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ABSTRACT A peristaltic endoscope is a device that could locomote through curving and tortuous spaces
where it has many real-life applications in different disciplines e.g., in the field of medicine, it helps in the
process of catheterization in curved tubes which in turn relieve patient’s pain. The aim of this paper is to study
a trapping phenomenon at the centerline of a gap between inner peristaltic endoscope and outer peristaltic
tube of a fluid with viscosity variation and a novel phenomenon of separated flow at the boundary of these
tubes. For understanding these phenomena, we formulate the flow of a fluid with viscosity variation through
the gap between two coaxial peristaltic tubes in cylindrical coordinates with neglecting Reynolds number
and wave number. Explicit forms for the velocity field, pressure rise and friction forces on inner and outer
peristaltic tubes in terms of radius ratio, flow rate, parameter of viscosity and occlusion have been obtained.
A new comparison between a rigid endoscope and a peristaltic endoscope through the gastrointestinal tract
has been made for the pressure rising and drag (friction) forces results. Also, we identify type of pumping
for various physical parameters of interest. In addition, separated flow points are determined numerically by
using computer algebra system.

INDEX TERMS Fluid with variable viscosity, Newtonian fluid, peristalsis, peristaltic endoscope, separated
flow, trapping.

NOMENCLATURE
r1, r2 Dimensional wall surfaces of peristaltic

endoscope and small intestine at any time
respectively.

n Radius ratio.
a Radius of the small intestine at inlet.
b Wave amplitude.
c Wave speed.
λ Wavelength.
t Dimensional time.(
R, Z

)
Dimensional cylindrical fixed coordinates
system.

(R, Z ) Non-dimensional cylindrical fixed coordinates
system.

(r, z) Dimensional cylindrical moving coordinates
system.
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approving it for publication was Yeliz Karaca .

(r, z) Non-dimensional cylindrical moving
coordinates system.

r1, r2 Non-dimensional wall surfaces of peristaltic
endoscope and small intestine in the moving
coordinates respectively.

δ = a
λ

Wave number.
ϕ = b

a Amplitude ratio.(
U , W

)
Dimensional velocity components in the radial
and axial directions respectively
in fixed coordinates.

(U , W ) Non-dimensional velocity components in the
radial and axial directions respectively
in fixed coordinates.

(u, w) Dimensional velocity components in the
radial and axial directions respectively
in moving coordinates.

(u, w) Non-dimensional velocity components in the
radial and axial directions respectively in
moving coordinates.

F Non-dimensional volume flow rate in
the moving coordinates system.
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P Pressure.
Q Dimensional instantaneous volume flow

rate in the fixed coordinates
system.

q Dimensional volume flow rate in the moving
coordinates system.

Q̂ Dimensional time mean flow in the fixed
coordinates system.

2 Non- dimensional time mean flow in the
fixed coordinates system.

µ0 Constant viscosity coefficient on
peristaltic endoscope.

α Viscosity parameter.
1Pλ Non- dimensional pressure rise.
F (i)λ Non- dimensional friction force on the

peristaltic endoscope.
F (o)λ Non- dimensional friction force on the

small intestine.
ki, ci Constants.
zs Longitudinal component of

separation points.

I. INTRODUCTION
Nowadays, there have been several attempts to use biological
revelation as the basis for renovation of endoscopes. Several
investigators, inspired by the flexible locomotion of snakes,
have created new endoscopes that can bend in response to the
activation of shape memory alloy wires [1], [2]. A peristaltic
endoscope is a device that could locomote through curving
and tortuous spaces. It has several applications in different
disciplines e.g., in industry and medicine. It could be used
to maintain and repair machines with complex internal
plumbing. Medically, endoscopy and catheterization within
the human body may be done using a peristaltic endoscope,
see for example, Mangan et al. [1]. Studies on effects of
a concentric and an eccentric catheter on peristaltic motion
for Newtonian fluids have shown in literature [3], [4].
Shukla et al. [5] discussed the influence of peripheral-layer
viscosity on peristaltic movement of a bio-fluid in uniform
tube and channel using the long wavelength approximation
as in Shapiro et al. [6]. Shapiro et al. [6] investigated the
fluid mechanics of peristaltic pumping in connection with the
function of systems such as ureter, gastro-intestinal tract, the
small blood vessels, and other glandular ducts. They found
that there were two physiologically significant phenomena
called ‘‘reflux’’ and ‘‘trapping’’ in peristaltic flow.

