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ABSTRACT Recently, several market types and regulations have been developed in an attempt to handle
the increased carbon effect. End-users can also actively participate in the existing distribution system thanks
to Peer-to-Peer (P2P) energy trading, which is one of the new emerging market types. In this paper, a novel
dual bidding strategy for multi-hierarchical P2P energy trading that includes both intra community and inter
communities is proposed considering uncertainties in solar irradiance and temperature.While the lower-level
problem consists of both optimal bids of the households to the own Local Market Operators (LMO) for intra
community trades and optimal bids of the LMOs to the Central Market Operator (CMO) for inter community
trades, profit of both the LMOs and CMO is maximized by clearing the market prices at the upper-level
problem. To prove the validity of the devised model, a set of case studies are created. Moreover, the results
suggest that the proposed bi-level model is robust, and a remarkable amount of cost savings could be provided
by integrating the model.

INDEX TERMS Bi-level optimization, local market, market clearing, optimal bidding strategy, peer-to-peer
energy trading.

NOMENCLATURE
The nomenclature for the proposed model is introduced in a
detailed way in this section.

SETS
i Set of communities.
m Set of peers.
s Set of scenarios.
t Set of time intervals.

PARAMETERS
CP2P Cost coefficient for the local services fee.
CEESSi,m Charging efficiency of the ESS of peer m

in community i.
CRESSi,m Charging rate of the ESS of peer m in

community i [kW].

The associate editor coordinating the review of this manuscript and

approving it for publication was Junjie Hu .

DEESSi,m Discharging efficiency of the ESS of peer
m in community i.

DRESSi,m Discharging rate of the ESS of peer m in
community i [kW].

K Sufficiently high constant for Big-M
method.

N Sufficiently high constant for power
limiting.

ps Probability of scenarios.
PLoadi,m,t Demand power of peer m in community i

in time t [kW].
PLoad,toti,t Total demand power in community i in

time t [kW].
PP2P,buy,neti,m,s,t Net demand power of peer m in commu-

nity i in scenario s in time t [kW].
PP2P,buy,net,toti,s,t Total net demand power in community i

in scenario s in time t [kW].
PP2P,sell,neti,m,s,t Net produced power of peerm in commu-

nity i in scenario s in time t [kW].
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PP2P,sell,net,toti,s,t Total net produced power in community
i in scenario s in time t [kW].

PPVi,m,s,t Power produced by the PV of peer m in
community i in scenario s in time t [kW].

PPV ,toti,s,t Total power produced by the PVs in
community i in scenario s in time t [kW].

SoEESS,inii,m Initial state-of-energy of the ESS of peer
m in community i [kWh].

SoEESS,maxi,m Maximum state-of-energy of the ESS of
peer m in community i [kWh].

SoEESS,mini,m Minimum state-of-energy of the ESS of
peer m in community i [kWh].

λ
Grid,buy
t Price of energy bought from the grid in

time t [TL/kWh].
λ
Grid,sell
t Price of energy sold to the grid in time t

[TL/kWh].
1T Time interval duration [h].

VARIABLES

PESS,chi,m,s,t Charging power of the ESS of peer m in
community i in scenario s in time t [kW].

PESS,ch,toti,s,t Total charging power of the ESSs in
community i in scenario s in time t [kW].

PESS,dschi,m,s,t Discharging power of the ESS of peer
m in community i in scenario s in
time t [kW].

PESS,dsch,toti,s,t Total discharging power of the ESSs in
community i in scenario s in time t [kW].

PGrid,buyi,m,s,t Power bought from the grid by peerm in
community i in scenario s in time t [kW].

PGrid,buy,toti,s,t Total power bought from the grid by
community i in scenario s in time t [kW].

PGrid,selli,m,s,t Power sold to the grid by peerm in com-
munity i in scenario s in time t [kW].

PGrid,sell,toti,s,t Total power sold to the grid by commu-
nity i in scenario s in time t [kW].

PP2P,buy,interi,m,s,t Local power bought from community i
by peer m in scenario s in time t [kW].

PP2P,buy,inter,toti,s,t Total local power bought from commu-
nity i in scenario s in time t [kW].

PP2P,buy,intrai,m,s,t Local power bought in community i by
peer m in scenario s in time t [kW].

PP2P,buy,intra,toti,s,t Total local power bought in community
i in scenario s in time t [kW].

PP2P,sell,interi,m,s,t Local power sold to community i by peer
m in scenario s in time t [kW].

PP2P,sell,inter,toti,s,t Total local power sold to community i in
scenario s in time t [kW].

PP2P,sell,intrai,m,s,t Local power sold in community i by peer
m in scenario s in time t [kW].

