
Received February 8, 2022, accepted February 21, 2022, date of publication February 24, 2022, date of current version March 11, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3154014

Modeling and Simulation of System Bus and
Memory Collisions in Heterogeneous SoCs
JOOHO WANG 1, YUNGYU GIM2, SUNGKYUNG PARK 3, (Senior Member, IEEE),
AND CHESTER SUNGCHUNG PARK 1, (Senior Member, IEEE)
1Department of Electrical and Electronics Engineering, Konkuk University, Seoul 05029, South Korea
2System LSI Business, Samsung Electronics, Inc., Hwaseong-si, Gyeonggi-do 18448, South Korea
3Department of Electronics Engineering, Pusan National University, Busan 46241, South Korea

Corresponding author: Chester Sungchung Park (chester@konkuk.ac.kr)

This work was supported by the Samsung Research Funding and Incubation Center, Samsung Electronics, under Project SRFC-IT1802-10.

ABSTRACT A system simulator is proposed and developed, which can help to optimize design parameters
and hence minimize the number of collisions. In order to search the optimal design parameter combi-
nation which meets the user requirement, the proposed simulator has some knobs: partitioning between
software and hardware, scheduling the operations in the system, and memory merging, all of which can be
adjusted to predict collisions and search the optimal architecture. Also, design parameters can be adjusted
sequentially to cover all design options and estimate the predicted performance for each option. The
proposed system simulator is evaluated with an example signal processing algorithm, orthogonal matching
pursuit (OMP) algorithm. Performances of four cases of the OMP algorithm are predicted by the proposed
simulator and in turn are compared with the actual performances on ZedBoard. The proposed simulator
can predict the performance of heterogeneous systems on chips with under 5% error for all the candidate
architectures for OMP while taking the system bus and memory conflicts into account. Moreover, the
optimized heterogeneous SoC architecture for the OMP algorithm improves performance by up to 32%
compared with the conventional CAG-based approach. The proposed simulator is verified that the proposed
performance estimation algorithm is generally applicable to estimate the performance of any heterogeneous
SoC architecture. For example, the estimation error ismeasured to be nomore than 5.9% for the convolutional
layers of CNNs and no more than 5.6% for the LDPC-coded MIMO-OFDM. In addition, the optimized
heterogeneous SoC architecture improves performance by up to 48% for the third convolutional layer of
AlexNet and 56% for the LDPC-coded MIMO-OFDM. Lastly, compared with the conventional simulation-
based approaches, the proposed estimation algorithm provides a speedup of one to two orders of magnitudes.
The source code is available on the GitHub repository: https://github.com/SDL-KU/HetSoCopt.

INDEX TERMS Collision, conflict, design space exploration, hardware accelerator, heterogeneous SoC,
modeling, performance prediction and estimation, system simulator.

I. INTRODUCTION
Demand for heterogeneous systems on chips (SoCs) is
increasing these days owing to the impending end of Moore’s
law and Dennard scaling. A heterogeneous SoC includes
more than one hardware accelerator which is dedicated to
intensive computation such as a large volume of convo-
lution operations or matrix multiply operations. Hardware
accelerators can supplement processors and enhance the
overall system performance by adopting parallelism rather

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

than sequential operations [1]. The field programmable gate
array (FPGA) [2], the application-specific integrated circuit
(ASIC) [3], and the graphics processing unit (GPU) [4] in
a broad sense are some examples to implement parallel-
processing hardware accelerators. Owing to the superiority
of the hardware accelerator in a specific domain over the
processor, the number of hardware accelerators is increasing
these days [5].

Meanwhile, hardware accelerators needmore time for their
development and verification and have lower flexibility, com-
pared with software. Moreover, interface circuits are added to
connect hardware accelerators to the on-chip interconnect or

VOLUME 10, 2022

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

25901

https://orcid.org/0000-0001-6657-5948
https://orcid.org/0000-0003-1171-5020
https://orcid.org/0000-0003-2009-2814
https://orcid.org/0000-0002-3685-3879

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

bus and the paths of data becomes more complex. In turn,
leveraging hardware accelerators to enhance the system per-
formance may make the system bus more complicated and
increase data collisions in memory and the system bus. Con-
sequently, the actual performance of the overall system can
be quite lower than the predicted performance if memory and
system bus collisions are not properly taken into account.
Thus predicting the collisions in the system bus and memory
and obtaining the system performance at early stages are
important. For these, a system simulator is needed, which
can help to optimize design parameters and hence minimize
the number of collisions. To reduce design turnaround time
and also explore system level trade-offs of SoCs, design
space exploration and performance prediction by using sys-
tem simulators early in the design flow are indispensable for
successful SoC prototyping.

The Zynq platform [6] is widely used to verify many
heterogeneous SoC simulators [7]-[11]. The Zynq platform
has a dual-core ARM processor tightly coupled with a field-
programmable gate array (FPGA). The FPGA can be used
as a reconfigurable accelerator to efficiently implement some
hardware functionality. The ARM side of the SoC is known as
a processing system (PS), whereas the FPGA side is termed
programmable logic (PL). When an application is ported to
the Zynq SoC, it can run as a pure software implementation
on the PS. To gain performance, compute-bound parts of an
application can be mapped as hardware accelerators on the
PL. For example, [7] predicted the performance of a het-
erogeneous SoC consisting of a DMA-controlled hardware
accelerator, a single processor core, a DRAM subsystem, and
on-chip buses using a SystemC TLM-based simulator. The
results predicted using the SystemC TLM simulator were
compared with those obtained using the Zynq platform. [8]
introduced gem5-aladdin, which integrates the gem5 system
simulator with the Aladdin accelerator simulator to enable
the simulation of SoCs with complex accelerator system
interactions. The gem5-aladdin simulator showed that it val-
idated against the Xilinx Zynq platform and achieved less
than 6% error. Specifically, the gem5-aladdin simulator mea-
sured and utilized the execution time information of the
ZedBoard [12] for the CPU (i.e., Cortex-A9) to model the
cache line latency. In [9], the requirements for memory,
computation, and flexibility of the system were summarized
for mapping a CNN on embedded FPGAs. Based on these
requirements, they proposedAngel-Eye, a programmable and
flexible CNN accelerator architecture simulator, along with a
data quantization strategy and compilation tool. The design
strategy obtained using the Angel-Eye simulator [9] was
implemented on the Zynq platform, and the actual perfor-
mance gains were evaluated. Next, [10] proposed a perfor-
mance estimation algorithm to optimize the communication
schemes (CSs), which are defined by the number of direct
memory access controllers (DMACs) and the bank alloca-
tion of DRAM. Using the communication bandwidths of
CPs obtained from prior full-system simulations based on
the Zynq platform, the proposed performance estimation

algorithm can predict the communication performance of CSs
more accurately than conventional performance estimation
algorithms. In [11], a revised roofline model was proposed
to estimate the performance of a DMA-controlled accelerator,
considering the impact of DRAM latency. The roofline model
proposed in [11] was verified using the Zynq platform.

In this work, a system simulator which can predict the per-
formance of heterogeneous SoCs and model dynamic effects
such as collisions is proposed. Static analysis-based tech-
niques typically provide sufficient efficiency in terms of time
cost but the accuracy is low. On the other hand, simulation-
based techniques may generally provide satisfactory accu-
racy at the expense of lower efficiency than static analysis
based techniques. The proposed simulator can help optimize
design parameters and accordingly minimize the number of
conflicts or collisions while exploring a large design space.
Both speed and accuracy are valued by rapid design space
exploration and consideration of dynamic effects such as col-
lisions. To search the optimal design parameter combination
whichmeets the user requirement, the proposed simulator has
some knobs (based on the information extracted from the tar-
get system): partitioning between software and hardware (or
mapping operations into software or hardware), scheduling
the operations (or changing the order of operations) in the
system, and memory merging (separate memories or shared
memory), all of which can be adjusted to predict collisions.
Also, design parameters can be adjusted sequentially to cover
all design options and estimate the predicted performance for
each option. The simulator proposed in this study utilizes the
extracted time information (some knobs) for each component
such as a direct memory access (DMAC) controller, processor
core, and on-chip bus through emulation based on the Zynq
platform [6]. When the target application is implemented in
the Altera/Intel SoC platform [13], if the time information
of the Altera/Intel SoC platform is extracted in pre-measured
and applied to the proposed simulator, the performance of the
target application implemented in Altera/Intel SoC Platform
can be easily predicted.

The proposed simulator in this study is used to seek the
optimal condition whichmeets the system requirement, while
using minimal number of hardware accelerators. Pipelining is
assumed for the implementation of a given algorithm which
is subdivided into multiple steps of operations. The SoC
performance is predicted while the allocation of operations
to hardware accelerators and processors is changed and the
order of operations is adjusted, whereby the types of colli-
sions will vary. Namely, both partitioning and scheduling are
considered in the proposed simulator to recommend some
design parameter combinations to achieve the optimal sys-
tem performance. The execution time of each operation step
varies as the partitioning varies and the type of data collision
varies (and hence the execution time) as the scheduling varies.

The proposed system simulator is evaluated with an exam-
ple compressive sensing algorithm, orthogonal matching pur-
suit (OMP), which is subdivided into 5 steps. The OMP
algorithm estimates the channel in the LTE wireless standard

25902 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

with a 5MHz channel bandwidth and multiple hardware
accelerators are employed to implement the algorithm. The
data type, the size of data, the order of data, the access
type (read or write), and timing parameters are the inputs
to the simulator. Performances of 4 cases of the OMP algo-
rithm are predicted by the simulator and those are compared
with the measured performance in ZedBoard with the Xilinx
Zynq 7020 SoC chip [12]. The execution time of the optimal
OMP architecture, obtained from the proposed simulator, is
10295 cycles whereas the execution time from the actual
implementation on ZedBoard with the Zynq SoC chip is
10788 cycles, leading to a 4.8% error. The proposed system
simulator can predict the performance of heterogeneous SoCs
with under 5% error while taking the system bus and memory
collisions into account. Moreover, the proposed simulator is
verified that the proposed performance estimation algorithm
is generally applicable to estimate the performance of any
heterogeneous SoC architecture. For example, the estima-
tion error is measured to be no more than 5.9% for the
convolutional layers of CNNs and no more than 5.6% for
the LDPC-coded MIMO-OFDM. Moreover, the optimized
heterogeneous SoC architecture improves performance by up
to 48% for the third convolutional layer of AlexNet and 56%
for the LDPC-coded MIMO-OFDM.

We summarize the novelty of this study as follows:

• We propose a novel system simulator to optimize a
heterogeneous SoC, which is defined by the number of
hardware accelerators and processors. The novel perfor-
mance estimation algorithm of the simulator proposed
herein evaluates the performance of a heterogeneous
SoC architecture, based on the timing information of
accelerators and processors, measured on commercial
SoC platforms, such as the Zynq 7020 SoC chip on
ZedBoard [12] and AccTLMSim [7].