From physiological point of view, it is known that the
small intestine receives secretions from other organs such
as stomach, pancreas, liver and the small intestine itself.
This shows that the fluid viscosity on the wall of small
intestine is less than that away from the wall. Hence, the
viscosity is dependent on the radial distance. Thus, Srivas-
tava et al. [7] studied the influence of viscosity variation
and peristaltic transport of physiological fluid flow in non-
uniform geometry. They found that the effect of increasing

FIGURE 1. Peristaltic endoscope.

viscosity decreases flow rate. Abd El Naby et al. [8] discussed
the hydro-magnetics flow of a fluid with viscosity variation in
a uniform tube with peristalsis. Some other studies discussed
both the influence of Newtonian and non-Newtonian fluids of
varied viscosity and that of a rigid endoscope on peristaltic
movement in absence and presence of a magnetic field as
given in literature [9]–[16]. Rachid and Ouazzani [17] studied
effects of the electro-magneto-hydrodynamics (EMHD) flow
of a bi-viscosity fluid through a permeable medium between
two deformable coaxial tubes with different phases and
amplitudes. McCash et al. [18] studied effects of a Newtonian
fluid with constant viscosity and a peristaltic endoscope on
trapping by using a curvilinear coordinate system.

To the best of our knowledge, it is clear from previous
studies that there is no attempt to study trapping and separated
flow phenomena of a fluid with viscosity variation through
the gap between two coaxial peristaltic tubes. So, this is the
first study to explain these phenomena.

The paper is structured as follows. Section II gives the
formulation of the problem in cylindrical coordinates in
the non-dimensional form with canceling wave number and
Reynolds number. In section III, trapping at the centerline
of the gap has been studied. Separated flow (trapping at
the boundary of the gap) has been studied in section IV.
The peristaltic pumping, augmented pumping, trapping and
separated flow have been discussed for various physical
parameters of interest in section V. In section VI, concluding
remarks are summarized.

II. FORMULATION OF THE PROBLEM
We investigate separation of creeping flow of a fluid with
constant density and viscosity variation in a gap between two
coaxial peristaltic tubes. The geometry of the walls surfaces
is described in Fig. 1.

r1 = n
(
a+ b sin

2π
λ

(
Z − ct

))
, 0 < n < 1 (1)

r2 = a+ b sin
2π
λ

(
Z − ct

)
, (2)

23294 VOLUME 10, 2022



A. E. H. Abd El Naby, A. H. El-Baz: Separated Flow Through a Gap Between Two Coaxial Peristaltic Tubes

where a is the radius of the outer peristaltic tube at entrance, b
is the amplitude of thewave, λ is the wavelength, c is the wave
speed, t is the time and n is radius ratio. If we select moving
coordinates (r, z) which move in the Z direction with the
same speed as the wave (wave frame), the tubes lengths are
integral multiplied bywavelength, and the pressure difference
through the gap between the two tubes is a constant so the
flowing must be considered as steady flowing. The stationary
and moving frames have been connected as follows:

Z = z+ ct, R = r, (3)

W = w+ c, U = u, (4)

where (u,w) and
(
U ,W

)
are the velocity components in the

radial and axial directions in the wave and laboratory frames,
respectively.

Since the continuity equation in vector form is ∂ ρ

∂ t +
E∇ ·(

ρ EV
)
= 0, momentum equation in vector form is

ρ
D EV
Dt
= −E∇P+ E∇ · τ + ρ EF, τ = µ

(
E∇ EV +

(
E∇ EV
)T)

,

where ρ is the density, EV is the flow velocity in the stationary
frame, P is the pressure, τ is Stokes’ stress, µ is the dynamic
viscosity, EF is the body force per unit mass and t is time
and boundary conditions in vector form are the tangential
component of the fluid velocity on the wall is determined
from no-slip boundary condition EV · êZ = Vwall in the
stationary frame, where êZ is the unit vector in the axial
direction. Also, the normal component of the fluid velocity on
the wall is determined from the boundary surface condition
of a fluid DFi

Dt = 0 at R = r i
(
Z , t

)
, i = 1, 2 with using

the previous condition, where Fi
(
R,Z , t

)
= R− r i

(
Z , t

)
=

0. Then following [10], [14], [16] the governing equations
of the flow with boundary conditions, under creeping flow
(Re� 1), long wavelength approximation (δ � 1), the
density is constant, the viscosity is variable, the flow is steady,
the diameter Reynolds number is small

(
ρ wa
µ
� 1

)
and with

negligence of gravitational force, in the wave frame in the
non-dimensional form are continuity equation:

1
r
∂ (ru)
∂r
+
∂w
∂z
= 0, (5)

Navier-Stokes equations:

∂P
∂r
= 0, (6)

∂P
∂z
=

1
r
∂

∂r

(
µ (r) r

∂w
∂r

)
. (7)

We neglect wave number by assuming that the wavelength
is long compared to radius of the tube (a� λ), then
(δ � 1) . Also, since the inertial force components in
the dimensionless form for steady flow take the follow-
ing form