PP2P,sell,intra,toti,s,t Total local power sold in community i in
scenario s in time t [kW].

SoEESSi,m,s,t State-of-energy of the ESS of peer m in
community i in scenario s in time t [kW].

uBigMxi,m,s,t Binary variable for Big-M method: 1 if
a variable is positive in time t , 0 else.

uBigMyi,s,t Binary variable for Big-M method: 1 if
a variable is positive in time t , 0 else.

uComi,s,t Binary variable: 1 if community i is con-
sumer in time t , 0 else.

uESSi,m,s,t Binary variable: 1 if ESS is charging in
time t , 0 else.

uPeeri,m,s,t Binary variable: 1 if peer m is consumer
in time t , 0 else.

βxi,s,t Lagrange multipliers for the inequality
constraints of community i.

γ xi,m,s,t Lagrange multipliers for the inequality
constraints of peer m.

λ
P2P,buy,bid,com
i,s,t Bid price for power bought from com-

munity i by LMO in scenario s in time t
[TL/kWh].

λ
P2P,buy,bid,peer
i,m,s,t Bid price for power bought in commu-

nity i by peer m in scenario s in time t
[TL/kWh].

λ
P2P,buy
s,t Buying price of local market in sce-

nario s in time t [TL/kWh].
λ
P2P,sell,bid,com
i,s,t Bid price for power sold to commu-

nity i by LMO in scenario s in time t
[TL/kWh].

λ
P2P,sell,bid,peer
i,m,s,t Bid price for power sold in community

i by peer m in scenario s in time t
[TL/kWh].

λ
P2P,sell
s,t Selling price of local market in scenario

s in time t [TL/kWh].
λxi,m,s,t Lagrange multipliers for the equality

constraints of peer m.
λ
y
i,s,t Lagrange multipliers for the equality

constraints of community i.

I. INTRODUCTION
A. MOTIVATION AND BACKGROUND
Recently, several innovative solutions have been proposed
in order to use the energy in an efficient manner. End-users
have been becoming a part of the distribution system along
with Peer-to-Peer (P2P) energy trading, which is one of these
solutions. Therefore, physical supports to the grid and eco-
nomic savings for the participants are provided [1]. Carbon
emissions can be reduced by increasing self-consumption of
renewable energy resources especially photovoltaic (PV) by
means of such a new emerging market type [2].
Another point in the P2P trading is to encourage all the

participated households in terms of economy. In this context,
there are available several regulations and market clearing
strategies [3]. Furthermore, new energy management strate-
gies could be introduced to the grid with the aim of mitigating
some challenges such as voltage drops, increment in power
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losses, and peak loading [4]–[7]. However, selling excess
energy between communities has been playing a key role
to ensure the participation of any community which has no
generation unit.

B. LITERATURE OVERVIEW
Many studies considering energy scheduling and market
clearing strategies for P2P energy trading are available in
the literature, and it can be categorized into hierarchical
approaches and inter-community trades for this paper in order
to clarify literature gaps.

In terms of hierarchical market types and inter-community
based research, Liu et al. [8] proposed a bi-level distributed
optimization based energy trading system between PV and
schedulable loads equipped participants. Cui et al. [9] pro-
pounded both real time operation for intra-community P2P
energy trading and day ahead scheduling for inter-community
P2P energy trading under two stage approach which
includes sharing and market clearing. Nezamabadiet al. [10]
suggested arbitrage strategy based non-cooperative game
considering risk constraint and uncertainties related to renew-
able generation and real time market prices. Coopera-
tive game for intra-community and non-cooperative game
for inter-community were also considered in the paper.
Chen et al. [11] presented intra-region and inter-region P2P
trading considering multiple energy sharing regions. Game
theory based trading system was designed in the paper also
considering dynamic pricing of sharing regions, transmission
and distribution usage fees and demand response.

Profit of market operator and participants was increased
via game theory in [12]. It was achieved that both
self-consumption of PV and encouragement to the P2P were
improved by being shifted the responsive demands to the
time intervals in which high PV generation is available.
Liu et al. [13] supported the P2P energy tradingwith commu-
nity energy storage in the proposed bi-level Stackelberg game
based model. While daily profit of households were maxi-
mized in the lower level problem, profit of market operator
was maximized by determining clearing prices in the upper
level problem. Total electricity bill under P2P trading and
distribution usage fee were minimized by Alternating Direc-
tion Method of Multipliers (ADMM) based distributed opti-
mization in [14]. Although hierarchical managements were
realized in [9]–[11], optimal local prices were not determined
considering both intra-community and inter-community trad-
ing bids under multi-hierarchical manner. In this regard,
even if high amount of energy is traded between via inter-
community P2P structure, energy prices will not reach fair
level according to the economic manner between supply and
demand.

