
Received February 10, 2022, accepted February 21, 2022, date of publication February 24, 2022, date of current version March 2, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3154009

An Overhead-Reduced Key Coding Technique
for High-Speed Serial Interface
JAEPIL BAK 1, TAEK-JOON AN1, YOUNGWOO KIM 2, (Member, IEEE),
AND JIN-KU KANG 1, (Senior Member, IEEE)
1Department of Electronic Engineering, Inha University, Incheon 22212, South Korea
2Department of System Semiconductor Engineering, Sangmyung University, Cheonan 31066, South Korea

Corresponding author: Jin-Ku Kang (jkang@inha.ac.kr)

This work was supported by Inha University.

ABSTRACT This paper describes a packet-based overhead-reduced (OR) key coding technique for a high-
speed serial interface. The 8B10B code is a de facto standard coding technique in the application but its
bit-overhead is 25%. The proposed key coding technique is to reduce the coding overhead and still provides
enough bit transition to facilitate clock and data recovery in the receiver. After a key pattern is generated
from a certain data stream, input data are encoded and framed as packets along with the generated key
for transmission. The packets are transmitted and then decoded as original data in the receiver. Using the
proposed coding scheme, 4-, 6-, and 8-bit key coding systems are designed and compared. When a 6-bit key
coding encoder/decoder is tested, a packet is composed of a 6-bit OR key header followed by 30 encoded
sub-packets, in which each sub-packet has a 6-bit data. In the 6-bit case, the bit overhead is only 3.33% and
the maximum continuous run length is 10 bits. To control the running disparity for the AC coupling interface,
a logic for selecting the optimal key is implemented to keep the running disparity as low as possible. The
running disparity of the encoded data with 6-bit key code is controlled within +/−12.

INDEX TERMS High-speed serial interface, clock and data recovery (CDR), 8B10B code, coding overhead,
run-length, running disparity, overhead-reduced key coding.

I. INTRODUCTION
As technology advances, higher data rate transmission is
required in optical communications, digital video, memory,
data storage systems, and other high-speed serial interfaces.
Currently 8B10B data coding is most widely accepted as
a de facto standard for data transmission and receiving in
most serial communication systems [1], [2]. The 8B10B code
has a maximum run length of 5 bits to guarantee enough
transitions to facilitate clock and data recovery. Its running
disparity is controlled within +/−2; thus, it is suitable as an
AC coupling interface. However, the transmission overhead
of the 8B10B code is 25%. This means more data bits are
sent than in the original. Recently, 64B66B code is being
used in optical communication systems [3] and it has the bit-
overhead of 3.12%, but the maximum run length is 66 bits,
which requires a tighter clock and data recovery (CDR)
circuit design. Furthermore, the running disparity of 64B66B
coding could be very large. A large DC blocking capacitance

The associate editor coordinating the review of this manuscript and

approving it for publication was Wen-Sheng Zhao .

or a baseline wandering correction circuit may be needed
in AC-coupled channels [4, 5]. Work was done on a
24B27B code with DC balancing for display interface [6].
This scheme reduces the overhead to 12.5% with running
length to 8 bits and adds a block to control the running
disparity. Recently, as PAM-4 signaling has gotten attention
in high-speed interface applications, DC-balancing PAM-4
coding techniques have been published [7], [8]. However,
their overhead ratio stayed the same as that of 8B10B, which
is 25%.

This paper describes a packet-based key coding technique
to reduce the bit transmission overhead drastically down
to 3.33%. Running disparity control is also a factor to
be considered in the design, especially in an AC coupling
interface. With the proposed coding technique, the running
disparity is increased compared to 8B10B coding. However,
DC level wandering from the increased running disparity
can be attenuated by the use of a larger DC blocking
capacitor. In this paper, the principle of the proposed coding
is described, first. Then the design and measurement results
are presented, and conclusions follow.