(
Reδ3

(
u ∂u
∂r + w

∂u
∂z

)
,Reδ

(
u ∂w
∂r + w

∂w
∂z

))
. Then

(Reδ � 1), hence we may neglect the inertial terms. From
the condition of boundary surfaces of a fluid, where the fluid

particles originally on the walls must remain on the walls, and
mechanical property of the walls in the stationary coordinates
W = 0 at R = r1, r2. By using the transformations (3)
and (4), we obtain the boundary conditions in the moving
coordinates in the dimensionless form as follows:

w = −1 at r = r1, (8a)

w = −1, u = −
dr2
dz

at r = r2. (8b)

Hence, the no-slip condition for a viscous flow is satisfied.
The viscosity causes the fluid to stick to the walls and thus the
velocity of the fluid at the walls assumes the velocity of the
walls.

Where the dimensionless variables are given by

r =
r
a
, R =

R
a
, r1 =

r1
a
= n (1+ ϕ sin (2πz)) ,

z =
z
λ
, Z =

Z
λ
, µ (r) =

µ (r)
µ0

, u =
λu
ac
,

U =
λU
ac
, w =

w
c
, W =

W
c
, δ =

a
λ
� 1,

P =
a2P
cλµ0

, t =
ct
λ
, ϕ =

b
a
< 1 and

r2 =
r2
a
= 1+ ϕ sin (2πz) , (9)

where ϕ is the occlusion and µ0 is the coefficient of viscosity
on the surface of inner peristaltic tube. By integrating Eq.
(7) and using the dimensionless boundary conditions (8),
by using separation of variables method we can get the
velocity profile as (10), shown at the bottom of the next page,
where

I1 (r) =
∫

r
µ (r)

dr, (11)

I2 (r) =
∫

dr
rµ (r)

. (12)

The volume flow rate in the stationary and moving coordi-
nates are given by

Q
(
Z , t

)
=

r2∫
r1

2πRWdR, (13)

q =

r2∫
r1

2πrwdr . (14)

By substitution from Eqs. (3) and (4) in Eq. (13) and making
use of Eq. (14) gives

Q = q+ πc
(
1− n2

)
r22. (15)

The time-mean flowing through a period T =
λ
c at a

stationary position Z is defined as:

Q̂ =
1
T

T∫
0

Q
(
Z , t

)
dt. (16)
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By substitution from Eq. (15) in Eq. (16) and integrating
yields:

Q̂ = q+ πc
(
1− n2

)(
a2 +

b2

2

)
. (17)

On defining the dimensionless time-mean flow 2 and the
volume flow rate F in the wave frame as follows:

2 =
Q̂

2π ca2
and F =

q
2π ca2

, (18)

then Eq. (17) may be written as

2 = F +
1
2

(
1− n2

) (
1+

ϕ2

2

)
(19)

where

F =

r2∫
r1

rwdr . (20)

Substituting from Eq. (10) in Eq. (20) yields

dP
dz
=

4F + 2
(
1− n2

)
r22

[I1(r2)−I1(r1)]2
I2(r2)−I2(r1)

− I3
, (21)

where

I3 =

r2∫
r1

r3

µ (r)
dr . (22)

The pressure rising 1Pλ and drag (friction) forces F (i)λ and
F (o)λ (at the walls) in the two peristaltic tubes of length λ,
in the dimensionless form, are given by

1Pλ =

1∫
0

(
dP
dz

)
dz, (23)

F (i)λ =

1∫
0

r21

(
−
dP
dz

)
dz, (24)

F (o)λ =

1∫
0

r22

(
−
dP
dz

)
dz. (25)

The influence of viscosity variation through the gap between
two coaxial peristaltic tubes can be shown in Eqs. (23)-(25)
to give a function of viscosity µ (r). For the present
implementation, we assume that the viscosity variation in
non-dimensional form as mentioned by Srivastava et al. [7]
as:

µ (r) = e−αr , (26)

or

µ (r) = 1− αr for α � 1. (27)

Here α is a viscosity parameter.
This assumption was justified physiologically as shown in

reference [10].
By substituting from Eq. (27) in Eqs. (11), (12), (22), using

r1 = n r2 and Eq. (21), we obtain

dP
dz
=
c1
r42
+
c2
r22
− c3

(
c1
r32
+
c2
r2

)
, (28)

where

c1 =
16F
k2

, c2 =
8k1
k2
, c3 = −4αk3, (29a)

k1 = 1− n2, k2 = n4 −
k21

log (n)
− 1, (29b)

k3 =
k21 (1− n)

4k2 (log (n))2
+
k1
(
1− n3

)
3k2 log (n)

+
1− n5

5k2
. (29c)