In terms of the works related to various market pricing
schemes and strategies, Paudel et al. [15] presented a game
theory based model for real time P2P energy trading under
game based market clearing. Khorasany et al. [16] achieved
to reduce computational challenges in the communication
considering both community and decentralized based P2P

trading. Impacts of the schedulable and deferrable loads on
P2P energy trading were investigated in the genetic algorithm
based optimization model in [17]. Supply Demand Ratio
(SDR), Mid-market Rate and Bill Sharing pricing mecha-
nisms were also examined and it was observed that SDR
method provides by 27%–68% bill reduction. In [18], day
ahead scheduling and real time operation were presented as
to include two stage. While optimal energy sharing profile
was carried out via ADMM in the first stage, market prices
were cleared based on non-cooperative game theory in the
second stage. A novel decentralized optimizationmodel with-
out any controller system operator was developed in [19].
Line capacities were also considered in the bilateral contract
pricing based study.

Khorasany et al. [20] developed a novel intraday market in
which flexibility and indepented pricing strategy are imple-
mented besides minimization of the daily cost in day ahead
scheduling. It was observed that higher profit can be gained in
the case of integrated market model compared to the case in
which only day ahead market is considered. In [21], clearing
of both traded energy and reserve energy was carried out for
the first time in the model which aims the participation of
renewable energy producers. Cui et al. [22], reduced energy
cost thanks to the controllable air conditioners and reduced
dependency on the grid. Li et al. [3] compared the proposed
model with the existing pricing mechanisms in the literature,
and achieved increment in the participation ratio as well as
economic efficiency. Impact of demand response on P2P trad-
ing considering penalty system in the case of deviation from
scheduled demand was examined in [23]. It was observed
that cost reduction in non-optimization basedmodel is greater
than optimization based model which includes day ahead and
real time operation.

Among the literature studies mentioned above, although
P2P energy trading was carried out in [15]–[17] and
in [3], [22], [23], hierarchical approach, inter-community
energy trading and uncertainty were ignored. While hierar-
chical trading was implemented in [8], [12], and [13], inter-
community energy trading was not included. Conversely,
inter-community trading was contained in [14]. However,
hierarchical system was not comprised. Finally, although
hierarchical test system, inter-community energy trading and
uncertainty were considered in [9], [10], and [11], bidding
strategy for multi-hierarchical energy trading system was
not investigated. In this regard, there is a still gap in the
literature in terms of evaluation of fair market clearing and
bidding strategy which simultaneously consider multi-layer
hierarchical bidding strategy, and unpredictable behavior of
renewable generation.

C. CONTRIBUTIONS AND ORGANIZATION
In this study, a novel hierarchical bidding strategy for both
intra-community and inter-community P2P energy trading is
proposed in the mixed-integer linear programming (MILP)
based mathematical model. To reveal the effectiveness of the
proposed model, a bunch of case studies considering different
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FIGURE 1. The schematic diagram of the proposed energy trading
structure.

PV installation powers and ESS capacities are carried out.
The main contributions are stated as follows:

1) A novel optimal bidding strategy for multi-hierarchical
approach considering both intra-community and inter-
community P2P energy trading system is proposed for
the first time in the literature.

2) A bi-level MILP algorithm is developed, in which
while the lower-level aims to minimize the daily elec-
tricity bill of households and total bill of communi-
ties, upper-level aims to maximize the profit of Local
Market Operators (LMO) and Central Market Operator
(CMO).

3) The unpredictable profiles of solar irradiation and tem-
perature are considered by generating the scenarios via
the historical data.

The remainder of the paper is organized as follows:
the proposed trade structure and mathematical model are
detailed in Section II. Test results and comments are pre-
sented in Section III. Finally, conclusions are evaluated
in Section IV.

II. METHODOLOGY
A. OVERVIEW OF THE MULTI COMMUNITIES STRUCTURE
The proposed multi community P2P energy trading structure
is shown in Fig. 1. LMO for intra-community energy trading
and CMO for inter-community energy trading, whichmanage
all the local transactions, are available. Furthermore, CMO
and Distribution System Operator (DSO) are in communi-
cation and coordination in order to manage physical trades
and clear market prices. First of all, all participants send their
quantity and price bids to the own LMO for intra-community
P2P energy trading. After receiving the local bids, all LMOs
send excess or deficit energy quantity, and price bids to the
CMO as to cumulative after intra-community energy trading.
Also, optimal local trading prices are determined by the CMO
according to the all energy bids received from LMOs and grid
price signals received from DSO. Finally, both participants
and LMOs schedule daily consumption profiles along with

the determined prices so as to maximize the profits in the
hierarchical market structure.

