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ABSTRACT This paper presents PANTHER, a real-time perception-aware (PA) trajectory planner for
multirotor-UAVs (Unmanned Aerial Vehicles) in dynamic environments. PANTHER plans trajectories that
avoid dynamic obstacles while also keeping them in the sensor field of view (FOV) and minimizing the
blur to aid in object tracking. The rotation and translation of the UAV are jointly optimized, which allows
PANTHER to fully exploit the differential flatness of multirotors to maximize the PA objective. Real-time
performance is achieved by implicitly imposing the underactuated dynamics of the UAV through the Hopf
fibration. PANTHER is able to keep the obstacles inside the FOV 7.9 and 1.5 times more than non-PA
approaches and PA approaches that decouple translation and yaw, respectively. The projected velocity (and
hence the blur) is reduced by 18% and 34%, respectively. This leads to average success rates three times
larger than state-of-the-art approaches in multi-obstacle avoidance scenarios. The MINVO basis is used to
impose low-conservative collision avoidance constraints in position and velocity space. Finally, extensive
hardware experiments in unknown dynamic environments with all the computation running onboard are
presented, with velocities of up to 5.8 m/s, and with relative velocities (with respect to the obstacles) of
up to 6.3 m/s. The only sensors used are an IMU, a forward-facing depth camera, and a downward-facing
monocular camera.

INDEX TERMS Dynamic obstacle avoidance, path planning, trajectory optimization, unmanned aerial
vehicles.

Video: https://youtu.be/jKmyW6v73tY
Code: https://github.com/mit-acl/panther

I. INTRODUCTION AND RELATED WORK
While the last decade has seen an increase on the number of
successful deployments of multirotor-UAVs in different real-
world scenarios, their applicability is often limited by two
common assumptions, namely the fact that the environment
is static, and/or the omnidirectional coverage of the sensor(s)
of the UAV. Indeed, many UAVs have a limited FOV, and
many applications (delivery, aerial videography, emergency
response, etc.) have non-static environments due to the pres-
ence of cars, people, and/or other UAVs. Hence, relaxing
these assumptions is critical to fully exploit the potential of
the UAVs and expand the range of their possible applications.

When a UAV equipped with a limited FOV sensor is flying
in an unknown environment (e.g., Fig 1), it is crucial to
plan both the position and orientation of the UAV to maxi-
mize the detection and the tracking accuracy of the unknown
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FIGURE 1. UAV planning perception-aware trajectories in a dynamic
unknown environment, with relative velocities of up to 6.3 m/s. All the
computation runs onboard, and the UAV does not have any prior
knowledge of the trajectories or specific shape/size of the dynamic
obstacles.

obstacles while at the same time doing obstacle avoidance.
This perception-aware (PA) component is especially impor-
tant when flying in dynamic environments, because a consis-
tent detection of the moving obstacles is necessary to obtain a

22662 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0001-6848-4070
https://orcid.org/0000-0001-8576-1930
https://youtu.be/jKmyW6v73tY
https://github.com/mit-acl/panther
https://orcid.org/0000-0003-4299-2776


J. Tordesillas, J. P. How: PANTHER: Perception-Aware Trajectory Planner in Dynamic Environments

TABLE 1. Classification of the related work, together with a (nonexhaustive) list of references.

good estimate of their locations and prediction of their future
trajectories.

Perception-awareness for UAVs has been studied thor-
oughly in the literature, and, as shown in Table 1, the
related work could be classified according to the formula-
tion used and the goal itself. From the point of view of
the used, there are approaches that are not

PA , which typically plan the translation and then have
either a constant yaw or a yaw such that the FOV of the
camera points in the direction of travel (e.g., see [1]–[7]). For
instance, [5] used potential fields to avoid dynamic obstacles,
but without taking into account perception-awareness, which
can degrade the detection and prediction of the trajectories of
the obstacles.

Other approaches are PA by including additional hard-
ware : For example, by gimbal-mounting the camera,
some of its degrees of freedom can be controlled inde-
pendently of the rotation of the UAV [8]–[10]. Another
option is to mount omni-directional sensors [11]. However,
these approaches usually require additional hardware and
mechanical complexity, which is typically undesirable on
small UAVs.

PA planning has received increased attention over
the last few years due to its inherent ability to leverage the
trajectory planned to maximize the PA objective. The related
works could be subclassified according to whether or not the
translation and yaw of the UAV are jointly optimized. On one
hand, there are approaches that decouple translation and
yaw by optimizing them separately [12]–[14]. For instance,
in [12], a yaw trajectory is obtained for a fixed translational
path to gain information about unknown static obstacles.
For features or landmarks whose locations are known a pri-
ori, [13] optimizes the time parametrization on a fixed spatial
and yaw path to maximize their visibility. In [14], translation
is optimized first, and then yaw is optimized to guarantee
the co-visibility of the features. While this decoupling of
translation and yaw has computational advantages, it can
lead to conservative results, since the translational trajectory
(and consequently two degrees of freedom of the rotation as
well) is fixed in the yaw optimization. Other works assume
a downward-facing camera, and hence only translation (not
yaw) is planned to keep a specific target in the FOV of
the camera [28].

Another approach taken is to jointly optimize transla-
tion and yaw, which enables the planner to fully exploit
both the position trajectory and the yaw angle [15]–[17].

This joint optimization leads to less conservative results than
the approaches that decouple translation and yaw, but it
typically comes at the expense of much higher computation
times, especially when done in combination with dynamic
obstacle avoidance constraints. For example, [15] proposed
an on-manifold trajectory optimization approach that couples
together translation with the full rotation, but the computation
times required (up to 30 s) are not real time. Ref. [16] success-
fully presented a real-time MPC formulation that keeps the
centroid of the VIO features in the center of the image while
minimizing its projected velocity. However, this formulation
does not include collision avoidance of static (or dynamic)
obstacles, which greatly simplifies the complexity of the opti-
mization problem. In [17], translation and yaw are optimized
jointly, but only static obstacle avoidance is performed. The
technical gap then is how to jointly optimize the full pose of
the UAV, satisfy its underactuated dynamics, and guarantee
safety in dynamic environments while maintaining real-time
computational tractability.