• The performance estimation algorithm of the proposed
simulator can search the design space by reflecting
all combinations of memory merging, hardware-
software partitioning, and scheduling to find the opti-
mal heterogeneous SoC architecture. In addition, the
proposed performance estimation algorithm primarily
considers the performance impact of both the mem-
ory latency and bus protocol overhead on a hardware
accelerator.

The paper is organized as follows. Section II reviews some
of the relatedworks and summarize our contributions. System
modeling preliminaries are accounted for in Section III where
the system, the bus, and data transfer types are addressed, fol-
lowed by transfer delay types which are extensively explained
in particular. Section IV deals with the performance estima-
tion process of the performance estimationmethod in terms of
modeling using an example of a signal processing algorithm.
Simulation methods, results, and analysis are elaborated on
in Section V with case studies. Finally, the conclusion and
future work are given in Section VI.

II. RELATED WORK
A multitude of studies have addressed design space explo-
ration and performance estimation of heterogeneous SoC
architectures [14]–[18]. Scheduling and timing analysis of
on-chip communication, factoring in software parts such as
interrupt service routines and device drivers were presented
in [14], [15], wherein the buffer resource, bus contentions,
and bus sharing were also taken into consideration to enhance
accuracy. In [16], a static performance estimation method
was used to first reduce a large design space, and then
the reduced space was explored using a trace-driven mem-
ory simulator to select the optimal on-chip communication
architecture. Because memory accesses are involved in bus
contention, memory allocation was also considered in [16].
In today’s complex heterogeneous embedded SoC design, it is
imperative to model and simulate the system of interest at a
high level. A methodology and framework to perform this
with analytical modeling and multi-objective optimization
were presented in [17], wherein candidate architectures were
explored at different levels of abstraction. Dataflow graphs
in [17] represented the transformation of coarse-grained
events in an application into fine-grained events in the archi-
tecture. A system-level modeling and simulation environment
was specified in [18], wherein pruning of the design space and
calibration of timing parameters by coupling with low-level
simulators or prototype implementations were discussed.

In our work on heterogeneous SoC modeling and simu-
lation, we assumed a bus compliant with the AMBA AXI
bus protocol [19]. In [10] and [20], a SystemC TLM-based
simulator was used to evaluate and predict the performance
of a hardware accelerator implemented with an AXI bus-
based SoC architecture based on memory access modeling,
including the memory access type, burst type, and access
latency. In [21], the design space for the AMBA hierarchical
shared bus was explored, and the execution time of each bus
architecture was estimated by pipelining and accounting for
burst transactions. The execution order and amount of transfer
data were also considered during design space exploration.
However, dynamic effects such as scheduling and hardware-
software partitioning at the memory and system bus were not
taken into account in [10], [20], [21].

A performance estimation method based on a tree model
was presented in [22] to determine the relationship between
SoC parameters and performance, as well as to improve the
prediction accuracy during design space exploration, using
parameter ranking to guide the design. A high-level ana-
lytical tool to evaluate the communication and computation
overheads of heterogeneous systems was presented in [23],
wherein dataflow and loop pipelining within the high-level
synthesis framework were considered with the assumption of
an AXI4 stream protocol. In [23], dynamic data dependencies
were considered, and the communication and computation
timeswere estimated. A design space explorationmethodwas
introduced in [24] with task scheduling, which is based on
a traffic-aware priority-based earliest-finish-time algorithm,

VOLUME 10, 2022 25903

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

to achieve a high level of core utilization. Guidance on how
to offer a well-designed scratchpad on-chip memory system
in terms of memory capacity and number of memory banks
was provided in [24]. There have been several reports on the
optimization of the bank allocation of DRAM [25], [26] in
a heterogeneous SoC architecture. Most proposed bank allo-
cations focus on balancing interference mitigation and bank-
level parallelism. For example, in [25], DRAM banks were
dynamically partitioned according to application profiling
(e.g., memory-intensive vs. non-intensive). In [26], locality-
aware bank partitioning (LABP) was proposed to improve
dynamic bank partitioning by mitigating the inference caused
by non-intensive applications, for example, by separating
their banks from that of memory-intensive high-row buffer
locality applications. However, the proposed bank allocations
are targeted at general-purpose processors (e.g., CPUs) run-
ning different applications. Specifically, optimization of bank
allocation for application-specific hardware accelerators has
not been considered.

When it comes to the estimation of communication
performance, there are two different approaches: static
analysis-based approach and simulation-based approach. The
static analysis-based approach tends to be faster than the
simulation-based approach, but the estimation accuracy may
not be sufficiently high to drive the design of communication
architectures. In particular, the static analysis-based approach
cannot accurately capture the dynamic nature of communica-
tion bandwidth. To improve accuracy, a static analysis-based
approach is often combined with a set of traces extracted
from simulations. In [14], a hybrid trace-based performance
estimation algorithm was proposed to estimate the perfor-
mance of bus-based communication architectures using a
communication analysis graph (CAG). In [27], a simulation-
based performance estimation was proposed based on the
observation of actual traffic tracking of the application of
each core (e.g., bus master). In [28], in order to estimate
the performance of bus-based communication architectures,
a static analysis based on a modified queueing model was
incorporated into the schedule-aware performance estima-
tion. [29] proposes to estimate the memory latency based on
the statistics of different access conditions. In [30], bus-based
on-chip communication architectures were explored early in
the design flow using a modeling abstraction, called the cycle
count accurate at transaction boundaries. The abstraction
used in [30] can speed up the simulation by a factor of 2 when
compared with the bus cycle accurate abstractions. However,
in [27]–[30], neither the dynamic effects such as collisions or
conflicts at the memory and the system bus, nor the operation
scheduling was considered.

However, the simulation-based approach is sufficiently
accurate to capture the dynamic communication bandwidth.
Thus, most reports on bank allocation rely on performance
evaluation using full-system simulators in conjunction with
DRAM simulators. For example, in [25], the proposed
bank allocations were evaluated using gem5 in conjunction
with open DRAM simulator. In [7], a full-system simulator

modeled the communication bandwidth of a DMA-controlled
accelerator from/to the DRAM subsystem through an on-
chip bus on a transaction level. However, a simulation-based
approachmay often be too time-consuming to explore a broad
design space for communication architectures.

We summarize the contributions of this study as follows:
• In order to improve the performance of the hetero-
geneous SoC architecture, compared with that of a
CAG-based optimization [14], which considers only
memory merging, the proposed simulator considers
both hardware-software partitioning and scheduling.
The optimal combination of design options suggested
by the proposed simulator can improve the perfor-
mance of a heterogeneous SoC architecture by up
to 32

• Compared with the conventional simulation-based [7]
approach, the proposed performance-estimation algo-
rithm provides a speedup of two orders of magnitude.
The simulation-based approach is sufficiently accu-
rate to capture the dynamic nature of the communica-
tion bandwidth, but it often takes a prohibitively long
time to simulate. According to our experiments, the
conventional simulation-based approach takes at least
a few hours to evaluate a single heterogeneous SoC
architecture with hundreds of different combinations of
hardware-software partitioning, memory merging, and
scheduling. Using the conventional simulation-based
approach, we run the full-system simulator proposed
in [7], once for each design point, taking approxi-
mately 12.5 seconds per design point. By contrast,
to minimize the simulation time and maintain esti-
mation accuracy, the proposed performance estimation
algorithm constrains the use of an evaluation board
(e.g., ZedBoard [12]) to evaluate the time information
of the heterogeneous SoC architecture. Because a few
tens of time information are sufficient to express most of
the heterogeneous SoC architectures of interest, the extra
simulation time required to obtain the time information
of each hardware component becomes negligible, par-
ticularly in the case of broad design space (i.e., a space
of hundreds of design points).

• Compared with static analysis-based bus performance
estimation [28] and statistics-based estimation [29], the
proposed performance estimation algorithm can predict
the communication performance of heterogeneous SoC
architectures more accurately because it considers both
the bus protocol overhead (bus conflict) and memory
latency (memory collision) using an evaluation board
(e.g., ZedBoard [12]) to evaluate the time information
of the hardware and software. The experimental results
show that the proposed algorithm approaches the full-
system simulator [7] more closely than the conven-
tional algorithms. For example, the proposed algorithm
reduced the estimation error to 6%, whereas the conven-
tional algorithms in [28] and [29] experienced estima-
tion errors of 18% and 16%, respectively.

25904 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

III. BASICS OF SYSTEM MODELING
In this section, modeling of systems consisting of masters,
buses, and slaves is described along with operating principles
and data transfer types. Based on these and performance
estimation methods which will be explained in Section IV,
the system simulator is developed and simulation results are
obtained to predict the system performance.

A. SYSTEM UNDER CONSIDERATION
A basic system is shown in Figure 1, where a master is a
processor or a direct memory access (DMA) controller and
a slave is a memory or a hardware accelerator which can run
operations. The number of masters and slaves is allowed to
vary and a single bus is assumed between masters and slaves.

The slave is organized as first in first out (FIFO) and is
subdivided into a hardware (HW) block and an AXI slave
wrapper (assuming the bus complies with the AMBA AXI
protocol [19]), as shown in Figure 2. The hardware block
takes charge of operations or computation. The AXI slave
wrapper enables operations, synchronizes input and output,
and supports multiple outstanding transactions. The AXI
protocol uses valid and ready handshake signals to con-
firm the data transfer is completed. The enable signal is
generated by using valid and ready signals. A counter has
a pre-determined number of input data, which triggers the
operation, and a predetermined number of output data, which
is produced as an outcome of the operation. The counter
conducts sync between input and output such that the oper-
ation gets started only after a preset number of input data is
received and the operation produces a preset number of output
data after a delay. The values set up in the counter can be
adjusted in. For example, when it comes to the target appli-
cation implemented in the heterogeneous SoC architecture
is LDPC-coded MIMO-OFDM, the amount of communica-
tion and computation required for each hardware accelerator
differs based on the number of spatial streams (NSS) and
the modulation coding scheme (MCS). In this case, during
the initial design stage of each hardware accelerator, the
maximum value of the counter is set differently so that it can
respond to the change in the communication amount accord-
ing to the determined NSS and MCS. The counter in Figure 2
confirms the input by using WVALID andWREADY signals
in AMBA AXI protocol [19]. If the counter reaches the state
that the slave is able to produce the output of the operation,
the RVALID signal is asserted. The counter confirms the
output data transfer by using the RREADY signal. If data are
not generated in time and a read delay occurs, WREADY is
deasserted to prevent new data from entering the slave. The
read delay case and the write delay case are illustrated in
Figure 3, where the input data are assumed to be output in the
next clock cycle. In the normal case when no delay occurs,
the data come in through the write channel and the outcome
of the operation goes out through the read channel. In the
write delay case in which an input delay occurs (by deasserted
WVALID from the master), RVALID is deasserted after the
current output of the operation goes out (to prevent further

FIGURE 1. Basic system structure.

FIGURE 2. Slave (hardware accelerator) structure.

data from leaving). In the read delay case when the master is
not ready to send data at the right moment and thus RREADY
is deasserted,WREADY is deasserted to immediately prevent
data from entering the slave.