B. MATHEMATICAL FORMULATION
1) LOWER LEVEL PROBLEM
Objective of the lower level problem is to minimize total
cost for both intra-community and inter-community energy

trading. In (1), all households send the quantity (PP2P,buy,intrai,m,s,t ,

PP2P,sell,intrai,m,s,t ) and price (λP2P,buy,bid,peeri,m,s,t , λP2P,sell,bid,peeri,m,s,t )
bids to the own LMO for intra-community P2P. Apart
from, all LMOs simultaneously send the cumulative quantity
(PP2P,buy,inter,toti,s,t , PP2P,sell,inter,toti,s,t ) and price (λP2P,buy,bid,comi,s,t ,
λ
P2P,sell,bid,com
i,s,t ) bids to the CMO for inter-community P2P.

Furthermore, 0.01 TL/kWh constant service fee is determined
as grid sell price (0.3 TL/kWh) divided by the number of
total participants (=30). It is paid by all the households to the
own LMO, and by all the LMOs to the CMO for all the P2P
transactions.

min
∑
i

∑
m

∑
t

∑
s

ps

[
(λP2P,buy,bid,peeri,m,s,t + CP2P)

PP2P,buy,intrai,m,s,t − (λP2P,sell,bid,peeri,m,s,t − CP2P)

PP2P,sell,intrai,m,s,t

]
1T

+min
∑
i

∑
t

∑
s

ps

[
(λP2P,buy,bid,comi,s,t + CP2P)

PP2P,buy,inter,toti,s,t − (λP2P,sell,bid,comi,s,t − CP2P)

PP2P,sell,inter,toti,s,t

]
1T (1)

Equations (2)-(5) state the bidding constraints of the
intra-community and inter-community P2P energy tradings.
If a household is a consumer, it can buy the deficit energy
via intra-community P2P after own load and ESS are fed
by own PV. Similarly, if a household is a prosumer, it can
sell the excess energy after own load is fed by own PV
and ESS. Similar to the intra-community trading, maximum
total energy that can be bought from the P2P by a com-
munity is total deficit energy remained after all the load
and ESS charge demand are met by all the PV generation
and intra-community trading. Furthermore, a community can
sell the total excess energy to the another community via
inter-community P2P trading after all the load and intra-
community P2P demand are met by all the PV generation
and ESS.

0 ≤ PP2P,buy,intrai,m,s,t ≤ PP2P,buy,neti,m,s,t + PESS,chi,m,s,t ,

∀i,m, s, t : γ 1
i,m,s,t , γ

2
i,m,s,t (2)

0 ≤ PP2P,sell,intrai,m,s,t ≤ PP2P,sell,neti,m,s,t + PESS,dschi,m,s,t ,

∀i,m, s, t : γ 3
i,m,s,t , γ

4
i,m,s,t (3)

0 ≤ PP2P,buy,inter,toti,s,t ≤ PP2P,buy,net,toti,s,t + PESS,ch,toti,s,t

−PP2P,buy,intra,toti,s,t , ∀i, s, t : β1i,s,t , β
2
i,s,t (4)
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0 ≤ PP2P,sell,inter,toti,s,t ≤ PP2P,sell,net,toti,s,t + PESS,dsch,toti,s,t

−PP2P,sell,intra,toti,s,t , ∀i, s, t : β3i,s,t , β
4
i,s,t (5)

Equations (6) and (7) define the net energies which consist
the difference between load and PV. Also, parameters X
and Y represent excess consumption and excess generation,
respectively. Finally, cumulative power equations in the bid-
ding constraints are presented in (8)-(15).

PP2P,buy,neti,m,s,t =

{
PLoadi,m,s,t − P

PV
i,m,s,t , (X ); if X > 0

0; if X ≤ 0
(6)

PP2P,sell,neti,m,s,t =

{
PPVi,m,s,t − P

Load
i,m,s,t , (Y ); if Y > 0

0; if Y ≤ 0
(7)

PP2P,buy,net,toti,s,t =

∑
m

PP2P,buy,neti,m,s,t , ∀i, s, t (8)

PP2P,sell,net,toti,s,t =

∑
m

PP2P,sell,neti,m,s,t , ∀i, s, t (9)

PESS,ch,toti,s,t =

∑
m

PESS,chi,m,s,t , ∀i, s, t (10)

PESS,dsch,toti,s,t =

∑
m

PESS,dschi,m,s,t , ∀i, s, t (11)

PP2P,buy,intra,toti,s,t =

∑
m

PP2P,buy,intrai,m,s,t , ∀i, s, t (12)

PP2P,sell,intra,toti,s,t =

∑
m

PP2P,sell,intrai,m,s,t , ∀i, s, t (13)

PP2P,buy,inter,toti,s,t =

∑
m

PP2P,buy,interi,m,s,t , ∀i, s, t (14)

PP2P,sell,inter,toti,s,t =

∑
m

PP2P,sell,interi,m,s,t , ∀i, s, t (15)

Constraints (16)-(17) impose limits on the charging and
discharging power of the ESS. Furthermore, ESS cannot
charge and discharge simultaneously by means of the binary
variable (uESSi,m,s,t ). Constraint (18) states the boundaries of the
SoE level. ESS cannot be charged greater than maximum
capacity and discharged lower than minimum capacity to
avoid deep discharge. While equation (19) states the general
energy balance of ESS, initial SoE level is indicated in (20).