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 21187

https://orcid.org/0000-0003-2831-0994
https://orcid.org/0000-0002-1011-2319
https://orcid.org/0000-0002-3752-3740
https://orcid.org/0000-0002-2507-5776

J. Bak et al.: Overhead-Reduced Key Coding Technique for High-Speed Serial Interface

II. PRINCIPLE OF OPERATION AND ARCHITECTURE
The proposed overhead-reduced (OR) key coding technique
is designed to minimize the bit transmission overhead in a
high-speed serial interface. For the proposed technique, input
data blocks of multiple N -bit sized sub-blocks are processed
for each dedicated N -bit OR key coding. A single encoded
sub-packet is generated by XORing the OR key pattern with
one sub-block of input data. A single packet consists of the
OR key in the header followed by encoded multiple N -bit
sub-packets. With the proposed OR key coding, there is at
least a single bit data transition (either 0 to 1 or 1 to 0)
in every encoded sub-packet, by which a stable clock and
data recovery function can be performed on the receiver side.
The block diagrams of the encoder and decoder of the N -bit
OR key coding technique are illustrated in Fig. 1(a) and (c).
A serial-to-parallel converter (S-P) at the front-end is placed
assuming that input data is in serial. If input data are available
in N -bit parallel, S-P block is unnecessary. A single packet
format is shown in Fig. 1(b).

The proposed encoding technique is done in three steps
and the decoding procedure in the receiver is done in a way
that reverses the encoding process. The first step in encoding
is finding an OR key from a given number of data bits. The
number of input data bits to look for in the OR key generation
depends on the number of bits of the OR key. If an N -bit-
sized OR key is to be generated, (2N−1 − 2) sub-blocks
should be looked up and a single sub-block consists of N -
bit data. Details are given in Section II-A. Thus, the total
input data bits to be looked up for generating a dedicated
8-bit OR key for the proposed coding scheme are 126× 8 =
1008 bits, which means 126 sub-blocks should be checked
and each sub-block composed of 8 bits. Once the OR key
is found, the encoded sub-packets are produced by XORing
each N -bit input data sub-block with the generated OR key.
Then, a single packet is framed by the OR key placed in the
header and followed by encoded (2N−1 − 2) sub-packets,
as shown in Fig. 1(b). In case an 8-bit OR key scheme is
applied, an encoded single packet for data transmission is
composed of an 8-bit OR key in the header followed by
126 encoded sub-packets, where each encoded sub-packet is
of 8-bit size data. Then, the encoded packets are transmitted
in series through a channel. The serialization should be done
before transmission.

On the receiver side, once transmitted encoded packets are
arrived at the receiver, the data decoding is being processed.
In the decoding procedure, firstly the transmitted OR key
is extracted from the header in a packet. Then, the received
packets are de-framed with the extracted OR key and the sub-
packets. The recovered sub-packets are stored in FIFO for
further processing. Then, the final decoded data are obtained
by XORing the recovered OR key and encoded sub-packets,
as shown in Fig. 1(c).

A. PRINCIPLE OF OR KEY GERNERATION AND PACKET
FRAMING
The proposed OR key scheme is derived from the logical
XOR operation between two N -bit sized data X and Y , i.e.,

Z = X⊕Y . If Z are all zeroes (000. . . 0) or all ones (111. . . 1),
that suggests the case of either X = Y (when Z=000. . . 0) or
X = Y (when Z=111. . . 1), respectively. From this relation,
in given (2N−1 − 2) sub-blocks of input data X (each sub-
block is N -bit data), there is at least one N -bit pattern of Y
that makes X 6= Y or X 6= Y . One of these possible N -bit
Y ’s could be an OR key. Basically, the procedure is to find
N -bit patterns that are not the same as any of the N -bit sub-
block patterns and their complementary pairs in (2N−1 − 2)
sub-blocks. Once an OR key is found, then input sub-blocks
(X) are encoded as sub-packets by XORing the OR key with
each sub-block data. Because OR key is not the same as
any of the sub-block data, the encoded sub-packet data (Z)
has at least one-bit data transition. Among possible OR key
candidates from a N -bit-sized sub-block, the two special bit
patterns consisting of all zeros and all ones are excluded to
avoid a continuous same bit pattern.We further simplified the
process by selecting one of the complementary pair as OR key
candidates. Possible OR key candidates can be determined
from (2N−1 − 2) sub-blocks, where N is the bit-size of one
sub-block. IfN = 6, a 6-bit OR key is generated from 30 6-bit
sub-blocks of input data. After a packet framing, a packet is
composed by the OR key in the header plus 30 encoded sub-
packets. For example, a 4-bit OR key generation for 4-bit sub-
packet is explained. When N = 4, the number of sub-blocks
to look up is (2N−1−2) = 6. This means that each sub-block
is a 4-bit pattern and one OR key should be generated for
every 6 sub-blocks. Thus, we must look up 24bits (4bits ×6)
input data to produce a 4-bit-sized OR key for a single packet.
One encoded packet is composed of the OR key followed
by 6 encoded sub-packets. Let us assume that input data
A with 6 4-bit sub-blocks {1111, 0001, 0010, 0011, 1011,
1001} are coming into the OR key generation block. The
original 6 4-bit input patterns and their complementary pairs,
{0000, 1110, 1101, 1100, 0100, 0110}, are excluded as OR
key candidates. The remaining unmatched 4-bit patterns are
{0101, 1010, 0111, 1000}. The first and the second patterns
are complementary pairs and the third and the fourth patterns
are complementary pairs, respectively. Thus, we pick one of
the complementary pairs starting with ‘0’ as the final OR key
candidates. Therefore, the final OR code candidates in the
input pattern are {0101, 0111}. Either of these two can serve
as the OR key.