Substituting from Eq. (28) in Eqs. (23-25) yields

1Pλ = c1 J4 + c2 J2 − c3 (c1 J3 + c2 J1) , (30)

F (i)
λ = −n

2 [c1 J2 + c2 − c3 (c1 J1 + c2)] , (31)

F (o)
λ = −c1 J2 − c2 + c3 (c1 J1 + c2) , (32)

where

J1 =
1(

1− ϕ2
)1/2 , J2 =

1(
1− ϕ2

)3/2 ,
J3 =

2+ ϕ2

2
(
1− ϕ2

)5/2 , J4 =
2+ 3ϕ2

2
(
1− ϕ2

)7/2 . (33)

Substituting from Eqs. (29) and (33) using (19) in
Eqs. (30-32) yields (34)–(36), as shown at the bottom of the
next page. Taking the limit as n → 0 (i.e., in absence of the
peristaltic endoscope), the results that are obtained in Eqs.
(34-36) reduce to

1Pλ = −2

[
82+ 4ϕ2 (32− 4)+ ϕ4(

1− ϕ2
)7/2

]

+ 8α

[
82+ 4ϕ2 (2− 3)+ 3ϕ4

5
(
1− ϕ2

)5/2
]
, (37)

F (o)λ = 8−
4
(
2− 42+ ϕ2

)(
1− ϕ2

)3/2 +
16α
5

(
2− 42+ ϕ2(
1− ϕ2

)1/2 − 2

)
(38)

which are the same results obtained by Shapiro et al. [6] and
Srivastava [14] in absence of the viscosity parameter α. Also,
these results are derived by Shukla et al. [5] in absence of the
peripheral layer.

w (r, z) =
1
2
dP
dz

[
I1 (r)−

I2 (r) [I1 (r2)− I1 (r1)]+ I1 (r1) I2 (r2)− I1 (r2) I2 (r1)
I2 (r2)− I2 (r1)

]
− 1, (10)
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III. TRAPPING AT THE CENTERLINE OF THE GAP
Trapping phenomenon was studied by several investigators as
shown in literature [4], [6], [19]–[21]. Following Siddiqui and
Schwarz [22], the trapping limits have been determined as
2min
2max

is a function of occlusion ϕ, where2min is the minimum
flow rate and2max is the maximum flow rate. The minimum
flow rate is obtained by Eqs. (10), (19) and (28) when w = 0
at r =

(
k4 r22 + α k5 r

3
2

)1/2
, where k4 = −k1

/
2 log (n) and

k5 = −k1 (1− n)
/
2 (log (n))2 +

(
n3 − 1

)/
3 log (n) and

solving it with respect to 2, then we get

2min=−
k1φ (4+ φ)

4
+

k2 log (n) (1+ φ)2

2k1 log (k4)+4 (k4 − 1) log (n)
+α (k6+k7+k8) (1+ φ)3 (39)

where k6, k7, k8, as shown at the bottom of the page. The
maximum flow rate has been obtained by setting 1Pλ = 0
in Eq. (34) and solving it with respect to 2, then we get

2max =
k1 ϕ2

(
16− ϕ2

)
4
(
2+ 3ϕ2

) − 8α k1 k3 ϕ2
(
1− ϕ2

)3(
2+ 3ϕ2

)2 , (40)

and hence the flow rate ratio 2min
/
2max, neglecting the

terms of order α2, reduces to (41), as shown at the bottom
of the page, where

k10 = k6 + k7 + k8

k11 = −k1ϕ (4+ ϕ)
/
4+ k2 (1+ ϕ)2 log (n)

/
k9,

k9 = 2 k1 log (k4)+ 4 (k4 − 1) log (n)

By taking the limit of minimum and maximum flow rate ratio
2min

/
2max as n tends to zero, one obtains the following

form (42), as shown at the bottom of the next page.
This result is the same as given by Shapiro et al. [6]
as α = 0.

Physically, minimum and maximum flow rate must be real
and satisfy the inequality 0 ≤ 2min ≤ 2max. So, trapping
takes place such that 0 ≤ 2min

/
2max ≤ 1 for all values

of radius ratio n and amplitude ratio ϕ. The boundary of the
trapping region has been obtained by calculating minimum
and maximum flow rate ratio2min

/
2max for different values

of the parameter ϕ at n = 0, 0.32.