0 ≤ PESS,chi,m,s,t ≤ CR
ESS
i,m .u

ESS
i,m,s,t , ∀i,m, s, t

: γ 5
i,m,s,t , γ

6
i,m,s,t (16)

0 ≤ PESS,dschi,m,s,t ≤ DR
ESS
i,m .(1− u

ESS
i,m,s,t ), ∀i,m, s, t

: γ 7
i,m,s,t , γ

8
i,m,s,t (17)

SoEESS,mini,m ≤ SoEESSi,m,s,t ≤ SoE
ESS,max
i,m ,∀i,m, s, t

: γ 9
i,m,s,t , γ

10
i,m,s,t (18)

SoEESSi,m,s,t = SoEESSi,m,s,t−1 + (PESS,chi,m,s,t .CE
ESS
i,m .1T )

−(
PESS,dschi,m,s,t

DEESSi,m

.1T ), ∀i,m, s, t > 1 : λ1i,m,s,t

(19)

SoEESSi,m,s,t = SoEESS,inii,m , ∀i,m, s, t = 1 (20)

In (21) and (22), while general energy balances of a house-
hold and a community are shown, PV, load, and power bought
from and to the grid which take part in the balance of com-
munity are stated in (23)-(26) as cumulative powers.

PGrid,buyi,m,s,t + P
PV
i,m,s,t + P

ESS,dsch
i,m,s,t + P

P2P,buy,intra
i,m,s,t

+PP2P,buy,interi,m,s,t = PLoadi,m,s,t + P
ESS,ch
i,m,s,t + P

P2P,sell,intra
i,m,s,t

+PP2P,sell,interi,m,s,t + PGrid,selli,m,s,t , ∀i,m, s, t

: λ
P2P,buy
s,t , λ

P2P,sell
s,t (21)

PGrid,buy,toti,s,t + PPV ,toti,s,t + P
ESS,dsch,tot
i,s,t + PP2P,buy,intra,toti,s,t

+PP2P,buy,inter,toti,s,t = PLoad,toti,s,t + PESS,ch,toti,s,t

+PP2P,sell,intra,toti,s,t + PP2P,sell,inter,toti,s,t + PGrid,sell,toti,s,t ,

∀i, s, t : λP2P,buys,t , λ
P2P,sell
s,t (22)

PPV ,toti,s,t =
∑
m

PPVi,m,s,t , ∀i, s, t (23)

PLoad,toti,s,t =

∑
m

PLoadi,m,s,t , ∀i, s, t (24)

PGrid,buy,toti,s,t =

∑
m

PGrid,buyi,m,s,t , ∀i, s, t (25)

PGrid,sell,toti,s,t =

∑
m

PGrid,selli,m,s,t , ∀i, s, t (26)

2) UPPER LEVEL PROBLEM
Objective of the upper level problem is to maximize the
profit of both LMOs and CMO. In (27), while LMOs aim
to gain profit in the intra-community P2P via arbitrage strat-
egy, CMO aims to gain profit in the inter-community trade
similarly. LMOs minimize power bought from the grid and
maximize power sold to the grid for all the own households.
Furthermore, LMOs take constant service fee (CP2P) per
local trade from the households.

max
∑
i

∑
m

∑
t

∑
s

ps.
[
(λP2P,buys,t .PP2P,buy,intrai,m,s,t

+λ
Grid,sell
t .PGrid,selli,m,s,t )+ CP2P.(PP2P,buy,intrai,m,s,t

+PP2P,buy,interi,m,s,t + PP2P,sell,intrai,m,s,t + PP2P,sell,interi,m,s,t )

−(λP2P,sells,t .PP2P,sell,intrai,m,s,t − λ
Grid,buy
t .PGrid,buyi,m,s,t )

]
.1T

+max
∑
i

∑
t

∑
s

ps.
[
(λP2P,buys,t .PP2P,buy,inter,toti,s,t )

−(λP2P,sells,t .PP2P,sell,inter,toti,s,t )
]
.1T (27)