According to the number of address channels and the num-
ber of data channels, the bus is categorized into shared address
bus and shared data bus (SASD), shared address bus and
multiple data buses (SAMD), and multiple address buses and
multiple data buses (MAMD) [31], [32]. The SASDmode has
one address channel and one data channel, where one master
is unable to occupy the bus while another occupies it. The
MAMD mode has multiple address channels and multiple
data channels, where even if one master occupies the bus,
another master is able to access a slave that is not under col-
lision. However, it needs a large amount of resources and its
design gets readily complicated. Figure 4 and Figure 5 show
the SAMD mode which combines the benefits of the SASD
and MAMDmodes. In Figure 4, one address bus is shared by
all the masters while in Figure 5, each master has a separate
data bus so that simultaneous data transfers are possible. For
the AXI protocol, one address is needed to send a burst and
hence the required bandwidth on the address channel is lower
than that on the data channel. Thus the SAMDmode typically
exhibits similar performances as the MAMD mode but in a
particular case of one master occupying the address channel,
another may not access the channel.

VOLUME 10, 2022 25905

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 3. Counter operations.

FIGURE 4. SAMD bus: address channel.

FIGURE 5. SAMD bus: data channels.

B. DATA TRANSFER MODELING IN BUS ARCHITECTURE
Figure 6 shows the process in which a processor reads data
from memory, internally executes operations on them, and
writes the outcome to another memory. Since the processor
is able to read and write data of its own accord, it can directly
access memory. The data transfer through the bus or on-chip
interconnect is seen in the lower part of Figure 6 where after
some amount of time elapses with the read access, the write
access is initiated, yielding an overlap between the read and
the write. The data transfer by the processor is seemingly
clearer and simpler than that by the hardware accelerator but
more time will be consumed to transfer an item of data and
also the efficiency will be lower since one processor deals
with all the operations internally.

Figure 7 shows the process in which a hardware accelerator
is involved in the data transfer. The hardware accelerator

FIGURE 6. Data transfer associated with a processor core.

needs help from the DMA to transfer data. The DMA is
unable to begin its activity of itself but entails control by
a processor. Thus in the beginning, the processor first con-
figures the DMA with the information needed to initially
setup the data transfer (DMA set in Figure 7). Subsequently,
DMA 0 which is in charge of the hardware accelerator input
begins its action while reading data from memory 0. After
some time passes by and the hardware accelerator begins
to output the result, DMA 1 reads out from the hardware
accelerator and writes in into memory 1. The data associated
with this are shown as the latter read (blue) and the latter
write (red) in Figure 7, where the two reads and the two
writes overlap with one another. By comparison with the
data transfer maneuvered by a processor, the number of data
movements is doubled (as shown in the lower part of Figure 7)
whereas the data transfer time is shorter owing to the higher
efficiency with DMAs in general. However, the use of DMA
does not always guarantee a better performance because of
the doubled number of reads and writes and the overhead of
the DMA set.

Two types of collisions, memory collision and SAMD
collision, will be addressed, which will incur delay. Figure 8
shows the situation that multiple masters try to access mem-
ory through a bus with an arbiter. This leads to a collision
at memory if only one physical port exists in memory. Only
one master is allowed to access memory at a time owing
to the collision and other masters than the master granted
access will all suffer some delay. The bus arbiter grants
access to a master according to the priority among themasters
and accordingly the read or write request is processed in
sequence. If the request underway is over, then the top priority
master is granted access after prioritizing the masters again.

Memory collisions may be subdivided into collisions by
two DMAs, by two processors, and by a DMA and a

25906 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 7. Data transfer associated with a hardware accelerator.

FIGURE 8. Memory collision: address channel.

processor. Assume that the time consumed on the bus is
ignored and the MAMD mode is considered for the sake of
examining only the memory collision situation. Also assume
that the DMA uses bursts with burst length 4 and sup-
ports multiple outstanding transactions (i.e., a new transfer
request is allowed before the currently ongoing transfer is
terminated) whereas memory does not support multiple out-
standing transactions. The processor is assumed to support
neither burst transfers nor multiple outstanding transactions.
Figure 9 shows two situations: two masters read from two
memories (left) and two masters read from one memory,
leading to collision (right). The master can be a processor
or a DMA and hence three cases are considered with the
two masters in Figure 9: the case with two DMAs, the case

FIGURE 9. System configurations to identify memory collisions: no
collision (left) and collision (right).

FIGURE 10. DMA Transaction with no collision.

with two processors, and the case with one processor and
one DMA.

Figure 10 shows the case with two DMAs and two
memories, which corresponds to the left half of Figure 9.
DMA 0 and DMA 1 read from memory 0 and memory 1
by delivering addresses A1 and D1, respectively. No col-
lision occurs since different memories are accessed and
addresses A1 and D1 are delivered without delay such that
memory 0 and memory 1, respectively, dispatch data burst
with length 4 without delay. Owing to the allowed multiple
outstanding transactions, DMAs send addresses B1 and E1
before their first data transfers are finished. However, each
memory receives its next address after its currently ongoing
data transfer is completed. Namely, addresses B1 and E1 are
not immediately input to memories. On the other hand, the
DMA data channel can transfer at almost every interval and
hence the delay in the address does not impact the actual data
transfer, incurring no data transfer delay in effect.

Figure 11 shows the case with two DMAs and one mem-
ory, corresponding to the right half of Figure 9, assuming
DMA 0 has a higher priority. DMA 0 and DMA 1 deliver
read addresses A1 and D1 to memory 0. Since the MAMD
bus is unable to deliver two addresses simultaneously mem-
ory 0, address A1 of the higher priority DMA 0 is first
delivered. Subsequently, DMA 0 tries to send address B1
while memory 0 dispatches data corresponding to address
A1. The first address D1 of DMA 1 is delayed at memory
0 until the data transfer of DMA 0 corresponding to A1 is
terminated, which is different from the situation illustrated in
Figure 10. After the data transfer of DMA 1 corresponding
to D1 starts, the opposite situation occurs: the second address
B1 of DMA 0 is delayed at memory 0 until the data transfer of
DMA 1 corresponding to D1 is finished. To sum up, memory
collisions alternately incur transfer delays on DMA 0 and
DMA 1 caused by each other, thus entailing more time to

VOLUME 10, 2022 25907

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 11. DMA Transaction with memory collision.

FIGURE 12. Processor core transactions with no collision.

FIGURE 13. Processor core transactions with memory collision.

FIGURE 14. Processor core and DMA transactions in combination: no
collision case.

finish memory accesses when compared with no collision (in
Figure 10).

Figure 12 shows the case where two processors or PS
individually read from one of the two different memories,
corresponding to the left half of Figure 9. In the absence of
both burst transfers and the multiple outstanding transactions,
each PS transfers only a single item of data corresponding
to an address and also the next address can be sent only
after the current data transfer is terminated. PS 0 and PS
1 send addresses A1 and B1 to memory 0 and memory 1,
respectively, to execute two reads. No collision occurs since
different memories are accessed, no delay is assumed to occur
on the bus, and memories dispatch data for A1 and B1 right
away.

Figure 13 shows the case with two processors and one
memory, the collision case, corresponding to the right half
of Figure 9. PS 0 and PS 1 simultaneously send addresses

FIGURE 15. Processor core and DMA transactions in combination:
memory collision case.

A1 and B1, respectively, to memory 0. Owing to the collision
at memory, the MAMD bus arbiter plays a part. The higher
priority PS, PS 0, first delivers A1 and receives the corre-
sponding data. B1 of PS1 is delayed until the ongoing data
transfer of PS 0 corresponding to A1 is completed. However,
this delay suffered by the lower priority PS is different than
that associated with the DMA. The delay associated with
the processor is temporary, namely, the delay occurs only
once in the beginning and does not cumulate with time.
Here assume that the two processors run at the same speed
and hence the read interval is the same. As a consequence,
memory collisions between processor and processor will not
be factored in during the performance estimation process
which will explained in Section IV.

Figure 14 and Figure 15 show the cases with one processor
and one DMA in combination, where no collision occurs
and memory collisions occur, respectively. In Figure 14, data
are read at the correct timing without any transfer delay,
assuming an ideal bus. In Figure 15, by contrast, a DMA
and a PS read from a memory simultaneously, leading to
memory collisions. More specifically, PS 0 and DMA 0 send
addresses A1 and B1 to memory 0, respectively. A collision
is detected in the bus arbiter. According to the assumed
priority, A1 of the higher priority PS 0 is first delivered to
memory 0, whereby B1 of DMA 0 is delayed until the read
of PS 0 corresponding to A1 is finished. In the middle of
the read of DMA 0 corresponding to B1, PS 0 requests a
new read corresponding to A2, which cannot be processed
in memory 0 and thus is delayed until the read of DMA
0 is terminated. In this manner, delay is incurred alternately
henceforth. The delay inflicted on DMA 0 is caused by a
data transfer of PS 0 inserted between two separate DMA
transfers which are based on bursts with the maximum burst
length of 256. Therefore, the inserted transfer delay of PS 0 is
typically negligible, compared with the burst length. On the
other hand, the delay inflicted on PS 0 is as long as the burst
length of DMA 0 and hence seems to be in sync with the
burst transfer. This data transfer behavior is also identified in
the SAMD collision which will be depicted shortly. The delay
that is incurred in the SAMDmode also occurs when different
memories are accessed. Thus the delay inflicted on PS 0 will
be factored in when we deal with the SAMD collision shortly.

The AXI bus may be subdivided into the MAMD bus,
the SAMD bus, and the SASD bus. The SAMD bus oper-
ates while having no practically noticeable performance
difference from the MAMD bus, except for the multiple

25908 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 16. SAMD collision between DMAs.

FIGURE 17. SAMD collision between processor cores.

outstanding transaction situation. The SAMD collision may
occur betweenmasters which operate in conjunction with one
SAMD bus. It arises when the number of multiple outstand-
ing transactions supported by the master is larger than that
supported by the slave. Assume that the DMA supports up
to 2 multiple outstanding transactions and its burst length is
64. Also assume that the processor supports neither multiple
outstanding transactions nor burst transfers. Slave is also
assumed to not support multiple outstanding transactions.
Figure 16 shows two DMAs access their individual slaves
through the SAMD bus. Namely, DMA 0 and DMA 1 send
addresses A1 and D1 at once to hardware slaves HW 0 and
HW 1, respectively. Since only one address channel exists in
the bus, A1 of DMA 0 is first delivered to HW 0, according
to the priority. Before the current data transfer is completed,
the next address can be sent to the hardware since multiple
outstanding transactions are supported. DMA 0 and DMA
1 send addresses B1 and E1, respectively, to the bus which
then tries to deliver the address that has arrived earlier of the
two, B1, to HW 0. However, as HW 0 is under data transfer,
the request is not acceptable and hence B1 occupies the bus
till the transfer is over, by which E1 of DMA 1 is delayed.
Because the DMA transfer is in units of bursts, though the
address is delayed, the current data transfer is ongoing and
the next data will not be delayed. In brief, the SAMD collision
between DMAs is typically on a negligible level.