The underactuated dynamics of the UAV (caused by the
total thrust of the UAV being fixed in the body frame)
makes this joint optimization especially hard, since a given
spatio-temporal path fixes two degrees of freedom of the
rotation, leaving only one extra degree of freedom in
the rotation.1 A typical way to impose this constraint is
via the dynamic equations of the UAV. However, this comes
at the expense of having differential equations as constraints
in the optimization.

An alternative is to leverage the differential flatness of
the UAVs [33] and make use of the map (a ∈ R3

\

[0 0 − g]T , ψ ∈ S1) → Rw
b ∈ SO(3) that maps ψ and the

acceleration a to the rotation of the body. However, and due
to the hedgehog theorem in S2 [34], [35], there is no single
continuous function that defines this map for all possible
accelerations a. For the most common definitions of this map,
the singularity appears for each ψ at two antipodal points in
the unit sphere of possible normalized relative accelerations,
which means that there is at least one singularity with a great-
circle distance ≤ 90◦ with respect to the hovering condition.
This closeness between the hovering condition and the singu-
larity can limit the set of possible accelerations in aggressive
flights, since an optimal solution that passes through or close
to this singularity can provoke numerical instabilities and/or
lead to artificial large changes in orientation. Recently, the

1Usually referred to as yaw, heading, or simply ψ .
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Hopf map was leveraged in [36] to place the singularity in
the inverted (‘‘upside-down’’) configuration, which is inde-
pendent of ψ and has the farthest possible angle away from
the hovering condition. Although flying highly aggressive
trajectories is not the main goal of this work, we decide to
use the Hopf map (as opposed to the commonly-used maps
presented in [33], [37]) since it automatically maximizes the
distance to the singularity by simply changing the definition
of themap. In [36], however, the Hopf fibration was only used
in the controller to track predefined trajectories. It was also
leveraged in [38] to find the set of charts for a previously-
optimized position trajectory, which are then used for the con-
troller and to obtain theψ trajectory. In this work, we propose
instead to embed the Hopf fibration in the joint (translation
and yaw) coupled planning optimization as a way to directly
obtain trajectories in SE(3) that, by construction, satisfy the
underactuated dynamics of the UAV.

From the point of view of the of the perception

awareness, most of the related works focus on reducing
the state estimation uncertainty , usually by keeping
specific features/landmarks in the FOV, and/or choosing
high-textured areas [13]–[16], [18]–[27]. These features are
typically static in the world frame. Some of these approaches
also leverage theObservability Gramian [25]–[27], especially
when trying to ease the estimation of an unknown parameter
of the dynamical system.

Further relevant work addresses the problem of having
a UAV record or chase a target [17], [24], [28]–[32].
For example, [28] focused on tracking a moving target
with a downward-facing camera, while [17] proposed a
way to follow a moving target while avoiding other static
obstacles in the environment. Most of these works focus
therefore on chasing a static or dynamic target, not on
avoiding it.

Our work differs from these two previous approaches
because it proposes the use of PA planning to enhance the
avoidance of dynamic obstacles . Compared to or ,
PA planning to avoid unknown dynamic obstacles comeswith
many additional challenges, such as the coupling of both the
ego-motion and the motion of the obstacle in the visibility
cost and blur of the image, the inclusion of dynamic obstacle
avoidance constraints in the optimization, the need to predict
the future trajectories of the obstacles, and the consideration
of the uncertainty of these predicted trajectories, just to name
a few.

In summary, the proposed contributions of this work are as
follows:
• Real-time PA planning formulation that jointly opti-
mizes the translation and the full rotation to maxi-
mize the visibility of unknown dynamic obstacles, while
simultaneously avoiding them. Compared to non-PA
approaches and PA decoupled approaches, our proposed
coupled solution leads to a presence of the obstacle in
the FOV 7.9 and 1.5 times more frequent, respectively.

TABLE 2. Notation used in this paper.
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The success rates achieved are on average 2.98 times
larger than other state-of-the-art approaches when flying
in multi-obstacle dynamic environments.

• We show how the Hopf fibration can be embedded in
the planning optimization to jointly optimize translation
and yaw while implicitly imposing the underactuated
dynamics that couples acceleration and orientation. This
avoids the need to explicitly impose the dynamics of
the UAV as differential constraints, while automatically
guaranteeing the largest possible great-circle distance
between the hovering condition and the differential
flatness singularity. Dynamic obstacle avoidance con-
straints are imposed by leveraging the MINVO basis to
reduce conservatism.

• Extensive set of hardware experiments in unknown
dynamic environments, with everything (navigation,
perception, planning, and control) executed onboard the
UAV, and without any prior knowledge of the trajecto-
ries or specific shape/size of the obstacles. The UAV
achieves velocities of up to 5.8 m/s and relative veloc-
ities (with respect to the obstacles) of up to 6.3 m/s. The
replanning times achieved onboard are ≈ 53 ms.

• The code has also been released open source for the
community.

This paper uses the notation shown in Table 2.