1Pλ = 8

[(
2−

k1
(
2+ ϕ2

)
4

)(
2+ 3ϕ2

)
+ k1

(
1− ϕ2

)2]/
k2
(
1− ϕ2

)7/2
+32αk3

[(
2−

k1
(
2+ ϕ2

)
4

)(
2+ ϕ2

)
+ k1

(
1− ϕ2

)2]/
k2
(
1− ϕ2

)5/2
, (34)

F (i)λ = −8n
2

[
22−

k1
(
2+ ϕ2

)
2

+ k1

((
1− ϕ2

)3/2)]/
k2
(
1− ϕ2

)3/2
− 32αk3n2

[
22−

k1
(
2+ ϕ2

)
2

+ k1
(
1− ϕ2

)1/2]/
k2
(
1− ϕ2

)1/2
, (35)

F (o)λ = −8

[
22−

k1
(
2+ ϕ2

)
2

+ k1
(
1− ϕ2

)3/2]/
k2
(
1− ϕ2

)3/2
−32αk3

[
22−

k1
(
2+ ϕ2

)
2

+ k1
(
1− ϕ2

)1/2]/
k2
(
1− ϕ2

)1/2
. (36)

k6 =
k1k2 (n− 1) log (k4)

2 (k1 log (k4)+ 2 (k4 − 1) log (n))2

k7 =
k2 log (n)

(
−3k1

(
−2k4 + 2k3/24 + k5

)
+ 2k4

(
−1+ n3 + 6k3

(
n2 − 1

))
log (k4)

)
6k4 (k1 log (k4)+ 2 (k4 − 1) log (n))2

k8 = −
k2 (log (n))2

(
−2+ 12k3 (k4 − 1)+ 2k3/24 + 3k5

)
3 (k1 log (k4)+ 2 (k4 − 1) log (n))2

2min

2max
= −

4
(
2+ 3ϕ2

)
k11

k1 ϕ2
(
ϕ2 − 16

) + 4α
(
−k10 (1+ ϕ)3

(
ϕ2 − 16

) (
2+ 3ϕ2

)
− 32 k3

(
ϕ2 − 1

)3
k11
)

k1 ϕ2
(
ϕ2 − 16

)2 , (41)
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IV. SEPARATED FLOW (TRAPPING AT THE BOUNDARY
OF THE GAP)
To predict separated flow at the boundary, the magnitude of
the vorticity vector equals to zero at the boundary, i.e.,

ζ =
∂ u
∂ z
−
∂ w
∂ r
= 0 at r = r2, r = r1 (43)

By substituting from Eqs. (11), (12) and (28) in Eq. (10) and
making use of Eq. (27), we get the axial velocity of the fluid
as:

w = d1
r3r ′2
r52
+

(
−d1 r + d2

r3

2
+ d3r log(

r
r2
)
)

×

(
r ′2
r32

)
+ d4

r r ′2
2 r2 2

−

(
r2

r42

)

+α

{
d5
r3

r42
+ d6

r2

r32
+ d7

r

r22
−
d8
r2

−
d9
r2

log
(
r
r2

)
+ d10

r3

r22
+ d11

r2

r2

+ d12 r − d13 r2 − d14 r2 log
(
r
r2

)}
, (44)

where the prime means differentiation with respect to z.
To obtain the radial velocity of the fluid, we substitute

from Eq. (44) into Eq. (5) using the boundary condition (8b),
we have the radial velocity of the fluid in the following form:

u = d1r3
r ′2
r52
+

(
−d1r +

d2
2
r3 + d3r log(

r
r2
)
)(

r ′2
r32

)

+
d4
2

(
rr ′2
r2

)
− (2+ d2 + d4)

(
r2r ′2
2r

)
+α

{((
−
4
5
d5 +

1
12
(−9d6 − 8d7 + 6d8 + 3d9)

)
1
r

+
1
4
r
(
2d13 − 3d14 + 2d14 log(

r
r2
)
))

r ′2

+
4
5
d5
r4r ′2
r52
+

3
4
d6
r3r ′2
r42
+

(
2
3d7r

2
+

2
5d10r

4
)
r ′2

r32

+

r
(
−2d8 − d9 + d11r2 − 2d9 log( rr2 )

)
r ′2

4r22

−
(8d10 + 5 (d11 + 2d13 − 3d14)) r22 r

′

2

20r

}
, (45)

where d1−d14, as shown at the bottom of the page.
Substituting from Eqs. (44) and (45) into Eq. (43), we get

r32 r
′′

2 + (2d2 + d4 + 1) r22 r
′2
2 + (2d1 + d3) r

′2
2

+(2d2 + d4) r22 + 2d1 + d3 + α [(2d10 + d11 + d13
−d14) r32 r

2
′2 + (4d5 + 3d6 + 2d7 − d8 − d9) r2r

′2
2

+ (3d10 + 2d11 + d12 − d14) r32 + (3d5 + 2d6
+d7 − d9) r2] = 0, (46)

r31 r
′′

1 + (2d2 + d4 + 1) r21 r
′2
1 + (2d1 + d3) r

′2
1

+ (2d2 + d4) r21 + 2d1 + d3 + α [(2d10 + d11 + d13
−d14) r31 r

′2
1 + (4d5 + 3d6 + 2d7 − d8 − d9) r1r

′2
1

+ (3d10 + 2d11 + d12 − d14) r31
+ (3d5 + 2d6 + d7 − d9) r1] = 0. (47)