The logic implementation of OR key generation is shown
in Fig. 2. Step (1): As Ai is a single N -bit sub-block of
data given at a time and it is provided as input data, of the
which the first read is the most-significant-bit (MSB) of Ai.
If MSB is equal to ‘1’, the remaining (N-1)-bits are inverted,
otherwise, the remaining (N-1)-bits are accepted as they are.
Step (2): After the multiplexor, an (N-1)-bits value is assigned
as Ei, and a2N−1-bit-sizedDi value is produced by a decoder,
in whichDi = 2Ei . Step (3): After logical ORing operation of
Di and B in the previous cycle (Bi−1), the result is stored in
the Bi register (i.e., Bi = Bi−1+Di). This step is for recording
which bit position becomes ‘1’ for a single unit of sub-blocks
to be encoded. The number of iteration cycles are determined

21188 VOLUME 10, 2022

J. Bak et al.: Overhead-Reduced Key Coding Technique for High-Speed Serial Interface

FIGURE 1. Block diagram of (a) Encoder, (b) Packet format, and
(c) Decoder of the proposed N-bit size OR key coding technique.

by the bit-size of the OR key. Step (4): Steps (1) and (2) are
repeated (2N−1−2) times until the remaining (2N−1−2) sub-
blocks are checked. After Step (3), there is at least one zero-
value bit in the Bi register. Then, the bit position of zero-value
is decoded. The bit position of zero-value can be expressed as
an equivalent value of 2C , and the corresponding binary value
of C becomes the OR key (K) for (2N−1 − 2) sub-blocks of
Ai. Once the OR key (K) is found, it is easily verified that
Ai 6= K and Ai 6= K for all Ai, where i = 1 to (2N−1 − 2).
The encoded sub-packet data Z are obtained by XORing

the OR key K with Ai (i.e., Zi = Ai ⊕ K). Thus, more than
one state transition is guaranteed in each encoded sub-packet.
There may be more than one OR key candidates for a packet
processing. Among those candidates, the one minimizing
the running disparity is to be selected through the OR key
selector, which will be described later.

Let us check the logic block operation with an input dataA
with 6 4-bit sub-blocks {1111, 0001, 0010, 0011, 1011, 1001}
again coming into theOR key generation logic block in Fig. 2.
Then the bit patterns at node E (3-bit patterns) become {000,
001, 010, 011, 100, 110}. As described, if the first bit (MSB)
of a sub-block data is ‘1’, the rest of the sub-block bits are
inverted. If the first bit (MSB) of a sub-block data is ‘0’, the
remaining 3-bits of the sub-block are as they are. Next, the bit
patterns at E are decoded using a decoder and the outputs of
D are equivalent to

{
20, 21, 22, 23, 24, 26

}
. Because all of six

outputs of D are logically added with a logical OR gate, the
B register has the values of {11111010}. There are two ‘0’
values at the 5th and 7th positions from the left and these bit
positions are equivalent to binary values of 5 = (0101)2 and
7 = (0111)2. These two patterns are the OR key candidates,
(0101)2 and (0111)2. The inverted values of these two key
words also can be the OR key candidates for given input

FIGURE 2. Logic block diagram of the OR key generator/selector.