II. PANTHER
PANTHER comprises four modules: Tracker and predictor,
selector of the obstacle in the PA term, planes and initial
guess generator, and optimization (see Fig. 2A). A summary
of how all these modules work together is as follows: First
the incoming point clouds of the onboard depth sensor are
clustered and tracked using the Hungarian algorithm [41] to
obtain the trajectory, as a probability distribution, of each
of the obstacles (section II-A). The obstacle i∗ that the
UAV is most likely to collide with is then selected to be
included in the PA term of the cost function (section II-B).
Then, a kinodynamic search-based planner (Octopus Search
Algorithm [42]) is run to find an initial guess of the trans-
lational trajectory p(t) that avoids the probabilistic trajec-
tories of the obstacles found before (section II-C1). This
translational guess and the obstacle i∗ selected are then
used to run a graph search algorithm to find the ψ(t) guess
(section II-C2). Finally, the p(t) and ψ(t) guesses are used
for the nonconvex optimization to obtain the optimized tra-
jectory, that is sent to the controller of the UAV (section II-D).
In this framework, the coupling between rotation and accel-
eration is imposed implicitly using the Hopf fibration. All
these modules are described in detail in the following
subsections.

A. TRACKING AND PREDICTION
We create a k-d tree representation of the point clouds com-
ing from the onboard depth sensor, and perform Euclidean
clustering to group the points that are more likely to belong

to the same obstacle (see Fig. 2). For each cluster found,
we compute the AABB (Axis-Aligned Bounding Box) cen-
tered on the centroid of that cluster2. Then, to assign each
cluster to a specific track, we minimize the total assignment
cost using the Hungarian algorithm [41], where the cost is
the pairwise distance between the centroid of each cluster
and the prediction of the tracks at the time the point cloud
was produced. If this distance is above a specific threshold
(usually ≈ 1–2 m), we create a new track for it. If a
cluster is not assigned to any track (which can happen if
there are more clusters than tracks), then a new track is
created for it. Finally, given a sliding window history of all
the observations associated with a track, we fit a polyno-
mial for each coordinate {x, y, z}. To capture the stochas-
ticity of the prediction problem, the predicted position at
time t is then approximated by a 3D Gaussian distribution
(mean from the value of the fitted polynomial and a diago-
nal covariance matrix obtained from the prediction intervals
[44, section 5.7]).

B. SELECTION OF THE OBSTACLE IN THE PA TERM
When there are several predicted trajectories, and to maintain
computational tractability, the agent needs to choose which
one of them to include in the PA term of the cost function.
It does so by choosing the most likely obstacle to collide with
in the future, using a simple heuristic of the probability of
collision based on Boole’s inequality [45]:

i∗ = argmax
i∈I

U−1∑
u=0

P
(∥∥(pi)w (tu)− κ (u)∥∥∞ ≤ R)

where U is the number of samples taken, tu := tin + u
U (tf −

tin) and κ(u) := d + u
U (gterm − d) is a point in a straight

line from d to gterm. Note that although only one obstacle is
included in the PA objective function, all the predictions of
the tracked obstacles are included in the collision avoidance
constraints.

Additionally, and to address the trade-off between gather-
ing information about the obstacle, and gathering informa-
tion about the direction of travel, the UAV will include the
obstacle i∗ in the PA term if the angle between

(
gterm − d

)
and

((
pi∗
)w (tin)− d) is smaller than a predefined angle α0

(typically ≈ 90◦). Otherwise the UAV will try to align the
FOV of the camera with the direction of travel.

C. PLANES AND INITIAL GUESSES
1) SEPARABILITY PLANES AND INITIAL GUESS FOR
POSITION
We use the Octopus Search Algorithm (OSA) [42], which
is a search-based algorithm that operates directly on the
control points of the position spline. It ensures collision-free
constraints between the agent and the dynamic obstacles by

2Regardless of whether or not the obstacle is convex, this produces an
outer convex approximation of the visible part of the obstacle.
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FIGURE 2. (A) Different modules of PANTHER. (B) Predicted trajectories of the obstacles and convex representation of each segment of the trajectory of
the agent and the obstacles. (C) World, body, and camera frames. (D) Hopf fibration and its stereographic projection, partly inspired from [43]. Given a
specific relative acceleration ξ (with ξ̄ 6= −ez ), the quaternion qw

b = qξ ◦ qψ is a fiber (specifically a circle) in S3 parameterized by ψ . On the bottom right,
the body frames for different values of ψi for each ξ i are shown.
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finding the planes that separate the inflated MINVO poly-
hedral representation of each interval j of the trajectory of
the obstacle i (denoted as CMV

ij ) and the MINVO polyhedral
representation of that interval j of the trajectory of the agent,
denoted as

(
QMV
j

)
agent

(see Fig. 2B). The outputs of this

algorithm are both the position control points and the planes
π ij (given by nTij x + dij = 0) ∀i,∀j. The position control
points are then used as initial guess in the optimization, while
the planes π ij are held fixed in the optimization. The reader
is referred to our previous work [42] for a more in-depth
explanation of the OSA.

2) INITIAL GUESS FOR ψ
To obtain the initial guess for ψ , we uniformly sample the
position guess spline obtained through the OSA, and for
each of these position samples, we uniformly sample several
values of ψ ∈ [−π, π). Each one of these p-ψ samples
will be a node, and all the nodes associated with the same
position sample, but with different ψ , will constitute a layer
(see Fig. 2A). Then, we create a graph connecting with
directed edges all the nodes of one layer to the nodes of the
next layer [12]. Each node has therefore a time, position,
acceleration, and yaw associated with it, and all the nodes of
the same layer have the same time, position, and acceleration.
The cost of the edge between two nodes n1 and n2 of the graph
is then given by

cψ
(
wrapπ−π

(
ψn2−ψn1

))2
+ c9max · 1

∣∣∣∣wrapπ−π(ψn2−ψn1)tn2−tn1

∣∣∣∣>9max

+ cFOV
(
1− inFOV

((
Tn2

(
tn2
))w
c ,
(
pi∗
(
tn2
))w))