Substituting from Eq. (9) in Eqs. (46) and (47), we have
(48) and (49), as shown at the bottom of the next page. Since
separated flow occurs on the boundaries that are functions
of z, then we must find z as a function of parameters that
are including parameters of both the peristaltic motion of
the walls and viscous flow in the thin annuli. Thus by
substituting from Eq. (19) in Eqs. (48) and (49) and then solve
them numerically. Hence, we obtain the axial component of
separated flow points zs on the outer and inner peristaltic
tubes respectively as a function of parameters α, ϕ, n and2.

V. NUMERICAL RESULTS AND DISCUSSION
For discussion our results, we calculate the non-dimensional
pressure rising 1Pλ, and drag (friction) forces (at the walls)
in the two peristaltic tubes for various given values of the
non-dimensional time-mean flow 2, occlusion φ, and radius
ratio n. As shown in Srivastava and Srivastava [23], one
uses the values of various parameters as: a2 = 1.25 cm.

2min

2max
=
(1− 2ϕ)

(
2+ 3ϕ2

)
ϕ2
(
16− ϕ2

) −
2α (1+ ϕ)3

(
99ϕ4 − 336ϕ3 + 386ϕ2 − 240ϕ + 16

)
15ϕ2

(
16− ϕ2

)2 . (42)

d1 =
c1
4
, d2 =

c2
4
, d3 =

c1
(
1− n2

)
4 log(n)

, d4 =
c2
(
1− n2

)
4 log(n)

, d5 =
c1
6
, d6 = c1k3, d7 =

c1
(
1− n2

)
4 log(n)

d8 =
c1
(
3− 3n2 + 2 (1+ 6k3) log(n)

)
12 log(n)

, d9 =
c1 (n− 1)

(
3− 3n2 + 2

(
1+ n+ n2 + 6k3(1+ n)

)
log(n)

)
12 (log(n))2

,

d10 =
c2
6
, d11 = c2k3, d12 =

c2
(
1− n2

)
4 log(n)

, d13 =
c2
(
3− 3n2 + 2 (1+ 6k3) log(n)

)
12 log(n)

,

d14 =
c2 (n− 1)

(
3− 3n2 + 2

(
1+ n+ n2 + 6k3(1+ n)

)
log(n)

)
12 (log(n))2

.
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FIGURE 2. The pressure rise against radius ratio at ϕ = 0.2.

λ = 8.01 cm., c = 2cm./min. The parameter of viscosity α
takes the values 0 and 0.1, as reported in Srivastava et al. [7].
Since the radius of the small intestine, a2 = 1.25 cm. ,
is small compared with the wavelength λ = 8.01 cm., then
the theory of long wavelength and creeping flow of the
present implementing remains usable. Also, Lew et al. [24]
observed that Reynolds number in the small intestine was
very small. Cotton and Williams [25] reported diameter of
gastrointestinal rigid endoscopes are among 8 and 11mm.
Besides, Srivastava and Srivastava [23] reported the radius
of the small intestine is 1.25 cm. , then the maximum value
of the radius ratio n for rigid endoscopes becomes 0.44, but
the radius ratio n for peristaltic endoscopes takes the values
greater than zero or less than one. Equations (34), (35) and
(36) are drawn in Figs. 2-7 respectively. Whereas, Eq (41) is
drawn in Fig. 8.

Figs. 2 and 3 perform the pressure rise variation 1Pλ
against radius ratio n at ϕ = 0.2 and 2 = 0.18
respectively, which show that the magnitude of pressure
rising increases when radius ratio n increases for various
values of flow rate 2. Since increasing radius ratio means
that the volume flow rate decreases, then the pressure
rise increases. Physically, decreasing of the volume flow
rate means that the velocity field decreases. Hence, the

FIGURE 3. The pressure rise against radius ratio at 2 = 0.18.