Equations (28) and (29) present the P2P trading bal-
ances for intra-community and inter-community, respec-
tively. All the power bought from the P2P (PP2P,buy,intrai,m,s,t ,

PP2P,buy,inter,toti,m,s,t ) must be equal to the power sold to the P2P
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(PP2P,sell,intrai,m,s,t , PP2P,buy,inter,toti,m,s,t ) at time t .∑
m

PP2P,buy,intrai,m,s,t =

∑
m

PP2P,sell,intrai,m,s,t ,∀i, s, t (28)∑
i

PP2P,buy,inter,toti,s,t =

∑
i

PP2P,sell,inter,toti,s,t ,∀s, t (29)

Equations (30)-(33) impose a limit on the total power
bought and sold for both each household and community.
Also, a household and a community cannot be consumer and
producer at the same time t via binary variables (uPeeri,m,s,t ,
uComi,s,t ).

PGrid,buyi,m,s,t + P
P2P,buy,intra
i,m,s,t + PP2P,buy,interi,m,s,t

≤ N .uPeeri,m,s,t , ∀i,m, s, t (30)

PGrid,selli,m,s,t + P
P2P,sell,intra
i,m,s,t + PP2P,sell,interi,m,s,t

≤ N .(1− uPeeri,m,s,t ), ∀i,m, s, t (31)

PGrid,buy,toti,s,t + PP2P,buy,intra,toti,s,t + PP2P,buy,inter,toti,s,t

≤ N .uComi,s,t , ∀i, s, t (32)

PGrid,sell,toti,s,t + PP2P,sell,intra,toti,s,t + PP2P,sell,inter,toti,s,t

≤ N .(1− uComi,s,t ), ∀i, s, t (33)

Constraints of the optimal local trading prices are stated
in (34). Both buying and selling prices should be between
grid prices in order to encourage the participants. Further-
more, since the local buying price is the buying price of the
households while it is the selling price of the market operator,
local selling price should be lower than local buying price in
order to avoid any loss in the profit of operators.

λ
Grid,sell
t ≤ λ

P2P,sell
s,t ≤ λ

P2P,buy
s,t ≤ λ

Grid,buy
t ,∀s, t (34)

Finally, Lagrange function is created as indicated in (35).
Karush-Kuhn-Tucker optimality conditions as in [24] and
Big-M linearization method as in [25] are used in an attempt
to solve the bi-level model, and are shown as simplified form
in (36) and (37), respectively. Furthermore, strong duality
theorem as in [26] is adopted to linearize bilinear terms in the
objective function of the upper level problem, and is obtained
as demonstrated in (38).

L = f (x)+ γ xi,m,s,t (β
x
i,s,t ).g(x)+ λ

x
i,m,s,t .h(x) (35)

Here, f (x), g(x) and h(x) are the objective function, the
inequality constraints, and the equality constraints of lower
level problem, respectively. γ xi,m,s,t , β

x
i,s,t and λ

x
i,m,s,t state the

Lagrange multipliers related to the constraints.

(0 ≤ PP2P,buy,intrai,m,s,t ) ⊥ (0 ≤ γ 1
i,m,s,t ),∀i,m, s, t (36)

PP2P,buy,intrai,m,s,t ≥ 0
γ 1
i,m,s,t ≥ 0

PP2P,buy,intrai,m,s,t ≤ K .uBigM1
i,m,s,t

γ 1
i,m,s,t ≤ K .(1− u

BigM1
i,m,s,t ),∀i,m, s, t

 (37)

In (37), the constraint (PP2P,buy,intrai,m,s,t ) and related multiplier
(γ 1
i,m,s,t ) must be greater than or equal to zero, and must be

separated from each other via binary variable (uBigM1
i,m,s,t ).

λ
P2P,buy
s,t .PP2P,buy,intrai,m,s,t − λ

P2P,sell
s,t .PP2P,sell,intrai,m,s,t

= −PP2P,buy,neti,m,s,t .γ 2
i,m,s,t − P

P2P,sell,net
i,m,s,t .γ 4

i,m,s,t

−CRESSi,m .γ
6
i,m,s,t − DR

ESS
i,m .γ

8
i,m,s,t

+SoEESS,mini,m .γ 9
i,m,s,t − SoE

ESS,max
i,m .γ 10

i,m,s,t

+(λP2P,buys,t ; λ
P2P,sell
s,t ).(PLoadi,m,s,t − P

PV
i,m,s,t )

λ
P2P,buy
s,t .PP2P,buy,inter,toti,s,t − λ

P2P,sell
s,t .PP2P,sell,inter,toti,s,t

= −PP2P,buy,net,toti,s,t .β2i,m,s,t − P
P2P,sell,net,tot
i,s,t .β4i,s,t

+(λP2P,buys,t ; λ
P2P,sell
s,t ).(PLoad,toti,s,t − PPV ,toti,s,t ) (38)

C. MODELLING OF THE UNCERTAINTIES RELATED TO PV
GENERATION
PV power generation has uncertain parameters such as irra-
diance and temperature. One minute resolution irradiance
and temperature data belong to the 30 days of September
in 2018-2020 are obtained from National Renewable Energy
Laboratory [27]. Afterwards, 10 scenarios consisting irra-
diance and temperature data are generated via probability
density function of Truncated Normal Distribution by using
MATLAB [28] as shown in (39).

f (x;µ, σ, a, b) =
1
σ
.