Figure 17 shows the situation when two processors access
their respective slaves via the SAMD bus. The processor,

FIGURE 18. SAMD collision between processor core and DMA.

dissimilar to the DMA that supports multiple outstanding
transactions, sequentially executes instructions to fulfill indi-
vidual reads andwrites such that it does not occupy an address
channel for a long time. As a consequence, the SAMD colli-
sion does not show up except for the case when simultaneous
bus requests occur. Moreover, the collision occurs only once
in the beginning and hence impacts negligibly on the overall
execution time.

Figure 18 shows the situation when collisions occur
between DMA and processor during transactions through
the SAMD bus. The processor, PS 0, and DMA 0 request
addresses A1 and B1, respectively, to read data. PS 0 hav-
ing the higher priority first occupies the bus and transfers
its address to HW 0, followed by the address of DMA 0.
DMA 0 sends C1 corresponding to the second burst before
the first burst is finished but C1 is not to be processed in
the slave and thus occupies the address channel of the bus.
After this, PS 0 tries to send the new address A2 to HW 0 but
A2 has to wait since the shared address channel of the bus is
already occupied. When the first DMA burst is finished and
thus HW1 can afford to process new data, thenHW1 receives
C1 that has occupied the address channel of the bus and
finally A2 of PS 0 pending goes up on the bus. As above, the
DMA transfer typically does not suffer a delay whereas the
processor transfer is subject to the delay that is proportional
to the DMA burst length since the transfer of the processor
goes on in sync with the burst transfer of the DMA.

IV. PERFORMANCE ESTIMATION METHODS
Performance estimationmethods in this work are explained in
terms of partitioning, scheduling, andmemorymerging on the
transaction level. The modeling for performance estimation
is depicted in Subsection A and the process of performance
estimation is described in Subsections B and C.

A. MODELING
First, some assumptions are made to model a digital sys-
tem based on, say, a signal processing algorithm. A system
is subdivided into individual operation units or functional
units which are executed in a block-interlacing manner [33],
as illustrated in Figure 19. After the S1 operation is finished

VOLUME 10, 2022 25909

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 19. Block-interlacing.

FIGURE 20. Data transfer by the burst.

FIGURE 21. Transaction-level model structure of the operation unit or
functional unit.

with data 1, its output data are delivered for the S2 operation
and at the same time new data 2 are fed for the S1 operation.
In this manner, all the operations from S1 to S4 do their
works with their individual data at every moment. No data
dependency exists between operation units within a frame.

The data movement arising in each operation unit is
expressed in units of bursts, as shown in Figure 20. The
burst length in the processor is 1 and that in the DMA is
predetermined. The data to be transferred are matched to
the burst length: if more data are to be transferred than the
burst length, appropriate number of bursts are created and
the remnant data shorter than the burst length is carried by
an extra burst. In this way, the conventional data transfer
time by the cycle is represented by the burst in this work
for performance estimation, whereby the overall simulation
time is reduced. The time required to send a single data beat
is multiplied by the number of beats in a burst to obtain the
burst-unit data transfer time.

It is assumed that up to two processors are employed in our
systems during performance estimation but by necessitymore
than two processors can be employed. The two processors
are allowed to execute their respective operations at the same
time. Alternatively, one processor is allowed to perform an
operation while the other is engaged in the DMA control for
hardware utilization.

System modeling is based on the elements that influence
the data transfer when hardware accelerators are included
in the system. The memory collision when two bus masters
access one memory and the SAMD collision when masters
access the shared address channel in the bus are taken into
account in the modeling. Furthermore, in the context of col-
lisions, the optimal combination of partitioning, scheduling,
and memory merging is sought for.

One thing to consider in an algorithm for system optimiza-
tion is whether each operation is executed by the processor
or by the hardware accelerator. This is called partitioning.

To employ the hardware accelerator, the DMA is typically
utilized to put data into the hardware whereas the DMA
setting prior to the data transfer is taken care of by the
processor. In this manner, the data computation and transfer
can be accelerated with a higher speed than in the case of
the processor alone, apart from the overhead of DMA setting.
All the possibilities as regards partitioning are covered in this
work, namely, from all operations carried out by processors
to all operations conducted in hardware.

The order or sequence of operations impacts the execu-
tion time of the given system and therefore the optimization
process in view of the so-called scheduling is addressed in
this work. Each operation will necessitate its relevant data
and depending on whether the processor or the hardware is
employed for the operation, the execution time will vary.
Depending on the scheduling or the operation sequence,
memory collision or SAMD collision may occur owing to
interaction between different operations in the sequence.
The optimal scheduling or operation sequence exhibiting the
shortest execution time is sought after in this work in view of
collisions or conflicts between operations.

Memory merging is considered in this work for optimiza-
tion. Generally, each data item has its lifetime during which
it should not be overwritten or altered in memory but be
retained. Accordingly, each data item needs its own memory
region during its lifetime. On the other hand, to reduce the
number of memory blocks being used, a memory region may
be allocated to two different data items. In this case, if two
different operations read their data items located in the same
memory region, a collision occurs in this region, retarding the
execution and potentially affecting the system performance.
If the effect on the execution time is negligible and the gain
of fewer memory blocks is large, memory merging may be
adopted to reduce system resources. Memory merging may
be considered partly or overall, depending on the predicted
performance.

Figure 21 shows the transaction-level model of the opera-
tion unit considered in an algorithm. The basic unit of parti-
tioning is the operation unit or functional unit. The C struct,
step, is at the top level, where the information including data
parameters, time parameters, and DMA parameters are set as
user inputs. The struct, data, is to model the input data and the
output data in each operation unit. At the bottom level, read
and write transactions, Rtransaction and Wtransaction, are
used to model data transfers according to the processor and
hardware characteristics. Besides, the DMA setting time and
the DMA FIFO latency are modeled in case of the hardware
use and the computation time is modeled as well. Each step,
data, and transaction has its start time and length information,
e.g., the number of beats.

B. PERFORMANCE ESTIMATION ALGORITHM
The performance estimation process proposed in this work is
shown in Algorithm 1. Initially, user inputs and the schedule
are set up, followed by description of constraints of hard-
ware accelerators and processors together with depiction of

25910 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

Algorithm 1 Performance Estimation
Input: NoPart, NoStep, NoSched, NoFunc and MemMerge
Output: T
1: for p = 1:NoPart do
2: for s = 1:NoSched do
3: for m = 1:MemMerge do
4: idealArch = heterogeneousSoC (p, s, m);
5: swConstArch = swCosntraints (idealArch);
6: hwConstArch = hwCosntraints (swConstArch);
7: busConstArch = busConstraints (hwConstArch);
8: T = performance(busConstArch);
9: end for

10: end for
11: end for

memory and bus conflicts or collisions. Algorithm 1 proposed
in this study can predict the performance of a heteroge-
neous SoC architecture. This algorithm considers hardware-
software partitioning, memory merging, and scheduling in
each loop, to determine the optimal design combination
when implementing a heterogeneous SoC using a hardware
accelerator.

First, the partitioning loop determines that the primary
thing to consider in an algorithm for system optimization
is whether each operation is executed by the processor or
by the hardware accelerator. Through this loop, it is pos-
sible to consider the cases where all functions of the tar-
get application to be implemented in a heterogeneous SoC
are mapped with the software domain, and the cases where
all functions are mapped with the hardware domain. The
total number of partitioning (NoPart) considered in the pro-
posed estimation algorithm is determined by the power of 2
(i.e., 2NoStep). Next, each function (i.e., step) of the target
applications determines the scheduling in which each func-
tion mapped to the hardware domain or the software domain
is executed. This loop considers the effects of memory and
bus conflicts that occur when each function shares one mem-
ory simultaneously. In addition, it can be considered that
the execution time of this loop differs depending on the
domain in which each function is to be performed. The total
number of scheduling, considered in the proposed estimation
algorithm, is determined by a factorial (i.e., NoFunc!) of the
number of functions. Finally, a memory merging step is per-
formed to predict the performance of the heterogeneous SoC
architectures according to the number of on-chip memories.
In general, on-chip memory collisions degrade the perfor-
mance of accelerators implemented with heterogeneous SoC
architectures. In other words, if the variables of different func-
tions do not use the same on-chip memory, the performance
of the accelerator implemented with a heterogeneous SoC
architecture can be improved. However, using a large amount
of on-chip memory can increase the hardware complexity of
the heterogeneous SoC architecture that needs to be imple-
mented. Therefore, in this loop, we merge on-chip memory to

lower the complexity of the heterogeneous SoC architecture
while performing memory merging to gain almost the same
performance improvement as having an on-chip memory for
each function of the target application. We assume three situ-
ations in this loop: 1) If all functions share the same memory
(m=0). 2) If all functions share two memories (m=1). 3) if
all functions use different memories (m=2).

When design options are determined by the index of the
three loops, an ideal heterogeneous SoC architecture (ide-
alArch) that does not reflect memory collisions and bus col-
lisions is returned by a predefined function. The returned
ideal heterogeneous SoC architecture (idealArch) is used as
an input to predefined functions (swConstraints) to reflect the
constructs related to the software and hardware domains. This
function returns the architecture (swConstArch), wherein
time information (e.g., memory load/store time information)
is updated to the processor core in a heterogeneous SoC archi-
tecture. The heterogeneous SoC architecture, which reflects
software domain time information, is used as an input for
predefined functions to reflect constructions related to hard-
ware domains. This function returns the architecture (hwCon-
stArch), which updates information regarding the hardware
accelerator to be designed in the heterogeneous SoC archi-
tecture (e.g., burst length and computation time). Next, in the
heterogeneous SoC architecture (hwConstArch), which is an
output from the hardware domain function (hwConstraints),
the time information of memory collisions and bus collisions
is not reflected. Therefore, it uses the collision modeling
function (busConstraints), written in Algorithm 2, to update
the heterogeneous SoC architecture (busConstArch) latency
due to memory collision and bus collision. Finally, the perfor-
mance (T) of the heterogeneous SoC architecture, reflecting
all the constraints, is returned by the predefined perf function.
The performance estimation algorithm proposed simulates all
design points for a heterogeneous SoC architecture that can
be obtained through each design option of hardware-software
partitioning, memory merging, and scheduling. Among the
simulation results of all heterogeneous SoC architectures
obtained through the combination of design options, the

VOLUME 10, 2022 25911

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

Algorithm 2 Bus Constraints
Input: hwConstArch
Output: busConstArch
1: for p = 1:NoStep-1 do
2: if hwConstArch.master[s] = DMA && hwConstArch.master[s+1] = DMA then
3: if hwConstArch.master[s].memory == hwConstArch.master[s+1].memory then
4: busConstArch = memoryConflicts (hwConstArch, s, s+1);
5: else
6: busConstArch = samdConflicts (hwConstArch, s, s+1);
7: end if
8: else
9: busConstArch = samdConflicts (hwConstArch, s, s+1);

10: end if
11: end for

optimum design point is determined to have the minimum
execution time and minimum hardware complexity. The exe-
cution time of many design points can be quickly estimated
according to the combination of design options because the
time information of each component of each heterogeneous
SoC is obtained through emulation in the target platform
(e.g., ZedBoard [12]). Based on this information, it is pos-
sible to calculate the execution time of combinations for all
possible heterogeneous SoC architectures.