FIGURE 4. The friction force on inner peristaltic tube against radius ratio
at ϕ = 0.2.

pressure rise increases. But increasing viscosity parameter α
decreases the pressure rise because the increasing viscosity
parameter means that fluid viscosity decreases. Furthermore,
there is approximately no variation of pressure rise with
viscosity parameter α at ϕ = 0.2,2 = 0.09 and
ϕ = 0.4,2 = 0.18 as shown in Figs. 2 and
3 respectively. Also, augmented pumping, where 2 > 0 and
1Pλ < 0 (favorable pressure gradient), takes place at

−4π2ϕ sin (2πz) (1+ ϕ sin (2πz))3 + 4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz))2 (2d2 + d4 + 1)

+ 4π2ϕ2 cos2 (2πz) (2d1 + d3)+ (2d2 + d4) (1+ ϕ sin (2πz))2 + 2d1 + d3

+α
[
4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz))3 (2d10 + d11 + d13 − d14)

+ 4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz)) (4d5 + 3d6 + 2d7 − d8 − d9)

+ (1+ ϕ sin (2πz))3 (3d10 + 2d11 + d12 − d14)+ (1+ ϕ sin (2πz)) (3d5 + 2d6 + d7 − d9)
]
= 0, (48)

−4π2ϕ sin (2πz) (1+ ϕ sin (2πz))3 + 4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz))2 (2d2 + d4 + 1)

+ 4π2ϕ2 cos2 (2πz) (2d1 + d3)+ (2d2 + d4) (1+ ϕ sin (2πz))2 + 2d1 + d3

+α
[
4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz))3 (2d10 + d11 + d13 − d14)

+ 4π2ϕ2 cos2 (2πz) (1+ ϕ sin (2πz)) (4d5 + 3d6 + 2d7 − d8 − d9)

+ (1+ ϕ sin (2πz))3 (3d10 + 2d11 + d12 − d14)+ (1+ ϕ sin (2πz)) (3d5 + 2d6 + d7 − d9)
]
= 0, (49)
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FIGURE 5. The friction force on inner peristaltic tube against radius ratio
at 2 = 0.18.

FIGURE 6. The friction force on outer peristaltic tube against radius ratio
at ϕ = 0.2.

ϕ = 0 (no peristalsis), but peristaltic pumping, where
2 > 0 and1Pλ > 0 (adverse pressure gradient), takes place
at ϕ = 0.4 as shown in Fig. 3.
Experimental results in vivo pig had been obtained by

Grundfest et al. [26] showed that the intestinal diameter
increases with increasing intraluminal intestinal pressure
in presence of a robotic endoscope and this agrees with
our theoretical results which state that the pressure rising
increases when radius ratio increases. Physically, increasing
the radius ratio implies increasing of the intestinal diameter.

Figs. 4-7 represent the variation of drag (friction) forces on
a peristaltic endoscope and on a peristaltic tube F (i)λ and F (o)λ
respectively with radius ratio n at amplitude ratio ϕ = 0.2 and
time-mean flow 2 = 0.18. That shows the magnitude of
drag (friction) forces on the peristaltic endoscope and on the
peristaltic tube increase when radius ratio n increases for
various values 2 and α, but they decrease when viscosity
parameter α increases at ϕ = 0, 0.4 for various values of
radius ratio n. Similarly, there is approximately no variation
of drag (friction) forces on the peristaltic endoscope and the
peristaltic tube with viscosity parameter α at ϕ = 0.2,2 = 0
as shown in Figs.4 and 6. Moreover, reflux (backward flow),
where 2 > 0, F (i)

λ > 0 and F (o)
λ > 0, takes place at 2 =

0.09, 0.18 for various values of radius ratio when viscosity

FIGURE 7. The friction force on outer peristaltic tube against radius ratio
at 2 = 0.18.

FIGURE 8. Graph of 2min/2max against amplitude ratio ϕ.

parameter α = 0, 0.1 and ϕ = 0.2, 0.4. Furthermore,
drag (friction) force on the peristaltic endoscope is smaller
than that on the outer peristaltic tube. This happens because
amplitude ratio φ on the outer peristaltic tube is greater than
that on the peristaltic endoscope.

The next results in tables 1 and 2 for the pressure rise1Pλ
and friction forces F (i)λ and F (o)λ of a rigid endoscope and
a peristaltic endoscope have been obtained from equations
(2.35-2.37) in reference [10] and equations (34-36) in the
present study.

It is obvious from tables 1 and 2 that the absolute values
of pressure rising and friction forces in presence of rigid
endoscope are smaller than the corresponding values in
presence of a peristaltic endoscope at 0.1 ≤ ϕ ≤ 0.2, but
they are greater at 0.3 ≤ ϕ ≤ 0.6 for the fluid with constant
and variable viscosity.

Fig. 8 shows that the trapping limit, for fluids of a constant
viscosity (α = 0) and that of a variable viscosity (α = 0.1),
takes place at 0.26 ≤ ϕ < 0.5 and 0.27 ≤ ϕ ≤ 0.52 for
α = 0, 0.1 respectively when n = 0 (absence of the
peristaltic endoscope), but it takes place at 0.36 ≤ ϕ ≤ 0.6
when n = 0.32 (presence of the peristaltic endoscope). Also,
it is clear that the trapping limit increases when viscosity
parameter α increases in absence of the inner peristaltic tube,
but it is independent of viscosity parameter in presence of
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TABLE 1. The pressure rise and friction forces in presence of a rigid
endoscope at 2 = 0.09 and n = 0.32.