φ.
(x−µ)
σ

8.
(b−µ)
σ
−8.

(a−µ)
σ

(39)

Here, µ is mean value of each time interval, σ is standard
deviation, φ is probability density function of the standard
normal distribution and8 is the cumulative distribution func-
tion. Furthermore, truncation ranges (a, b) are implemented
to the function under the doubly truncated case since infin-
ity boundaries in normal distribution cause deviation in the
desired data generation. Thus, probability generation for each
time interval can be determined between the minimum and
maximum values of the input data. In addition, 30 household
profiles in total for three community are generated probabilis-
tically by referencing consumption profile of a smart home
belong to the 30 days of September in 2007-2010 [29].

III. TEST AND RESULTS
A. INPUT DATA
Consumption profiles of 30 households located in 3 commu-
nities are randomly generated by referencing daily and yearly
consumption dataset obtained from [29]. All households in
the Community-1 are consumers which have no PV and
ESS. While 5 consumers and 5 prosumers are situated in
the Community-2, all the 10 households are prosumers in
the Community-3. It is assumed that all the PV and ESS
capacities are 4 kW and 10 kWh, respectively for Case-1 and
Case-2. Furthermore, capacities of PV and ESS for Case-3
are randomly generated between the boundaries [3,6] kW and
[5,15] kWh, respectively. The probabilistically generated PV
power scenarios are depicted in Fig.2.
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FIGURE 2. Scenarios of PV generation.

FIGURE 3. Market prices of Community-2 for Scenario-5 in Case-1.

B. SIMULATION AND RESULTS
The proposed model is implemented in GAMS [30]
v.24.1.3 and is solved using the commercial solver CPLEX
v.12. Furthermore, three different case studies are examined
to prove the effectiveness of the model as follows:

• Case-1: Intra-community P2P without inter-community
P2P.

• Case-2: Intra-community and inter-community P2P
with same capacities of PVs and ESSs.

• Case-3: Intra-community and inter-community P2P
with various capacities of PVs and ESSs.

Only intra-community P2P trading under the management
of LMOs is taken into account in the Case-1. In the Case-2,
both intra-community and inter-community P2P are exam-
ined assuming that all the participants have same PV and ESS
capacities. Furthermore, both intra-community and inter-
community P2P with various capacities of PVs and ESSs
is considered in Case-3 in order to investigate the impact
of different investments on the market conditions. In Case-
1, it should be noted that LMO-1 equalizes the local prices
to the grid buy price to avoid loss of the profit since no
energy trading in Community-1 is available. Local clearing
prices of Community-2 and Community-3 for Scenario-5
in Case-1 are depicted in Fig. 3 and 4, respectively. While
prices in Community-2 are high because of the equal number
of prosumers and consumers, prices in Community-3 which

FIGURE 4. Market prices of Community-3 for Scenario-5 in Case-1.

FIGURE 5. Power balance of Community-3 for Scenario-5 in Case-1.

consists entirely of prosumers are determined lower because
of the excessive energy. Furthermore, while P2P trading is
provided with the green PV generation at the noon time
intervals, it is carried out by the ESSs which are external
power suppliers at the peak time intervals as can be seen from
the power balance of Community-3 in Fig 5. Thus, market
prices at the peak time intervals are reduced lower compared
to the noon time intervals. The profit of LMO-1 is zero due
to the no transaction in Community-1, and CMO cannot get
any profit since does not include in the hierarchical bidding
system in the Case-1. Also, LMO-2 and LMO-3 get profit
as 3.041 TL and 3.873 TL, respectively. Power balance of
the Community-3 for Scenario-9 in Case-2 is demonstrated in
Fig. 6. Apart from the Case-1, ESSs drawn more power from
the grid at 3 am and 5 am which are the lowest price intervals
after 2 am in order to participate inter-community P2P trad-
ing. Thus, since PV generation at the noon is used for both
intra-community and inter-community instead of storing, grid
is supported by increasing the capacity of P2P trading with
ESSs at the peak time intervals. Optimal buying and selling
prices for Scenario-9 in Case-2 are shown in Fig. 7. Further-
more, since all the communities are considered together in the
multi-hierarchical system in this case, while Community-3
reduces the local prices, Community-1 and Community-2
rise the prices at the same time. It can be seen that jointly
announced local prices to all the communities are determined
between the prices of two different communities in Case-1.
On the other hand, it is worthy to state that Community-2 has

23804 VOLUME 10, 2022



T. Gokcek et al.: Novel Multi-Hierarchical Bidding Strategy for Peer-to-Peer Energy Trading Among Communities

FIGURE 6. Power balance of Community-3 for Scenario-9 in Case-2.