Here, cψ , c9max , and cFOV are nonnegative weights, while
ψnu , tnu , and

(
Tnu

(
tnu
))w
c are the angle ψ , the time, and

the transformation matrix associated with node nu. Note that
the edge cost is guaranteed to be nonnegative at all times. The
transformation matrix can be directly obtained from the posi-
tion, acceleration, and yaw of the node. The first term in the
cost penalizes the distance between two ψ angles, the second
term penalizes edges that do not satisfy the limit 9max, and
the last one rewards the visibility of the obstacle. The units
of the weights above are such that the corresponding term
is dimensionless (see section III). To choose these weight
values, we first set c9max to a large value to guarantee the
9max constraint. Then, cψ and cFOV are selected as a trade-
off between smoothness and inclusion of the obstacle i∗ in
the FOV of the UAV. The root node of the graph corresponds
to the state d (see last row of Table 2). We solve the search
problem using Dijkstra’s algorithm [46], with early termina-
tion when the search reaches a node of the last layer. Letting
3 denote the indexes of the nodes of the path found, we shift
the anglesψnλ ∀λ ∈ 3 (by adding or subtracting 2πr , r ∈ Z)
such that the absolute difference between two consecutive
angles is ≤ π . Using ψ̂nλ to denote these shifted angles,
a spline is fitted to these angles by solving the following

constrained least square problem:

min
ψ(t)∈S1

2,m

∑
λ∈3

∥∥∥ψ (tnλ)− ψ̂nλ∥∥∥22
s.t. ψ(tin) = ψin, ψ̇(tin) = ψ̇in, ψ̇(tf) = 0 (1)

Note that, as this problem is a quadratic program with
linear equality constraints, its solution can be easily found
by simply solving the linear Karush-Kuhn-Tucker (KKT)
conditions associated with it [47], [48].3 The control points
of this fitted spline are then used as the initial guess for ψ(t)
in the optimization.

D. OPTIMIZATION
1) COUPLING ROTATION AND ACCELERATION WITH THE
HOPF FIBRATION
In a standardmultirotor-UAV, the perpendicularity of the total
thrust with respect to the plane spanned by b1 and b2 (see
the coordinate frames shown in Fig. 2C) makes the UAV
underactuated by imposing the following constraint [36]:

rot
(
qwb
)
ez = ξ̄ (2)

where ξ̄ is the normalized relative acceleration expressed
in the world frame (see Table 2). In a planning optimiza-
tion problem where rotation and translation are jointly opti-
mized, (2) needs to be satisfied at all times. A very common
way to guarantee (2) is via direct imposition of the dynamic
equations of the UAV as explicit constraints. However, these
differential equations in the optimization problem typically
lead to computationally-expensive problems, due to the fine
sampling needed in the discretization methods (shooting or
collocation).

The direct imposition of the dynamic equations can be
avoided by leveraging the differential flatness map (a ∈
R3
\ [0 0 − g]T , ψ ∈ S1) → Rw

b ∈ SO(3), which takes
the acceleration a and ψ and maps them to the rotation
of the body frame. Due to the hedgehog theorem4 in S2

[34], [35], this map is guaranteed to have at least one singular-
ity when tried to be defined with a single continuous function.
Several possible definitions of this differential flatness map
are shown in Table 3, all of which satisfy (2) by construction.
In the first two definitions, one body axis is obtained as the
cross product of b3 ≡ ξ̄ with a vector lying in the xy world
plane, and the remaining body axis is such that the resulting
body frame is right-handed. These two definitions present
a singularity whenever the normalized relative acceleration
ξ̄ ∈ S2 is parallel to a vector defined by ψ which lies in the
xyworld plane. This means that, for a givenψ , the singularity
appears for two ξ̄ that have a great-circle distance of 90◦ with
respect to the hovering condition. In aggressive flights, and
due to numerical instabilities and artificial large changes of
orientations near the singularity, this closeness between the

3For a detailed explanation of the derivation of the resulting linear system
of equations, see, e.g., [49, Example 5.1].

4Also known as the hairy ball theorem in the literature.
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TABLE 3. Some commonly-used definitions for the differential flatness map (a ∈ R3 \ [0 0 − g]T , ψ ∈ S1)→ Rw
b ∈ SO(3). The colormap represents the

great-circle distance to the closest singularity (yellow is closer), (·)n denotes the normalization of a vector, and ξ̄ := (
[
ax ay az + g

]T )n is the normalized
relative acceleration, expressed in the world frame. See also [13], [38], [50]–[52] for more possible definitions, which are usually rotations of the first two
definitions of this table.

hovering condition and the singularity can limit the set of
possible accelerations for the planner.

The third definition of Table 3 leverages the Hopf fibra-
tion h(·), which can be defined as a map S3 → S2

[36], [43] that takes a unit quaternion q and produces
the resulting rotation of the vector ez :=

[
0 0 1

]T
(see Fig. 2D): [

0
h (q)

]
:= q ◦

[
0
ez

]
◦ q−1

Making use now of the inverse image of the Hopf fibration,
we have that qwb will be a composition of two rotations5: qξ ,
that aligns b3 with ξ , followed by qψ , which is a rotation
around ξ by an angle ψ . Given a specific ξ (with ξ̄ 6= −ez),
the quaternion qwb = qξ ◦ qψ will then be a fiber (specifically
a circle) in S3 parametrized byψ [43]. The main advantage of
the Hopf fibration over the previous two definitions is that the
singularity only occurs when the UAV is inverted (i.e., when
ξ̄ = −ez), which is the orientation that has the largest possible
great-circle distance from the hovering configuration, and
hence much less likely to happen. Although the goal of this
paper is not to plan highly aggressive trajectories, and hence
any of the singularities shown in Table 3 are unlikely to be
reached, we use the Hopf map to automatically ensure the
maximum distance to the singularity. Note also that, with
the Hopf fibration, a second chart could be used to cover
the inversion point ξ̄ = −ez, but the use of multiple charts,

5Note that qψ , qξ , and qwb are guaranteed to be unit quaternions by
construction.

while computationally cheap in the controller level [36] or
in an intermediate check step in a decoupled p–ψ optimiza-
tion [38], would significantly increase the computation time
when embedded in the p–ψ joint planning optimization.
This fact, together with the improbability of an upside-down
configuration as being PA optimal, led us to the inclusion of
only the first chart.