TABLE 2. The pressure rise and friction forces in presence of a peristaltic
endoscope at 2 = 0.09 and n = 0.32.

FIGURE 9. The axial component of separated flow points on outer
peristaltic tube against amplitude ratio at 2 = 0.18.

the peristaltic endoscope. Moreover, the trapping limit, which
was obtained by Shapiro et al. [6], agrees with our results
when n = 0 and α = 0.
To discuss the phenomenon of separated flow (trapping)

at walls bounded the gap between the peristaltic endoscope
and the small intestine. We calculate numerically the axial
component of separated flow points on the outer peristaltic
tube wall and on the inner peristaltic tube wall from Eqs. (48)
and (49) respectively. Equations (48) and (49) are drawn in
Figs. 9-12 respectively.

FIGURE 10. The axial component of separated flow points on outer
peristaltic tube against amplitude ratio at n = 0.44.

FIGURE 11. The axial component of separated flow points on inner
peristaltic tube against amplitude ratio at 2 = 0.18.

Figs. 9-12 show the relation between axial component zs of
separated flow points on the outer and inner peristaltic tubes
walls and occlusion ϕ. We notice from Figs.9-12 at certain
values of radius ratio n, amplitude ratio ϕ, volume flow rate
2 and viscosity parameter 2 that the axial component zs of
separated flow points on the outer and inner peristaltic tubes
walls bifurcates into two branches. For the outer peristaltic
tube, one of them (upper branch) approaches to outlet of
contraction region and the other (lower branch) approaches
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FIGURE 12. The axial component of separated flow points on inner
peristaltic tube against amplitude ratio at n = 0.44.

to inlet of contraction region. But for the inner peristaltic
tube, bifurcation of the axial component zs of separated
flow points takes place in relaxation and contraction regions.
Physically, this means that the streamlines under certain
conditions divide to trap a fluid which totally moving with
the same speed of the peristaltic wave. Also, it is evident from
Figs. 9-12 that the axial component of separated flow points
on the peristaltic endoscope wall and on the small intestine
wall is approximately independent of viscosity parameter
at {n = 0.44, 0.56, 2 = 0.09, 0.18, 0.27}. In addition, the
trapping limit increases when radius ratio and volume
flow rate increase. Moreover, Figs. 9 and 10 declare that
trapping region on the outer peristaltic tube takes place in
a contraction region for different values of radius ratio and
volume flow rate, but it takes place in relaxation region
only at {n = 0.32, ϕ = 0.51, α = 0.1, 2 = 0.18} and
{n = 0.44, ϕ = 0.51, α = 0.1, 2 = 0.18}. Furthermore,
Figs. 11 and 12 show that trapping region on the inner
peristaltic tube takes place in contraction and relaxation
regions for different values of radius ratio and volume
flow rate, but it takes place in relaxation region only at
{n = 0.44, α = 0, 2 = 0.09, 0.18, 0.27}. It is clear from
Figs. 9-12 that there are fixed points (critical amplitude ratios)
which interchange their stability with other fixed points as the
parameters α, n and 2 are varied. So, there are bifurcations
of a flow between coaxial peristaltic tubes. This phenomenon
occurs as a result of sequences of relaxations and contractions
of coaxial peristaltic tubes.

VI. CONCLUSION
As a result of previous analyses, we conclude that the
flow field of a fluid with constant density and viscosity

variation through a gap between two coaxial peristaltic tubes
is remarkable.

More exactly:
• The peristaltic endoscope is more appropriate than

the rigid endoscope for peristaltic organs whose amplitude
ratios are 0.3, 0.4, 0.5 and 0.6, but the rigid endoscope is
more appropriate than the peristaltic endoscope for peristaltic
organs whose amplitude ratios are 0.1 and 0.2.
• Increasing radius ratio increases the pressure rise in the

peristaltic pumping and augmented pumping regions.
• The friction forces increase with increasing radius ratio

in peristaltic pumping and reflux regions.
• The trapping limit on the centerline of the gap between

coaxial peristaltic tubes is independent of viscosity parameter
in presence of the peristaltic endoscope (n = 0.32), but it
increments with increasing viscosity parameter in absence of
the peristaltic endoscope (n = 0) .
• The separated limit on the boundary increments with

increasing radius ratio and volume flow rate, but it declines
when viscosity parameter increases.
• Separated flow occurs at the surfaces of peristaltic

movement.
• The present mathematical model of a peristaltic endo-

scope is considered as benchmark research for endoscopes’
development.
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