FIGURE 7. Market prices for Scenario-9 in Case-2.

loss in the profit because joint selling price in Case-2 is lower
than specific selling price in Case-1. The profits of LMO-1,
LMO-2 and LMO-3 are 0.529 TL, 12.153 TL and 6.715 TL,
respectively. CMO can also get profit as 4.534 TL from the
inter-community P2P via arbitrage strategy.

The power balance of the Community-3 for Scenario-9
in Case-3 is presented in Fig. 8. It can be seen from
the figure that ESSs trend to charge more as a result of
randomly PV and ESS capacity generation. Furthermore,
while intra-community P2P trading for Community-2 and
Community-3 decreases due to the increased self sufficiency
ratio, inter-community P2P trading also rises. Thus, it is
observed that decrement in the total cost of all the com-
munities is available. On the other hand, cost reduction of
Community-2 and Community-3 causes loss in the profit
of LMO-2 and LMO-3 as expected. However, profit of the
LMO-1 and CMO rises in each case since play active role
in only inter-community trade. Local clearing prices for
Scenario-9 in Case-3 are depicted in Fig. 9. It can be seen that
local selling prices in Case-3 are slightly lower than Case-2’s
because of the increased capacities.

For instance, while selling prices at 8 am and 12 pm
for Case-2 are 0.652 TL and 0.612 TL, respectively, they
are determined as 0.566 TL and 0.588 TL for Case-3,
respectively. The profits of LMO-1, LMO-2, LMO-3 and
CMO are 0.922 TL, 10.796 TL, 4.999 TL and 8.549 TL
in Case-3, respectively. It is observed that total bill cost

FIGURE 8. Power balance of Community-3 for Scenario-9 in Case-3.

FIGURE 9. Market prices for Scenario-9 in Case-3.

TABLE 1. Amount of traded energy for best and worst scenarios.

TABLE 2. Cost of communities and profit of operators for each case.

for Case-1, Case-2 and Case-3 is obtained as 348.716 TL,
333.759 TL and 295.706 TL, respectively. According to the
results obtained from the bi-level MILP based model, cost
saving by %15 in Case-3 compared to Case-1 is achieved.

Finally, amount of traded energy in best andworst scenario,
and cost of communities and profit of LMOs and CMO for
each case are shared with Table 1 and Table 2, respectively.
Traded energy in best scenarios for both inter-community
based cases increases compared to the worst scenarios. How-
ever, total trade volume in Case-3 is more than Case-2 regard-
less of the scenarios because of the increment in PV and ESS
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capacities. Furthermore, total energy for all the scenarios in
Case-2 and Case-3 is greater than Case-1 since ESS units
trend to drawn more power from the grid at the low price
time intervals in order to participate inter-community energy
trading. On the other hand, different capacity investments
and uncertainties in PV generation influence daily bill cost
and market conditions as can be seen from the results. Thus,
the profit of the operators changes depending on the amount
of traded energy and the market clearing prices. Another
important point is that Community-2 has loss in the profit
unexpectedly because joint selling price in Case-2 is lower
than specific selling price in Case-1.

IV. CONCLUSION
In this study, a novel multi-hierarchical bidding strategy for
P2P energy trading considering both intra-community and
inter-community energy trading was proposed. According to
the results obtained from the bi-level MILP based model,
while total cost saving of communities was achieved by 15%,
Community-1, Community-2, and Community-3 individu-
ally got decrement in the cost by 6.31%, 1.01%, and 95.64%,
respectively.

The results in terms of both economic and energy showed
that inter-community P2P trading provides some advantages
to the households and power system since trading with the
grid during the off peak periods and P2P trading during
the on peak periods are significantly increased. Furthermore,
it was observed that optimal buying and selling prices are
influenced by the number of participants and installed capac-
ities of PV and ESS units. Thus, households gained more
profit in case of high investment capacities compared to
both intra-community based case and low investment based
case. However, while local operators had loss in the profits,
CMO increased the benefit as a result of hierarchical opposite
situation as expected. As future extension of this work, impact
of P2P energy trading on the coordination between Transmis-
sion System Operator and DSO will be investigated.
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