Our work differs from other works that have used the Hopf
fibration for UAVs [36], [38], [53] as follows: Ref. [36] uses
the Hopf fibration only in a controller to track predefined
trajectories. In [38], the Hopf fibration is used in the planner
to find the charts in a step after the p optimization and
before the ψ optimization, and [53] does not optimize ψ .
We instead propose to embed the Hopf fibration map directly
on the p–ψ joint optimization, as a way to directly obtain
trajectories in SE(3) that are dynamically feasible by con-
struction, and with the crucial advantage of not needing to
explicitly impose the dynamic equations as constraints in the
optimization.

2) COST FUNCTION
A PA term in the objective function should maximize the
presence in the FOV of the predicted position of the obstacle
i∗ ∈ I . However, this alone is not enough to guarantee
good PA trajectories, since a fast moving projected obstacle
in the image plane may cause significant blur, which can
lead to stereo matching failure and consequently tracking
failure. To take into account both the presence in the FOV
and the blur, we use inFOV(·)

ε1+ε2‖ṡ‖2
as the running reward, where

22668 VOLUME 10, 2022
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ṡ is the projected velocity in the image plane, and where ε1
and ε2 are nonnegative parameters such that ε1 + ε2 > 0.
Note how this reward is high if the predicted position of the
obstacle is in the FOV with a small projected velocity, and it
is approximately zero if the predicted position of the obstacle
is not in the FOV, regardless of the value of the projected
velocity. The position in the image plane of the projection of
the obstacle can be obtained using the pinhole camera model
as s(t) := f

[(p̃i∗ (t))c]z

[(
p̃i∗ (t)

)c]
x:y (where each component

of s is expressed in meters, not in pixels), and(
p̃i∗ (t)

)c
:= T cbT

b
w(t)

(
p̃i∗ (t)

)w
Tbw(t) :=

[
rot
(
qξ (t) ◦ qψ (t)

)
p(t)

0T 1

]−1
As detailed in Table 2, the discontinuity of the function
inFOV(·) is addressed by approximating it with a sigmoid
function.

In addition to the PA term explained above, we also add
two terms in the cost function to maximize the smoothness
in position (by minimizing jerk) and ψ (by minimizing ψ̈),
and a terminal cost that penalizes the distance between p(tf )
and g.

3) COLLISION AVOIDANCE AND DYNAMIC LIMITS
CONSTRAINTS
For the obstacle avoidance of dynamic obstacles, we first
create a polyhedral outer representation of both the trajec-
tory of the agent and of the obstacle (see Fig. 2B): For the
agent, we make use of the MINVO basis [54] (a polynomial
basis that finds the simplex with minimum volume enclos-
ing a polynomial curve) to obtain the set of control points(
QMV
j

)
agent

whose convex hull encloses each segment j of

the agent. Similarly, for each obstacle i, we first compute the
MINVO control points of the segment j of the predicted mean
(pi)w (t), and then we inflate it with norminv(δ) · σ i

(
tend j

)
,

half of the sides the AABB (axis-aligned bounding box) of
the obstacle i and half of the sides of the AABB of the
agent. Here, δ ∈ [0, 1] is the percentile of the standard
normal distribution, and hence it encodes the desired level of
conservativeness in the inflation. The resulting polyhedron is
denoted as CMV

ij .
To ensure safety between the agent and the obstacle i,

we then impose linear separability constraints (via planes)
between

(
QMV
j

)
agent

and CMV
ij . The separating planes are

found during the initial guess search for the position spline
(see section II-C1), and are held fixed in the optimization.
The MINVO basis is used in a similar way to impose low-
conservative constraints in the velocity space. In the accel-
eration and jerk spaces, the MINVO control points are the
same as the B-Spline control points. These constraints on v,
a, j, and ψ̇ serve as a conservative approximation of the real
actuator constraints of the motors of the UAV, while allowing
us to reduce the complexity of the optimization problem.

4) OPTIMIZATION PROBLEM
Including the initial state and the final hovering condition, the
optimization problem is6:

min
p(t)∈S3

3,m,ψ(t)∈S1
2,m

αj

∫ tf

tin
‖j‖2 dt + αψ

∫ tf

tin

(
ψ̈
)2 dt

− αFOV

∫ tf

tin

inFOV(Twc , (pi∗)
w)

ε1 + ε2 ‖ṡ‖2
dt

+ αg
∥∥p(tf )− g∥∥2

s.t. x(tin)=xin, v(tf)=0, a(tf)=0, ψ̇(tf) = 0

nTij q+ dij < 0 ∀q ∈
(
QMV
j

)
agent

,∀i ∈ I , ∀j ∈ J

abs (v) ≤ vmax ∀v ∈
(
VMV
j

)
agent

, ∀j ∈ J

abs (al) ≤ amax ∀l ∈ Lp\{np − 1, np}

abs
(
j l
)
≤ jmax ∀l ∈ Lp\{np−2, np−1, np}

abs (9l) ≤ 9max ∀l ∈ Lψ\{nψ }

Here, x :=
[
pT vT aT ψ ψ̇

]T , {αj, αψ , αFOV, αg} are
nonnegative weights, and the decision variables are the con-
trol points of the splines p(t) and ψ(t). The degrees chosen
for the splines p(t) and ψ(t) are, respectively, 3 and 2, which
are a good trade-off between computation time and dynamic
feasibility for a UAV [33]. The units of the weights are such
that the corresponding term is dimensionless (see section III).
An empirical method to select these weight values is as
follows: First set αg to a large value to ensure that the final
location is near g. Then, αFOV, together with ε1 and ε2, are
tuned to obtain a good presence of the obstacle i∗ in the FOV.
Finally, αj and αψ are progressively increased to improve the
smoothness of p(t) andψ(t), without significantly deteriorat-
ing the FOV cost.