In summary, the time information of each domain (hard-
ware and software) is reflected in an ideal heterogeneous
SoC architecture, to which three design options are applied.
Additionally, the latency due to bus and memory collisions
is reflected in the heterogeneous SoC architecture. We mea-
sured the performance of a heterogeneous SoC architecture
that reflects all these factors.

C. CASE STUDY: ORTHOGONAL MATCHING
PURSUIT (OMP) ALGORITHM
The design space is explored over all partitioning and
scheduling methods. A detailed explanation is given
with an example application, orthogonal matching pur-
suit (OMP) [34], [35], as follows. Figure 22 shows user
inputs (right) of the OMP algorithm (left) (based on least
squares to iteratively recover sparse data), which is the initial
phase to obtain the necessary data preceding the simulation
run. The OMP algorithm will be revisited in Section V.
To implement a digital system architecture from an algorithm,
parameters are needed at the initial phase: To predict the
overall execution time, basic information and the required
time of each operation in the system should be fed as user
inputs. Namely, the number of operations (the number of
computations), the number of input and output data used in
each operation, the order of input and output data (in/out,
timing), and information on times (time parameters) such as
the operation time consumed inside the hardware accelerator,
the required time for the processor to transfer a data item, and
the required time for the hardware to transfer a data item.

Next, schedule setting is conducted in Algorithm 1. Based
on the number of operations, all the sequences of operations

are explored and generated beforehand and called afterward
to predict each performance. In case of a system with, for
instance, three operations, six distinct sequences exist.

Subsequently, the constraint on hardware accelerators is
set in Algorithm 1. The number of hardware accelerators is a
representative constraint. Among the operations constituting
the given system, any operation(s) may be chosen to be
executed by the hardware accelerator(s). In this phase, other
conditions such as conflicts (or collisions) are not yet set.
The number of processors needed to set DMAs for hard-
ware accelerators is assumed to be infinite and hence all the
operations are potentially allowed get started at once. Also,
no bus or memory conflict is assumed to exist. Based on these
assumptions and the time information from the user inputs,
the execution time of each operation is predicted, which is
not accurate yet. As conditions on processors in conjunction
with bus and memory conflicts are taken into consideration,
the system performance will get more accurate.

In succession, the constraint on processors is set in
Algorithm 1. The number of processors in the system is the
constraint. Processors are used for both the operations (com-
putation) and the hardware accelerators (DMA setting). The
number of operations that can be started concurrently is
determined by the number of processors. On the basis of
the sequence or order of operations, only after the cur-
rent operation by a processor is terminated, the next opera-
tion by the processor is allowed to get started. The limited
number of processors renders the system simulator more
practical.

Then, memory and bus conflicts (or collisions) are con-
sidered in Algorithm 1. In this phase, which operations are
affected and how large the operations are affected by each
conflict can be predicted. Owing to the use of the SAMD bus,
a conflict on the address channel may occur between, e.g.,
processor and DMA, yielding some data transfer delay in the
processor. This delay may cause another (equal-length) delay
of the following operation executed by the same processor.
As a result, the lastly ending operation in the system may
change from one to another and the frame execution time in
block interlacing may become longer.

25912 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 22. User inputs in an example algorithm.

FIGURE 23. Impact of the memory conflict.

Algorithm 2 shows the means to model the memory con-
flict (or collision) and the SAMD bus conflict and to pre-
dict the performance. For every distinct two-step pair, where
the step corresponds to an operation unit, memory and bus
conflicts are examined in the pseudo-code of Algorithm 2.
If the two masters are different, only the SAMD bus conflict
is considered (samdConflicts) (Line 9). As was elaborated on
in Section III.B, for thememory conflict, the conflict between
DMA and DMA is significant whereas for the SAMD bus
conflict, the conflict between DMA and processor is signif-
icant (Line 2). Each master is identified and the conflict is
examined according to the combination or pair of masters.
The smallest unit of data transfer is denoted as hwCon-
straint.master in Algorithm 2. In the inner-most loop, hwCon-
straint.master[i] and hwConstraint.master[i+1] are checked
to see whether they are associated with the same memory
access (memoryConflicts) (Line 3). If so, the access timing
is identified to see whether they overlap with each other. If so
as well, their access types (read or write) are identified. In the
AXI protocol, the read channel and the write channel act
separately and hence a conflict may not occur if both a read
and a write occur simultaneously at the same memory. Lastly,
if two transactions do not access the samememory at the same
time, only SAMD conflicts are considered (samdConflicts)
(Line 6).

Figure 23 shows the effect of the memory conflict between
two DMAs on transactions. In the beginning, two DMAs

FIGURE 24. Impact of the SAMD bus conflict.

are assumed to conduct read operations simultaneously at
the same memory, memory A, as shown in time point 1
of Figure 23. As a result, a memory conflict occurs by
which DMA1 read is delayed since DMA0 is assumed to
have a higher priority. This is shown in time point 2 of
Figure 23. DMA0 and DMA1 access memory A three times
in total and at time point 2, no overlap occurs between
these three accesses to memory A. However, the delay in
DMA0 and DMA1 regarding memory A affects the following
read operations and now a conflict is newly encountered in
memory C, leading to the final situation shown in time point 3
of Figure 23.

Algorithm 3 Orthogonal Matching Pursuit (OMP)
Input: y, r,A
Output: x[i]

1: for i = 1; i = i+ 1 till ||r [i]|| = 0 do
2: g[i] = AT r [i−1];
3: j[i] = argmax

j
|g[i]j |/||Aj||;

4: T [i]
= T [i−1]

∪ j[i];
5: x[i] = argmax

x
||y− AT[i]x||;

6: r [i] = y− Ax[i];
7: end for

VOLUME 10, 2022 25913

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

Figure 24 shows how the transactions are affected by the
SAMD bus conflict between DMA and processor. Assume
that the masters individually access separate slaves during
their reads. The first read of the DMA and the first read of
the processor get started almost at the same time, as shown in
time point 1 of Figure 24, and subsequently the SAMD bus
receives the data for the DMA and the data for the processor
on its two distinct data channels. At this time, the DMAwhich
allows multiple outstanding transactions sends the address of
the second read but since the corresponding slave cannot pro-
cess this read address, the address is held on the bus. Owing
to this address held on the bus, the address of the second read
sent by the processor is not delivered immediately to the bus
but delayed until the first read burst of the DMA is finished,
as shown in time point 2 of Figure 24. In this manner, the
read operation of the processor appears to be in sync with
the data transfer of the DMA. This condition will last up to the
penultimate DMA read burst and subsequently at the instant
of the last DMA read burst, the DMAno longer has an address
to send and hence the address channel of the SAMD bus is
empty and the read operations of the processor are carried on
without delay, as shown in time point 3 of Figure 24.

V. SIMULATION
To validate the proposed performance estimation meth-
ods, an example algorithm, OMP [34], [35], is taken and
modeled. The OMP algorithm is utilized in compressive
sensing and long-term evolution (LTE) to estimate the wire-
less channel. In order to prove that the proposed perfor-
mance estimation algorithm is generally applicable to any
other application, we have included additional experimen-
tal results on CNNs (AlexNet [36]) and wireless commu-
nications (LDPC-coded MIMO-OFDM [37], [38]). In the
case of CNNs, the third layer for AlexNet is assumed as
the example applications. Moreover, in the case of wire-
less communications, the LDPC-coded MIMO-OFDM con-
sists of five functions, including initial synchronization, fast
Fourier transform (FFT), channel estimation, multiple-input
and multiple-output (MIMO) and low-density parity-check
code (LDPC). The system architecture for the OMP, CNN
and LDPC-coded MIMO-OFDM is implemented in the full-
system simulator [7] and Xilinx Zynq 7020 SoC chip on
ZedBoard [12] for comparison and verification.

A. SIMULATION METHODS
The OMP algorithm can estimate the LTE channel with a
5MHz bandwidth and is converted to a system architecture
implemented on dual-core Zynq 7020 [12]. The algorithm is
subdivided into 5 steps, S1-S5, corresponding to 5 operation
units. Block interlacing is utilized to enable all the steps to
concurrently run without data dependency. Hardware acceler-
ators, DMAs, processors, and memories are connected to one
another through an SAMD bus. Each data item is assumed to
have its respective memory unless otherwise stated.

The OMP algorithm is revisited in Algorithm 3, which
is equivalent to the left half of Figure 22. Five operation

TABLE 1. Simulation conditions.

TABLE 2. Block interlacing applied to the OMP algorithm.

unit steps accompany the initialization phase: computing the
correlation (S1), finding the location with the maximum cor-
relation and adding that location to the set with locations
found up to now (S2), estimating the x value by using the
least mean squares method (S3), calculating the new r value
by using the estimated x value (S4), and judging whether to
proceed or not by using the calculated r value (S5). These
steps are iterated, where if the r value in S5 is small enough
to meet the performance required by the system, the x value
estimated so far is printed and the algorithm is terminated.
If the r value is not sufficiently small, the steps are iterated
unceasingly and hence the maximum number of iterations is
typically specified, which is set to 10 in this work.

The simulation conditions are listed in Table 1, where
4 conditions, case 1–case 4, are shown. Case 1 is the optimal
case in case that 3 hardware (HW) accelerators are used.
Case 2–case 4 are the cases which deviate from the optimal
by altering some condition(s). Case 2 uses a shared memory
while case 1 uses separate memories for data items and hence
memory conflicts becomemore frequent in case 2. Case 3 has
a scheduling different from case 1. Namely, the order and
the number of operations executed by processors P1 and P2
are changed, leading to changes in the conflict order and
locations. Case 4 has a different partitioning. Namely, S4
executed by hardware is executed by software (SW), leading
to the change in conflict in S4 from memory conflict to
SAMD bus conflict and hence the potential increase in the
execution time.

The proposed performance estimation methods are applied
as follows. Block interlacing is assumed and different
data items are processed in different steps in parallel.
Table 2 shows the block interlacing applied to OMP. Each
step operates on one of the data items 1-5 at every instant.
By using the proposed methods, the performance of the last
phase (or stage) of the fifth iteration (of the 10 iterations in
total), which is the shaded area in Table 2, is predicted. Thus
the first data item (the data entry numbered 1 in Table 2)
for the fifth iteration is the target. Partitioning between pro-
cessors and hardware accelerators to execute the operations

25914 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 25. Memory conflict: Case 1.

FIGURE 26. Memory conflict: Case 2.

from S1 to S5 is determined and scheduling (or the operation
order) is also determined to predict the overall execution time.
The performance is predicted in view of the effect of memory
merging (or the number of memories) as well.