FIGURE 3. One packet consisting of a 6-bit OR key in the header plus
30 encoded-sub-packets.

packets. If bit pattern of (0101)2 is selected as an OR key (K)
in this example, the encoded sub-packets Z will be {1010,
0100, 0111, 0110, 1110, 1100}. As shown, each encoded sub-
packet has at least one state transition. A packet framed in the
example becomes {0101(OR key), 1010, 0100, 0111, 0110,
1110, 1100}.

Fig. 3 shows how the encoded sub-packets are streamed as
a packet. In the case where each sub-block is 6-bit data, the
OR key is found for every 30 sub-blocks. And after framing
the packet, the OR key is placed in the header followed
by 30 encoded sub-packets. Therefore, in the N -bit OR key
system the final framed packet is composed of an OR key
in the header followed by (2N−1 − 2) encoded sub-packets.
Therefore, the overhead ratio can be given in Eq. (1) and the
overhead ratio is 3.3% in the 6-bit OR key system (N = 6
case).

Overhead ratio =
1

(2N−1 − 2)
∗ 100(%) (1)

The run length is defined as the number of same
consecutive bits. Because the maximum run length affects the
clock recovery design, it is better to have a lower value for the
maximum run length. In the proposed encoding technique,
at least one state transition is guaranteed, the maximum
run length may occur in worst-case bit patterns when the
one encoded sub-packet is 1000. . . 00 and is followed by
the encoded sub-packet of 00. . . 0001. It also applies to the
inverted bit stream case (0111. . . 11 sub-packet followed by
11. . . 1110 sub-packet). Therefore, the maximum run length
is 2× (N − 1) bits and it is 10 bits in a 6-bit OR key system.

VOLUME 10, 2022 21189

J. Bak et al.: Overhead-Reduced Key Coding Technique for High-Speed Serial Interface

As the bit-size N becomes larger, the overhead ratio
becomes lower, but the maximum run length affecting
the running disparity increases. DC balancing in the data
transmission for the AC coupling interface is achieved by the
running disparity control. The running disparity is defined
as the difference between the numbers of 1’s and 0’s in a
defined block of digits or the instantaneous deviation from the
long-term average value of the running digital sum. For AC
coupling interface, the running disparity should be controlled
under a certain value for minimizing the baseline wandering.
Therefore, the bit-size of OR key is to be determined on the
overhead ratio and the running disparity. These parameters
could be optimized upon applications.

B. OR KEY SELECTOR DESIGN FOR MINIMIZING
RUNNING DISPARITY
Among multiple OR key candidates, the one which min-
imizes the running disparity is to be selected. In this
section, the OR key selector block for running disparity (RD)
minimization is described. There is an RD calculator in the
selector block from which the maximum RD (Max_RD) and
the minimum RD (Min_RD) values are calculated with all
possible OR key candidates. The OR key candidates include
non-inverted OR keys (Noninverted_OR key) and inverted
ones (Inverted_OR key). At the beginning, Initial_RD value
is obtained from the last packet processing. During current
packet processing (for example, in a 6-bit OR key system, 30
6-bit units of sub-blocks are to be checked), the RD calculator
gives Max_RD, Min_RD, and Final_RD, which is the final
value of running disparity in the current OR key generation
cycle.

For non-inverted OR key candidates, the larger value is
chosen from the absolute of (initial_RD + Max_RD) or the
absolute of (initial_RD+Min_RD) of the corresponding OR
key by tracing the RD variation in the current cycle. This can
be expressed as in (2).

Noninverted_Max_RD(ORkey)

= Max{|initial_RD+Max_RD|,

|initial_RD+Min_RD|} (2)

For inverted OR key candidates, the larger one is chosen
from the absolute value of (Initial_RD − Max_RD) or
the absolute value of (Initial_RD − Min_RD) of the
corresponding OR key by tracing the RD variation in the
packet processing cycle.

Inverted_Max_RD(ORkey)

= Max{|initial_RD−Max_RD|,

|initial_RD−Min_RD|} (3)

Then, the minimum is chosen between
Noninverted_Max_RD and Inverted_Max_RD, as repre-
sented by the X variable in (4).