To solve this optimization problem, we utilize the Interior
Point Optimizer Ipopt [55]7 interfaced through CasADi [57]
with MA27 and MA57 [58] as the linear solvers of Ipopt.
All these optimization tools were installed and run onboard
the UAV in the real-world experiments (section III-B). We
approximate the PA term of the cost function using the com-
posite Simpson’s rule for numerical integration [59].

III. RESULTS AND DISCUSSION
A. SIMULATION EXPERIMENTS
All the simulation experiments are run in an AlienWare
Aurora r8 desktop running Ubuntu 20.04 and equipped

6Time dependence of the variables in the cost function has been omitted
for simplicity.

7We classify an Ipopt solution as successful when Ipopt returns Solve_
Succeeded (locally optimal solution) or Solved_To_Acceptable_
Level (solution satisfying the acceptable tolerance level). For more details,
see [56].
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FIGURE 3. (A) Projections of the obstacle onto the image plane in the single-obstacle simulation experiments. The red square is the image plane, so any
projection out of this region is not in the FOV of the camera. (B) Percentage of the time the obstacle was not in the FOV but in front of the camera ( ), not
in the FOV and behind the camera ( ), and in the FOV ( ). (C) Velocity of the projection of the centroid of the obstacle onto the image plane. Higher
projected velocities produce larger blur in the image. (D) Number of frames for each continuous detection. (E) Corridor simulation with five dynamic
obstacles following random trefoil-knot trajectories [60]. The green pyramid represents the FOV of the camera. (F, G) Results for the corridor simulations
with slow and fast obstacles, respectively. The algorithms considered are no PA ( ), PA dec ( ), ψ sweep ( ), Wang [6] ( ), and PANTHER ( ). In the left
plot of both subfigures, represents the number of infeasible stops of algorithm [6]. The other algorithms have zero infeasible stops.

with an Intel R© CoreTM i9-9900K CPU, 3.60GHz × 16 and
62.6 GiB. Moreover, and to focus the comparisons on
the properties of the trajectories obtained by the planner,

we assume, for all the algorithms benchmarked in simulation,
that the UAV can perfectly track the trajectories obtained by
the planner.
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1) SINGLE OBSTACLE
We first test PANTHER in an environment with a box-shaped
obstacle of size 0.2 × 0.2 × 0.2 m3 that follows a trefoil-
knot [60] trajectory. During 60 s, the UAV is commanded
to continuously fly between two different locations whose
centroid is the area where the obstacle is moving. The camera
has an image size of 120 × 120 px2, a limited FOV of
60◦ × 60◦, and runs at a rate of 60 Hz. The weights used
for this simulation are c9max = 106, cFOV = 1, cψ =
0 rad−2, αj = 10−6 s5/m2, αψ = 0 s3/rad2, αFOV = 20,
αg = 70 m−2, ε1 = 0.3, and ε2 = 0.45 s2/m2. To focus
this comparison on the capabilities of the planner, we let the
agent perfectly know the trajectory of the obstacle in these
simulations. We compare the following three approaches:

1) No PA: ψ is held constant and only the smoothness in
position and terminal goal costs are optimized. Works
that do not plan ψ include, e.g., [1], [5], [7].

2) PA with position and ψ decoupled: Translation p is
optimized first (as in the method no PA) and then it
is held fixed while ψ is optimized with the PA term.
We will refer to this algorithm as PA dec. This decou-
pling is done in, e.g., [12]–[14].

3) PANTHER (ours): Joint optimization of p and ψ .
As will be explained in section II-D2, two important met-

rics that characterize a good PA trajectory are the presence
of the obstacle in the FOV and the norm of the projected
velocity, which quantifies the blur. The percentage of time the
obstacle was in the FOV of the camera is shown in Fig. 3B.
PANTHER is able to keep the obstacle inside the FOV 7.9
and 1.5 times more than the algorithms no PA and PA dec,
respectively. As PA dec decouples position and ψ in the
optimization, the UAV lacks the ability to modify the spatial
path (only ψ) to generate a better overall trajectory.

To qualitatively show the area of the projection, we apply
a Gaussian filter to the histogram of the projection of the
centroid of the obstacle onto each 10 × 10 px2 cell of the
image plane. The results are shown in Fig. 3A, where we can
see that PANTHER is able to keep the obstacle inside the FOV
limits much better, and more frequently, than methods no PA
and PA dec.
The velocity of the projection of the centroid of the obstacle

onto the image plane is shown in Fig. 3C, which highlights
that PANTHER is able to obtain a 18% and 34% decrease in
the mean of the norm of the projected velocity with respect
to no PA and PA dec, respectively, achieving, therefore,
a much less blurred projection of the obstacle than those two
methods.

Finally, and as a continuous detection of the dynamic
obstacle is crucial to achieve a good tracking and prediction,
we show in Fig. 3D the boxplot of the number of frames
of each continuous detection for the different algorithms.
A continuous detection is defined as a set of consecutive
frames for which the obstacle stayed in the FOV of the
camera. On average, PANTHER is able to achieve continuous
detections of 155 frames, while the mean number of frames

per continuous detection for methods no PA and PA dec are
39 and 46 frames, respectively.