B. SIMULATION RESULTS AND ANALYSIS
According to the simulation conditions mentioned above,
simulation results from the system simulator are provided
in this subsection. The performance of each of the modeled
system architectures mapped from the example algorithm,
OMP, is predicted and estimated and also compared with
the result from the Zynq-on-ZedBoard implementation. First,
simulation results and analysis of case 1 to case 4 in terms
of memory merging, scheduling, and partitioning will be
provided. Then, implementation through optimization will be
explained. Lastly, simulation results will be briefly compared
with those of an existing work.

Errors between the performance of the system simulator
for the algorithm and the performance of the implementation
in Zynq 7020 on ZedBoard are under 5% for all the simula-
tion conditions, case 1–case 4. These errors come from the
modeling based on the data transfer unit (by the burst) which
exhibits lower accuracy than the cycle-accurate modeling
(by the clock cycle). However, the details that impact the
performance marginally are simplified in our modeling and
instead the speed is enhanced by a factor of 10 to 100 in
the proposed system simulator for expeditious performance
prediction and large design space exploration.

Figure 25 shows the timing diagram of input and output
data of each operation (e.g., S1) for case 1. In other words,
for each operation or step, the upper half expresses the data

FIGURE 27. Scheduling: Case 3.

FIGURE 28. Partitioning: Case 4.

fetched by the operation and the lower half expresses the
outcome of the operation. The computation time is typically
much smaller than the data transfer time and not visible
from the outside but in case of S3, the computation time is
relatively long and explicitly denoted as comp in Figure 25.
In the first place, data r and then A are read by S1. As data A
are read, outputs g is produced. In S2, all of data g are read
and the outcome T is produced. In case of S1, dataA and g can
be processed concurrently since S1 is assumed to be handled
by a hardware accelerator and hence two distinct DMAs take
charge of the input and the output of the operation. Whereas
both a read and a write are conducted concurrently in S1,
either a read or a write is conducted at a time in S2 since S2 is
assumed to be handled by a processor. Therefore, in case of
S2, the output of the operation is produced after all the inputs
are fetched. Figure 25 shows the case when each data item
is allotted a separate memory. The memory conflict between
two distinct hardware accelerators is only modeled and its
effect is predicted in this work. Operation units or steps S1,
S3, and S4 which are implemented in hardware accelerators
are subject tomemory conflict if the identical data item is read
(or written) at the same time. Accordingly, memory conflict
occurs where S1 and S3 read data A at once, which is the
shaded area in Figure 25.

Figure 26 shows the memory conflict for case 2 which is
defined in Table 1. The simulation with case 2 is to identify
the effect ofmemorymerging by using an integrated or shared
memory instead of separate memories in case 1. In case 2, all
the data are assigned one memory. All the other simulation
conditions of case 2 are identical to those of case 1. The
execution time will grow in case 2 because only one master

VOLUME 10, 2022 25915

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 29. Execution time according to the number of hardware
accelerators.

can access memory during a read or a write. The shaded
areas where memory conflicts occur are shown in Figure 26.
Memory conflicts occur between the read (or write) data
transfer intervals of S1 and S3 regardless of what the data
item is. The extent of memory conflict is affected by the
amount of data read by S3, which is predicted to be 730 cycles
from the system simulator and 620 cycles from the board
implementation.

The effect of scheduling is illustrated in case 3 in compar-
ison with case 1. As was shown in Figure 25 for case 1, S1
to S3 can operate concurrently, followed by S4 and S5. The
maximum number of concurrent operations is 3. Figure 27
shows the scheduling of case 3 which was defined in Table 1.
By means of the different scheduling in case 3 than in case 1,
themaximumnumber of concurrent operations is 2 for case 3.
For S2, more memory conflicts occur in case 1, leading
to the execution time of 3000 cycles whereas less conflicts
occur in case 3, exhibiting the execution time of 2900 cycles.
However, the overall execution time is 1000 cycles longer for
case 3 owing to the smaller number of concurrent operations.

Lastly, the effect of partitioning is illustrated in case 4 in
comparison to case 1. Figure 28 shows the partitioning of
case 4 which was defined in Table 1. The operation or step
S4 in case 4 is implemented in software by processor P1
instead of hardware in case 1. This change in partitioning
significantly increased the execution time of S4, yielding an
increase in the overall execution time as well, which stems
from the fact that the processor is slower in processing oper-
ations than the hardware accelerator.

Figure 29 shows the overall execution time as a function of
the number of hardware accelerators according to the hard-
ware and software partitioning. The optimum bar (minimum
time) is obtained by choosing the minimum execution time
across all combinations of scheduling and memory merging
for each number of hardware accelerators. The least opti-
mum bar (maximum time) is obtained by choosing the maxi-
mum execution time over all combinations of scheduling and

FIGURE 30. Illustration of the optimum design parameter combinations
for (a) two processor cores, (b) two processor cores and one hardware
accelerator, (c) two processor cores and two hardware accelerators,
(d) two processor cores and three hardware accelerators, (e) one
processor core and four hardware accelerators, (f) five hardware
accelerators, and (g) comparison of memory area between separated
memories and merged memory.

memory merging for each number of hardware accelerators.
Themean bar is obtained by calculating the average execution
time for all combinations of scheduling and memory merging
for each number of hardware accelerators. Generally, as more
hardware accelerators are used, the execution time tends to

25916 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

drop since more operations can be carried on concurrently.
The optimum execution time is improved maximally, rela-
tive to the mean execution time, when only one hardware
accelerator is used. This means a specific operation will
occupy a large percentage of the overall execution time when
processors deal with operations and also the gain will be
large if the operation is managed by the hardware accelerator.
In the architecture optimization process below, two hard-
ware accelerators are assumed to be used. Figure 30 shows
the heterogeneous SoC architecture of each optimum bar in
Figure 29, their timing diagram and memory complexity.
As mentioned earlier, the execution time tends to decrease
when more hardware accelerators and memories are used
in the heterogeneous SoC architecture, because more tasks
can be performed simultaneously without memory collision.
Additionally, since it is more efficient for the hardware accel-
erator to access the memory in burst units than for CPUs to
read and write to the memory, the performance of the hetero-
geneous SoC architecture improves as the number of hard-
ware accelerators increases. For example, in Figure 30 (a),
since the steps assigned to each CPU are executed sequen-
tially, scheduling cannot be freely performed through block-
interlacing manner [33]. However, as Figure 30 (f) assumes
that all steps are implemented with a hardware accelerator,
block interlacing can be applied to execute all steps simul-
taneously and without dependency. Figure 30 shows that
allocating memory for each variable further improves perfor-
mance. Furthermore, as shown in Figure 30 (c), if bus masters
do not access memory simultaneously by hardware-software
partitioning and scheduling, hardware complexity can be
reduced, and high-performance gain can be obtained through
merged memory. This shows that using separate memory for
a heterogeneous SoC architecture is not always optimal for
execution time. Figure 30 (g) illustrates the hardware area
measured by the memory model based on the commercial
SRAM memory compiler provided with the TSMC 28-nm
standard cell library. The simulation result indicates that the
hardware area of the merged memory manner (Figure 30 (c))
is approximately 67.6% smaller than that of the separated
memory manner (Figure 30 (a), (b), (d), (e), and (f)). The
separate memory manner allocates additional input/output
(I/O) ports than the merged memory manner, which is the
primary reason the memory area is different between the
two methods using the same capacity of memory. In addi-
tion, multiple separatedmemories make the AXI interconnect
more complex. It leads to making the overall heterogeneous
SoC architecture more complex. As a result, the proposed
simulator can achieve a heterogeneous SoC architecture
that can achieve high-performance gains with low memory
complexity.

For the OMP algorithm, various system architecture can-
didates are searched for in terms of partitioning, schedul-
ing, and memory merging, where two hardware accelerators
are assumed to be used. The optimum architecture has the
parameters listed in Table 3. To execute S1 and S3, two

TABLE 3. Optimized design option.

FIGURE 31. Comparison of computational complexity between the
CAG-based optimization and the proposed optimization: (a) throughput
optimization and (b) memory area optimization.

hardware accelerators are employed and to run S2, S4, and
S5, processors are used. According to the chosen schedul-
ing, processor P1 runs one hardware accelerator for S1 and
then runs the S5 operation, followed by the S4 operation.
Processor P2 first runs the other hardware accelerator for S3
and runs the S2 operation. The simulated execution time of
the optimized architecture is 10295 cycles, obtained from
the system simulator, and the actual execution time of the
optimized architecture is 10788 cycles, obtained from the
board implementation, resulting in a 4.8% error.

Some comparison is made with an existing work [14]
where the performance difference according to scheduling
is not considered but a predetermined scheduling is fixed
during the simulation. However, if the timing of an operation
to access data coincides with the timing of another operation
to access the same data, a conflict occurs and the performance
is impacted accordingly. Thus the effect of scheduling for
the OMP algorithm is considered for comparison with the
method in [14]. Assuming two hardware accelerators are
used, the optimum architecture for the algorithm is shown in
Table 3, which has an execution time of 10295 cycles from
simulation. If the optimum scheduling is not explored but the
operations are executed from S1 to S5 in order, then the exe-
cution time is 11604 cycles, even if partitioning and memory
merging are the same for the two architectures. Scheduling
is not considered in [14] while the optimum execution order
can be explored in this work which models the data transfers
with both the processor and the DMA. The execution time
difference between the architecture with optimum scheduling
and the architecture without scheduling is about 1309 cycles,
leading to a 12.7% discrepancy if conflicts are not taken into
account.

VOLUME 10, 2022 25917

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

FIGURE 32. Performance estimation results of heterogeneous SoC
architecture based on static analysis-based [28], statistics-based [29] and
this work (proposed).

C. COMPARISON OF THE OPTIMIZATION
Figure 31 (a) compares the computational complexity when
the optimization goal is to maximize the throughput, or,
equivalently, to minimize the execution time. The simulation
results show that the design options optimized by the pro-
posed simulator can improve the throughput performance by
up to 32%, compared to that of the CAG-based optimization.
This can be explained by the fact that the proposed opti-
mization can minimize the memory collision by optimizing
both the hardware-software partitioning and the scheduling,
as opposed to the CAG-based optimization. In addition, the
proposed optimization can also reduces the latency induced
by bus conflicts by optimizing the scheduling. However, it is
shown in the figure that the throughput improvement comes
at the expense of memory area, more specifically, by 61%,
compared to the CAG-based optimization. However, this does
not imply that the proposed optimization always results in
more memory area.

Figure 31 (b) shows the computational complexity when
the optimization goal is to minimize the memory area. For
fair comparison, the maximum memory size has been set
to 24.4 Kbytes. The simulation results show that, com-
paredwith the previous throughput optimization, the through-
put improvement of the proposed optimization has been
reduced to 19%. Instead, the proposed optimization can pro-
vide the average memory area saving of 20%, as shown
in Figure 31 (b). In other words, the proposed optimization
outperforms the CAG-based optimization in terms of both
throughput and memory area, as opposed to the previous

FIGURE 33. Comparison of simulation time between the proposed
performance estimation (this work) and conventional simulation-based
approach [7].

throughput optimization. The reason is that the proposed
optimization helps determine the scheduling that minimizes
the collision-induced latency in the heterogeneous SoC
architecture. Therefore, it can be concluded that the pro-
posed optimization outperforms the CAG-based optimiza-
tion, regardless of the optimization goal.

