree in electrical
engineering from the National Institute of
Astrophysics, Optics, and Electronics (INAOE),
Mexico, and the Ph.D. degree in electrical engi-
neering from Texas Tech University. Since 2007,
he has been at the INAOE, where he has been the
Electronics Department Chair and the Research

Director, where he is currently a Titular Researcher at the Electronics Depart-
ment. His research interests include signal and image processing, biometry,
neural networks, fuzzy logic, and digital systems. He was an Appointed
Member of the Administrative Committee of the IEEE Instrumentation and
Measurement Society. He is also serving as a Finance VP. He is a member
of the Mexican National Research System (SNI), Level 2.

VOLUME 10, 2022 24193