2) SEVERAL OBSTACLES
We now test PANTHER in a simulation with several obsta-
cles. The environment consists of a corridor of length of 39 m
along the x direction with five dynamic obstacles that move
following random trefoil-knot trajectories [60], see Fig. 3E.
In all these simulations, the agent only has access to the
size, current position, and velocity of the obstacles that are
inside the FOV of the camera. The FOV of the camera is
70◦ × 70◦, and has a sensing range of 5 m. The dynamic
limits are vmax = 2.6 · 1 m/s, amax = 15.5 · 1 m/s2,
jmax = 50.0 · 1 m/s3, and 9max = π rad/s. The weights
used for PANTHER in these simulations are c9max = 106,
cFOV = 1, cψ = 0 rad−2, αj = 10−7 s5/m2, αψ = 0 s3/rad2,
αFOV = 40, αg = 25 m−2, ε1 = 0.3, and ε2 = 10−5 s2/m2.
The UAV is constrained to remain in y ∈ [−4, 4] m and
z ∈ [−4, 4] m at all times.
For the benchmark, we use the algorithms explained before

(no PA, PA dec, and PANTHER), and the two additional
algorithms:
• Algorithm [6], proposed by Wang et al. This approach
is not perception aware, but ψ tries to make the FOV
of the camera point to the direction of travel. We will
refer to this algorithm as Wang. Note also that this
algorithm does not have constraints on jmax and that
it has a different ψ convention (it uses definition 1 of
Table 3).

• ψ sweep:ψ follows a sinusoidal trajectory that varies in
[−90◦, 90◦] as follows:

ψ(t) =
π

2
sin
(
9max

π/2
t
)

We test two scenarios with different maximum velocities
of the obstacles. In the slow scenario, the obstacles move
with velocities up to 2.12 m/s, while in the fast scenario,
the obstacles move with velocities up to 4.07 m/s. In the
results, we compare the number of collisions, infeasible stops,
success rate, flight time, and flight distance. An infeasible
stop happens when the drone passes instantly from a nonstop
condition (v 6= 0 or a 6= 0) to a stop condition (v = 0
and a = 0). A run is considered successful if the UAV
is able to reach the end of the corridor while not collid-
ing with any of the obstacles. To make these simulations
closer to real-world applications, where no prior informa-
tion about the trajectories of the obstacles may be available,
a simple constant velocity model is used in the predic-
tor. The obstacles themselves are moving along trefoil-knot
trajectories [60].

The results, for 30 different runs per algorithm, are shown
in Figs. 3F and 3G for the slow and fast environments,
respectively. In the slow scenario, PANTHER is able to
succeed 87% of the runs, while the other algorithms have
a success rate below 47%. None of the algorithms present
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FIGURE 4. Computational analysis of different parts of the replanning step of PANTHER as a function of the number of obstacles. From left to right, and
top to bottom: computation time of the generation of the convex hulls, number of linear programs (LPs) run by the OSA, computation time of the OSA,
computation time of the nonconvex optimization, and total replanning time.

infeasible stops exceptWang, that has amean of 0.2 infeasible
stops per run (light purple in Fig. 3F). In the fast scenario,
PANTHER succeeds 70% of the runs, while all the other
algorithms have a success rate below 27%. In terms of flight
times and flight distances, most of the algorithms achieve
very similar results in both scenarios, with a total flight
time of approximately 20 s, and an approximate total flight
distance of 41 m. The total flight distance for PANTHER is
approximately 3 m more than the rest of the algorithms. This
is expected, because PANTHER has the ability to modify the
spatial path to maximize the visibility of the obstacles. Even
with this longer flight distance, the flight time of PANTHER
is very similar (and sometimes even shorter) than the rest of
the algorithms.

3) COMPUTATIONAL ANALYSIS OF THE REPLANNING STEP
AS A FUNCTION OF THE NUMBER OF OBSTACLES
We now compare the computational cost of different parts
of the replanning step of PANTHER. As the computational
cost of each part highly depends on the specific position
of the obstacles relative to the UAV, we perform a Monte
Carlo analysis by randomly deploying obstacles (which fol-
low trefoil-knot trajectories) in the spherical shell [61] limited
by two spheres of radii 2 m and 5 m. The starting location[
0 0 1

]T m and gterm =
[
6 0 1

]T m are held fixed for
every replanning iteration. The number of obstacles tested
are {4, 6, . . . , 18, 20}, and, for each number of obstacles,
we run 10 simulations of 5.0 s each. For these simulations,
the UAV includes all the deployed obstacles in the planning
problem (i.e., the set I contains the indexes of all the obstacles
deployed), and we let the UAV know the trajectory of the
obstacles perfectly. The weights used are the same as the ones

used in section III-A2. The results are shown in Fig. 4, where
can see that the computation time required for the convex hull
generation, the OSA, the optimization, and the total replan-
ning time change approximately linearly with the number of
obstacles. Similarly, the number of linear programs run by the
OSA also changes approximately linearly with the number
of obstacles. The average solve time of one of these linear
programs is 0.09 ms.

To obtain the ψ initial guess (section II-C2), the aver-
age runtime of the Dijkstra’s algorithm on the ψ graph is
0.137 ms, and the average runtime to fit a spline to the ψ
samples (Eq. 1) is 0.048 ms.

These results above show the computational analysis for
the different parts of the replanning step of PANTHER
(convex hull computation, generation of the p(t) and ψ(t)
initial guesses, and nonconvex optimization). For the com-
putational cost of the tracker and predictor using real point
clouds, see section III-B. The well-known results regard-
ing the complexity analysis of the Hungarian algorithm are
given in [41], [62].