Figure 32 shows that the proposed performance estimation
algorithm can predict the communication performance of het-
erogeneous SoC architectures for the OMP algorithm more
accurately compared with the static analysis-based estima-
tion [28] and statistics-based estimation [29]. The proposed
estimation algorithm considers both the bus protocol over-
head (bus conflict) and memory latency (memory collision)
using the evaluation board (e.g., ZedBoard [12]) for eval-
uating the time information of the hardware and software.
The experimental results show that the proposed algorithm
approaches the full-system simulator [7] more closely than
the conventional algorithms. For example, the proposed algo-
rithm reduces the estimation error to 6%, whereas the conven-
tional algorithms in [28] and [29] experience the estimation
errors of 18% and 16%, respectively.

D. COMPARISON OF SIMULATION TIME
Figure 33 compares the proposed performance estimation
and the conventional simulation-based approach in terms
of simulation time. As shown in figure, compared with the
conventional simulation-based [7] approach, the proposed
performance-estimation algorithm provides a speedup of two
orders of magnitude. The simulation-based approach is accu-
rate enough to capture the dynamic nature of the commu-
nication bandwidth, but it often takes a prohibitively long
time to simulate. According to our experiments, the conven-
tional simulation-based approach takes a few hours to eval-
uate a single heterogeneous SoC architecture with hundreds
of different combinations of hardware-software partitioning,
memory merging, and scheduling. Using the conventional
simulation-based approach, we run the full-system simulator
proposed in [7], once for each design point, taking approxi-
mately 12.5 seconds per design point. In contrast, tominimize
the simulation time and maintain estimation accuracy, the
proposed performance estimation algorithm constrains the

25918 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

Algorithm 4 The Third Convolutional Layer of AlexNet
Input: NoBatch, IAs, Wts and OAs
Output: poolout
1: for b=1:NoBatch do
2: convout = convlayer (IAs, Wts, OAs);
3: biasout = bias (convout);
4: reluout = relu (biasout);
5: lrnout = LocalRespNorm(reluout);
6: poolout = pool(lrnout);
7: end for

Algorithm 5 LDPC-Coded MIMO-OFDM
Input: Symbols and NoSymbols
Output: ldpcout
1: for s=1:NoSymbols do
2: syncout = synchronization (Symbols);
3: fftout = fft (syncout, Symbols);
4: chest = channelestimation (fftout);
5: mimoout = mimo (chest, fftout);
6: ldpcout = ldpc (mimoout);
7: end for

use of an evaluation board [12] to evaluate the time infor-
mation of the heterogeneous SoC architecture. Since a few
tens of time information is sufficient to express most of the
heterogeneous SoC architectures of interest, the extra simu-
lation time required to obtain the time information of each
hardware component becomes negligible, particularly in the
case of broad design space (i.e., a space of hundreds of design
points). In the case of thousands of design points, the per-
formance estimation algorithm accelerates the conventional
simulation-based approach by two orders of magnitude.
Figure 33 shows that the extra time required for prior simula-
tions becomes negligible as the design space increases. Thus,
it can be concluded that the proposed performance-estimation
algorithm can estimate orders of magnitude faster than the
conventional time-consuming simulation-based approach.

E. EXTENSION TO OTHER APPLICATIONS
In this subsection, the proposed performance estimation algo-
rithm is extended to CNNs (the third convolutional layer
of AlexNet [36]) wireless communications (LDPC-coded
MIMO-OFDM [37], [38]) applications. As shown in
Algorithm 4, the third convolutional layer consists of five
functions, including convolutional accelerator, bias, ReLU,
LRN and Pooling. As shown inAlgorithm 5, the LDPC-coded
MIMO-OFDM consists of five functions, including initial
synchronization, fast Fourier transform (FFT), channel esti-
mation, multiple-input andmultiple-output (MIMO) and low-
density parity-check code (LDPC).

Figure 34 (a) shows that the performance estimation error
of the third convolutional layer of AlexNet [36] is less
than 5.9% compared to the performance estimation result
of AccTLMSim [7]. Moreover, it achieves a significant

FIGURE 34. Execution time according to the number of hardware
accelerators: (a) third convolutional layer of AlexNet [36] and
(b) LDPC-coded MIMO-OFDM [37], [38].

performance gain i.e., 48% for the third convolutional layer
of AlexNet. This is also the case when the proposed per-
formance estimation algorithm is applied to a LDPC-coded
MIMO-OFDM. Figure 34 (b) shows that the estimation
error for a LDPC-coded MIMO-OFDM is smaller than 5.6%
compared to the performance estimation result of AccTLM-
Sim [7], and the performance gain is 56%. The experimental
results show that although the optimum hardware-software
partitioning, scheduling, and memory merging tend to vary
with the application, the proposed performance estimation
algorithm is generally applicable to any heterogeneous SoC
with a reasonably small estimation error and a noticeable
performance gain.

VI. CONCLUSION
The system speed can be improved by using hardware accel-
erators. However, if the data transfer pattern is not optimized,
the heterogeneous SoC may give rise to increased conflicts
or collisions, delaying the data transfer in the bus and mem-
ory and degrading the system performance more than the
ideally predicted one. In this work, conflicts or collisions
are modeled to predict the performance and also a system
simulator is developed to cover a large design space in terms
of partitioning, scheduling, and memory merging, by which
the optimum architecture to minimize the execution time can
be found. In a setting where multiple masters and slaves are
connected to a bus, the SAMD bus conflict and the memory
conflict are modeled in consideration of multiple outstanding
transactions and operation units.

By using the proposed performance estimation methods,
an example algorithm, OMP, for LTE 5MHz channel esti-
mation is implemented for four cases. The performance
from simulation and the performance from actual implemen-
tation are compared to validate the reliability of the sys-
tem simulator. For all the simulation conditions, the error
between the predicted execution time and the actual exe-
cution time is under 5%. Assuming the number of hard-
ware accelerators is 2, the optimum architecture for the
OMP algorithm is extracted. In addition, compared with
the conventional simulation-based approaches, the proposed
estimation algorithm provides a speedup of one to two orders

VOLUME 10, 2022 25919

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

of magnitudes. In this work, by considering scheduling in the
algorithmwhere block interlacing or pipelining is applied, the
optimum system architecture can be found with an improved
performance. For example, the optimized heterogeneous SoC
architecture for the OMP algorithm improves performance
by up to 32% compared with the conventional CAG-based
approaches. The proposed simulator is verified that the pro-
posed performance estimation algorithm is generally appli-
cable to estimate the performance of any heterogeneous SoC
architecture. For example, the estimation error is measured to
be no more than 5.9% for the convolutional layers of CNNs
and no more than 5.6% for the LDPC-coded MIMO-OFDM.
In addition, the optimized heterogeneous SoC architecture
improves performance by up to 48% for the third convo-
lutional layer of AlexNet and 56% for the LDPC-coded
MIMO-OFDM.

Lastly, it is worthwhile to mention that the estimation algo-
rithm in the proposed simulator is generally applicable to any
heterogeneous SoC architecture. In particular, the extension
of the performance estimation algorithm into the emerging
compute-in-memory (CiM) hardware accelerators for general
matrix to matrix multiplication (GEMM) are considered to
be promising for future work. Note that such a CiM-based
hardware accelerators for GEMM are often equipped with
DMACs [39-43]. In addition, as a standalone IP, it is
connected to an off-chip memory through an on-chip bus
[44, 45]. Moreover, the memory allocation (e.g., bank allo-
cation of DRAM) tends to affect the communication per-
formance of the emerging CiM-based hardware accelerators,
as depicted in [46, 47]. Thus, we expect the performance
estimation algorithm proposed in this paper to be gener-
ally applicable to the CiM-based hardware accelerators for
GEMM.

REFERENCES

[1] L. Cohen, A. Nadkarni, P. Rutten, K. Stolarski, and J. Vela, ‘‘IDC’s world
wide computing platforms taxonomy,’’ Int. Data Corp., Needham, MA,
USA, Tech. Rep. US42024017, 2017.

[2] K. Sano, Y. Hatsuda, and S. Yamamoto, ‘‘Multi-FPGA accelerator for
scalable stencil computation with constant memory bandwidth,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 22, no. 1, pp. 58–68, Jan. 2011.

[3] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, ‘‘A sparse coding neural
network ASIC with on-chip learning for feature extraction and encoding,’’
IEEE J. Solid-State Circuits, vol. 50, no. 4, pp. 1070–1079, Apr. 2015.

[4] M. A. Suchard, Q. Wang, C. Chan, J. Frelinger, A. Cron, and M. West,
‘‘Understanding GPU programming for statistical computation: Studies in
massively parallel massive mixtures,’’ J. Comput. Graph. Statist., vol. 19,
no. 2, pp. 419–438, Jan. 2010.

[5] S. Y. Shao, ‘‘Design and modeling of specialized architectures,’’
Ph.D. dissertation, Harvard Univ., Cambridge, MA, USA, 2016.

[6] Zynq-7000 All Programmable SoC Technical Reference Manual V1.12.2,
Xilinx, San Jose, CA, USA, Jul. 2018.

[7] S. Kim, J. Wang, Y. Seo, S. Lee, Y. Park, S. Park, and C. S. Park,
‘‘Transaction-level model simulator for communication-limited accelera-
tors,’’ 2020, arXiv:2007.14897.

[8] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, ‘‘Co-
designing accelerators and SoC interfaces using gem5-Aladdin,’’ in Proc.
Int. Symp. Microarchitecture, Oct. 2016, pp. 1–12.

[9] K. Guo, L. Sui, J. Qiu, J. Yu, J.Wang, S. Yao, S. Han, Y.Wang, andH.Yang,
‘‘Angel-eye: A complete design flow for mapping CNN onto embedded
FPGA,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37,
no. 1, pp. 35–47, Jan. 2018.

[10] J. Wang, S. Park, and C. S. Park, ‘‘Optimization of communica-
tion schemes for DMA-controlled accelerators,’’ IEEE Access, vol. 9,
pp. 139228–139247, 2021.

[11] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, ‘‘Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 11, pp. 2072–2085, Nov. 2019.

[12] Digilent. ZedBoard Zynq-7000 ARM/FPGA SoC Development Board.
Accessed: Apr. 10, 2019. [Online]. Available: https://store.digilentinc.
com/zedboardzynq-7000-arm-fpga-soc-development-board/

[13] Altera SoC FPGAs. Accessed: Nov. 8, 2017. [Online]. Available:
http://www.altera.com/devices/processor/soc-fpga/overview/procsoc-
fpga.html

[14] L. Kanishka, A. Raghunathan, and S. Dey, ‘‘System-level performance
analysis for designing on-chip communication architectures,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 20, no. 6, pp. 768–783,
Jun. 2001.

[15] Y. Cho, G. Lee, S. Yoo, K. Choi, and N.-E. Zergainoh, ‘‘Scheduling and
timing analysis of HW/SW on-chip communication in MP SoC design,’’
in Proc. IEEE Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2003,
pp. 132–137.

[16] S. Kim, C. Im, and S. Ha, ‘‘Efficient exploration of on-chip bus archi-
tectures and memory allocation,’’ in Proc. 2nd IEEE/ACM/IFIP Int.
Conf. Hardw./Softw. Codesign Syst. Synth. (CODES+ISSS), Sep. 2004,
pp. 248–253.

[17] A. D. Pimentel, C. Erbas, and S. Polstra, ‘‘A systematic approach to
exploring embedded system architectures at multiple abstraction levels,’’
IEEE Trans. Comput., vol. 55, no. 2, pp. 99–112, Feb. 2006.

[18] C. Erbas, A. D. Pimentel, M. Thompson, and S. Polstra, ‘‘A framework
for system-level modeling and simulation of embedded systems architec-
tures,’’ EURASIP J. Embedded Syst., vol. 2007, pp. 1–11, Dec. 2007.

[19] AMBA AXI and ACE Protocol Specification, AXI3, AXI4, and AXI4-Lite,
ACE and ACE-Lite, ARM Infocenter, ARM Ltd., Cambridge, U.K., 2011.

[20] S. Kim, S. Park, and C. S. Park, ‘‘System-level communication perfor-
mance estimation for DMA-controlled accelerators,’’ IEEE Access, vol. 9,
pp. 141389–141402, 2021.

[21] S. Sombatsiri, K. Kobashi, K. Sakanushi, Y. Takeuchi, and M. Imai,
‘‘An AMBA hierarchical shared bus architecture design space exploration
method considering pipeline, burst and split transaction,’’ in Proc. 10th
Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol.,
May 2013, pp. 1–6.

[22] C. Lin, X. Du, X. Jiang, and D. Wang, ‘‘An efficient and effective per-
formance estimation method for DSE,’’ in Proc. Int. Symp. VLSI Design,
Automat. Test (VLSI-DAT), Apr. 2016, pp. 1–4.

[23] M. Makni, S. Niar, M. Baklouti, G. Zhong, T. Mitra, and M. Abid,
‘‘A rapid data communication exploration tool for hybrid CPU-FPGA
architectures,’’ in Proc. 25th Euromicro Int. Conf. Parallel, Distrib. Netw.-
Based Process. (PDP), 2017, pp. 85–92.

[24] H. Meng, H. Meng, P. Ding, M. Wang, and D. Wang, ‘‘A design space
explorationmethod for on-chipmemory system based on task scheduling,’’
in Proc. IEEE 9th Int. Conf. Softw. Eng. Service Sci. (ICSESS), Nov. 2018,
pp. 912–915.

[25] M. Xie, D. Tong, K. Huang, and X. Cheng, ‘‘Improving system throughput
and fairness simultaneously in shared memory CMP systems via dynamic
bank partitioning,’’ in Proc. Int. Symp. High Perform. Comput. Archit.,
Feb. 2014, pp. 344–355.

[26] Y. Liu, J. Lu, D. Tong, andX. Cheng, ‘‘Locality-aware bank partitioning for
shared DRAMMPSoCs,’’ in Proc. 22nd Asia South Pacific Design Autom.
Conf. (ASP-DAC), Jan. 2017, pp. 16–19.

[27] S. Murali, L. Benini, and G. De Micheli, ‘‘An application-specific design
methodology for on-chip crossbar generation,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 7, pp. 1283–1296,
Jun. 2007.

[28] S. Kim, C. Im, and S. Ha, ‘‘Schedule-aware performance estimation of
communication architecture for efficient design space exploration,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no. 5, pp. 19–24,
May 2005.

[29] R. V.W. Putra, M. A. Hanif, andM. Shafique, ‘‘DRMap: A generic DRAM
data mapping policy for energy-efficient processing of convolutional neu-
ral networks,’’ 2020, arXiv:2004.10341.

[30] S. Pasricha, N. Dutt, and M. Ben-Romdhane, ‘‘Fast exploration
of bus-based on-chip communication architectures,’’ in Proc. 2nd
IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.
(CODES+ISSS), Sep. 2004, pp. 242–247.

25920 VOLUME 10, 2022

J. Wang et al.: Modeling and Simulation of System Bus and Memory Collisions in Heterogeneous SoCs

[31] G. D. Micheli and L. Benini, Networks on Chips: Technology and Tools.
San Francisco, CA, USA: Morgan Kaufmann, Aug. 2006, ch. 8.

[32] S. Pasricha and N. Dutt, On-Chip Communication Architectures.
Burlington, VT, USA: Morgan Kaufmann, 2008, chs. 2–9.

[33] A. Darabiha, A. C. Carusone, and F. R. Kschischang, ‘‘Block-interlaced
LDPC decoders with reduced interconnect complexity,’’ IEEE Trans. Cir-
cuits Syst. II, Exp. Briefs, vol. 55, no. 1, pp. 74–78, Jan. 2008.

[34] P. Maechler, P. Greisen, N. Felber, and A. Burg, ‘‘Matching pursuit:
Evaluation and implementatio for LTE channel estimation,’’ in Proc. IEEE
Int. Symp. Circuits Syst., May 2010, pp. 589–592.

[35] Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applica-
tions. New York, NY, USA: Cambridge Univ. Press, 2012.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Conf. Neural Inf.
Process. Syst. (NIPS), 2012, pp. 1097–1105.

[37] P.-Y. Tsai, P.-C. Lo, F.-J. Shih, W.-J. Jau, M.-Y. Huang, and Z.-Y. Huang,
‘‘A 4× 4 MIMO-OFDM baseband receiver with 160 MHz bandwidth for
indoor gigabit wireless communications,’’ IEEE Trans. Circuits Syst. I,
Reg. Papers, vol. 62, no. 12, pp. 2929–2939, Dec. 2015.

[38] T. Suzuki, H. Yamada, T. Yamagishi, D. Takeda, K. Horisaki, T. V. Aa,
T. Fujisawa, L. Perre, and Y. Unekawa, ‘‘High-throughput, low-power
software-defined radio using reconfigurable processors,’’ IEEE Micro,
vol. 31, no. 6, pp. 19–28, Dec. 2011.

[39] H. Jia, H. Valavi, Y. Tang, J. Zhang, and N. Verma, ‘‘A pro-
grammable embedded microprocessor for bit-scalable in-memory com-
puting,’’ IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2609–2621,
Sep. 2020.

[40] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, ‘‘XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,’’ IEEE
J. Solid-State Circuits, vol. 55, no. 6, pp. 1733–1743, Jun. 2020.

[41] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu,
P.-Y. Chen, Q. Li, S. Yu, and M.-F. Chang, ‘‘A 65 nm 4 Kb algorithm-
dependent computing-in-memory SRAM unit-macro with 2.3 ns and
55.8 TOPS/W fully parallel product-sum operation for binary DNN edge
processor,’’ in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2018, pp. 496–498.

[42] M. Zhu, Y. Zhuo, C. Wang, W. Chen, and Y. Xie, ‘‘Performance evalu-
ation and optimization of HBM-enabled GPU for data-intensive applica-
tions,’’ in Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2017,
pp. 1245–1248.

[43] Z. Wang, H. Huang, J. Zhang, and G. Alonso, ‘‘Shuhai: Benchmark-
ing high bandwidth memory on FPGAS,’’ in Proc. IEEE 28th Annu.
Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), May 2020,
pp. 111–119.

[44] G. Singh, D. Diamantopoulos, C. Hagleitner, J. Gomez-Luna, S. Stuijk,
O. Mutlu, and H. Corporaal, ‘‘NERO: A near high-bandwidth memory
stencil accelerator for weather prediction modeling,’’ in Proc. Field-
Program. Log. Appl. (FPL), Sep. 2020, pp. 9–17.

[45] A. Kurth,W. Rönninger, T. Benz,M. Cavalcante, F. Schuiki, F. Zaruba, and
L. Benini, ‘‘An open-source platform for high-performance non-coherent
on-chip communication,’’ 2020, arXiv:2009.05334.

[46] P. Gu, X. Xie, S. Li, D. Niu, H. Zheng, K. T. Malladi, and Y. Xie, ‘‘DLUX:
A LUT-based near-bank accelerator for data center deep learning training
workloads,’’ IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 8, pp. 1586–1599, Aug. 2021.

[47] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, ‘‘Neurostream: Scalable and
energy efficient deep learning with smart memory cubes,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 2, pp. 420–434, Feb. 2018.

JOOHO WANG received the B.S. degree in elec-
tronics engineering from Korea Polytechnic Uni-
versity (KPU), Siheung, South Korea, in 2014.
He is currently pursuing the M.S./Ph.D. degree in
electronics engineering with Konkuk University,
Seoul, South Korea. His research interests include
hardware/software co-design of programmable
accelerators and simulation for SoC architecture.

YUNGYU GIM received the B.S. and M.S.
degrees in electronics engineering from Konkuk
University, Seoul, South Korea, in 2015 and 2018,
respectively. He is currently conducting research
on hardware security architectures for the Android
mobile OS. His research interest includes tamper-
resistant integrated secure element (iSE).

SUNGKYUNG PARK (Senior Member, IEEE)
received the Ph.D. degree in electronics engineer-
ing from Seoul National University, South Korea,
in 2002. From 2002 to 2004, he was with Sam-
sung Electronics, as a Senior Engineer, where he
worked on the development of system-level simu-
lators for cellular standards. From 2004 to 2006,
he was with the Electronics and Telecommuni-
cations Research Institute (ETRI), as a Senior
Member of Research Staff, where he worked on

fiber-optic front-end IC design. From 2006 to 2009, he was with Erics-
son Inc., as a Senior Staff Hardware Designer, where he worked on the
design and modeling of multi-standard RF transceivers and clocking circuits.
In 2009, he joined as a Faculty Member with the Department of Electronics
Engineering, Pusan National University, South Korea, where he is currently
a Professor. His research interests include design and modeling of SoC,
hardware accelerators, and virtual platforms for neural networks and 5G.

CHESTER SUNGCHUNG PARK (Senior Mem-
ber, IEEE) received the Ph.D. degree in electrical
engineering from the Korea Advanced Insti-
tute of Science and Technology (KAIST), Dae-
jeon, in 2006. From 2006 to 2007, he was
with Samsung Electronics, Giheung, South Korea.
From 2007 to 2013, he was with Ericsson
Research, Plano, TX, USA, as a Senior Engineer.
Since 2013, he has been with the Department
of Electronics Engineering, Konkuk University,

South Korea, as an Associate Professor, where he is working on the design
and modeling of SoC, hardware accelerators, and virtual platforms for neural
networks and 5G. His research interests include SoC architecture design for
artificial intelligence, processing in memory, and wireless communication.

VOLUME 10, 2022 25921