B. REAL-WORLD EXPERIMENTS
We run an extensive set of hardware experiments, where
a UAV needs to go from a starting point to a goal loca-
tion while avoiding unknown dynamic obstacles. The UAV
used is equipped with a Qualcomm R© SnapDragon Flight,
an Intel R© NUC i7DNK, and an Intel R© RealSense Depth
camera D435i. The tracker, planner, and the camera run
on the Intel R© NUC, while the control and state estimation
run on the Qualcomm R© SnapDragon Flight. Note that the
main onboard computer (Intel R© NUC) has similar compu-
tational power to the onboard hardware used in the recent
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FIGURE 5. (A) Composite images of all the nine experiments. For visualization purposes, only the second half of Experiment 7 is shown. The table below
every image shows the number of obstacles, flight distance, maximum velocity, maximum relative velocity (with respect to the obstacles), and flight time
of each experiment. The number of obstacles is one, two, and three for the experiments 1–3, and 4–9 respectively. (B) Relative distances between the
agent and each one of the obstacles. Any relative distance above the dashed line guarantees safety.

literature (e.g., [1], [6], [7], [12]). For the controller, we run
the approach presented in [36], [63] at 100 Hz to generate the
desired orientation and angular rates from p(t) and ψ(t).
The commanded thrusts for the motors are then found from
these attitude commands using a geometric controller [64],
which is run at IMU rate (500 Hz). For state estimation, we

use a visual inertial odometry (VIO) package [65] running
at 30 Hz that leverages an extended Kalman filter to fuse
the IMU measurements of the SnapDragon and the images
of its downward-facing camera. To obtain a high-rate state
estimate, we then integrate forward the IMU (which runs at
500 Hz) between consecutive VIO estimates.
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FIGURE 6. Snapshots of the onboard camera in experiments 3 (A), 6 (B), and 9 (C). (D) Computation times for each part of a replanning step, measured
on the onboard Intel R© NUC i7DNK. The tracker, predictor, and the depth camera were also running on this computer at the same time these times were
measured. The notation used is: CHs (convex hull computation for the polyhedral outer representations), Gp (generation of the planes and the guess for
the position p(t)), Gψ (generation of the guess for ψ(t)) and Opt (Optimization time).
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The IMU of the RealSense camera is not used. All the
computation of this UAV is running onboard, and it does
not have any prior knowledge of the trajectories and specific
shape/size of the obstacles. The weights used for these exper-
iments are c9max = 106, cFOV = 1, cψ = 0 rad−2, αj =
0.05 s5/m2, αψ = 0.1 s3/rad2, αFOV = 1, αg = 2 · 104 m−2,
ε1 = 0.1, and ε2 = 1 s2/m2.
To generate the dynamic obstacles, we use three other

UAVs with a Qualcomm R© SnapDragon Flight, and equip
them with a box-shaped frame of ≈ 0.6 × 0.6 × 0.3 m3.
The obstacles are following trefoil-knot trajectories [60].

A total of 9 experiments were performed (see attached
video). The composite images of the trajectories flown by the
agent and by the obstacles, together with the number of obsta-
cles, distance flown, maximum velocity, maximum relative
velocity with respect to the obstacles, and total flight time
of each one of the experiments are shown in Fig. 5A. Experi-
ments 1 and 2were done with one obstacle, experiment 3 with
two obstacles, and experiments 4-9 with three obstacles. The
maximum velocity achieved by the agent, 5.77 m/s, happened
in experiment 7. In that same experiment, the maximum
relative velocity (6.28 m/s) with respect to the obstacles is
also achieved. The relative distances between the UAV and
the obstacles are shown in Fig. 5B. Any relative distance
above the dashed horizontal line guarantees safety between
the agent and the corresponding obstacle. For experiments 3,
6, and 9, different snapshots of the onboard camera are shown
in Figs. 6A, 6B, and 6C, respectively. Note how the planned
trajectories try to keep an obstacle in the FOV at all times to
aid in obstacle tracking and prediction.

The computation times are shown in Fig. 6D. All these
computation times were measured onboard, with the UAV
flying, and with the depth camera node and the tracker run-
ning on the same computer (Intel R© NUC i7DNK). The mean
total replanning times are 48.70, 51.66, and 58.59 ms for the
experiments with 1, 2, and 3 obstacles respectively. The point
cloud of the camera is generated at 90 Hz, and the tracker
(clustering, assignment, and prediction) is able to process
each point cloud in ≈ 8.6 ms.

IV. CONCLUSION
This work derived PANTHER, a perception-aware (PA)
trajectory planner in dynamic environments. PANTHER is
able to couple together the translation and the full rotation
in the optimization, leading to PA trajectories computed
in real time that maximize the presence of the obsta-
cles in the FOV while minimizing their projected veloc-
ity. Extensive hardware experiments in unknown dynamic
environments, with all the computation running onboard,
and with relative velocities of up to 6.3 m/s have shown
its effectiveness.

Our approach has also some limitations. Specifically,
in the hardware experiments we observed the importance
of the choice of the obstacle to include in the optimization
(i.e., the choice of i∗, see Table 2 and section II-B): when
should the UAV include a specific (already tracked) obstacle

in the PA term of the optimization, in order to predict its
trajectory more accurately to be able to avoid it, and when
should the UAV turn around to explore unknown space? This
highlights the trade-off between exploration and exploitation:
too much focus on exploitation may lead to collision with
obstacles that were never detected, and too much focus on
exploration may lead to a very poor trajectory prediction, and
hence to a collision as well. Optimally solving this trade-off
is a promising direction for future work.

Another possible direction of future work is to solve the
trade-off between visibility and time optimality. This would
entail adding the time minimization in the optimization prob-
lem of section II-D4, and would also allow to highlight
the advantages of the Hopf fibration when flying aggressive
trajectories that pass close to the singularity produced by
the commonly-used maps presented in [33], [37] (first two
definitions of Table 3).
Finally, another interesting research direction is how to

incorporate disturbances in the planning problem, while still
guaranteeing that the tracking error of the UAV remains
bounded [66]. The incorporation of such disturbance infor-
mation is especially important when flying outdoors under
windy conditions, since a large deviation between the planned
trajectory and the actual trajectory can provoke a collision
with the obstacles.
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