X = Min{Noninverted_MaxRD, Inverted_MaxRD} (4)

FIGURE 4. Block diagram of the OR selector with the RD calculator.

Next, if X is Noninverted_Max_RD, the OR key selected
is a non-inverted form and Final_RD is updated by adding
it to Initial_RD. Otherwise, the OR key in inverted form is
the selected and Final_RD is updated by subtracting it from
Initial_RD, as expressed in the pseudocode below.

If (X == Noninverted_Max_RD),

{Final_RD_new=Initial_RD+Final_RD}

else if (X == Inverted_Max_RD),

{Final_RD_new = Initial_RD − Final_RD}

Using the algorithm, for a 6-bit OR key system, the proposed
key selection process achieves the running disparity of
+/−12. Fig. 4 shows a block diagram of the OR key selector
with the RD calculator. After checking ‘1’ counters, the
RD calculator gives information to select the proper OR
key to minimize the running disparity among the OR key
candidates generated in the OR key generator block. The
OR key selector with RD calculator block is implemented
to operate at 125MHz for processing 5Gb/s input data in
parallel, as explained in Section III.

Because the OR key coding technique needs a processing
step to find the OR key code generation and framing for given
input data, the required number of clocks are increased as
the bit-size of OR key code increases. The N -bit OR key
candidate search process requires (2N−1-1) clock cycles and
then up to 2N−2 clock cycles are needed for finding the final
OR key fromDCbalancing calculation. Onemore clock cycle
is used for XOR operation for data encoding. Thus, N -bit
OR key coding requires up to 2N−1 + 2N−2 clock cycles.
For example, 4-bit OR key coding up to 12 clock cycles
are needed compared to typically 2 clock cycles in 8B10B
coding [1].

III. EXPERIMENTAL RESULTS
Using the proposed key coding technique, systems were
designed with encoders/decoders for 4-, 6-, or 8-bit OR
keys. The three different bit-size OR key systems were
explored considering three design parameters which are the
overhead ratio, running disparity and hardware consumption.
The encoder and the decoder of the proposed OR key coding
were built in two separate FPGAs. Two FPGA boards with
a data rate of 5 Gb/s were set up for the test. They were AC

21190 VOLUME 10, 2022

J. Bak et al.: Overhead-Reduced Key Coding Technique for High-Speed Serial Interface

TABLE 1. Performance summary and comparison with 8B10B and
64B66B coding.

coupled with a coupling capacitor of 100nF and a differential
termination of 100 ohm. A 30cm RG-8 cable was used for
the channel. The embedded clock and data recovery blocks
in the receiver FPGA were utilized for the test [9]. The bit
overhead ratio was reduced to 0.81% in an 8-bit OR key
system compared to 16.67% in a 4-bit key and 3.33% in a
6-bit key. However, in an 8-bit OR key system the running
disparity and key selector block was larger.

The block diagram of a 6-bit OR key coding transmitter
and receiver implemented in the FPGA are given in Fig. 5(a)
and Fig. 5 (b), respectively. To show the capability of a 5Gb/s
serial interface, the blocks were processed at 125MHz in
parallel. After random bit generation, parallel 40 bits per
clock were provided to the encoder block to be operated in
125MHz clock. For 6-bit OR key code system, 30 × 6 bits
(180 bits) are to be processed for a single packet frame. The
implemented 6-bit OR key encoder block works on every
360 bits (40 bits× 9 clock cycles) for generating two packets
(180 bits× 2). Then, the encoder block generates packets, and
each packet has 186 bits (6-bit OR key + encoded 180 bits).
After packet framing, the bit-width control is added for the
following MUXed FIFO and serializer block. As the encoder
block provides 120 bits in parallel to MUXed FIFO, every 20
packets (186× 20= 3,720 bits) can be processed in 31 clock
cycles (120 × 31 = 3,720 bits).

The measured waveforms of the 6-bit OR key encoder/
decoder are given in Fig. 5(c). For given input data, the
generated OR key (6’h20) and the encoded sub-packets are
shown. In the receiver, the OR key is extracted, and the sub-
packets are decoded. As shown in Fig. 5(c), the decoded data
pattern is the same as the input data pattern. The results also
show that every encoded sub-packet has more than one state
transition and the maximum run length is 10 bits. During the
test, no bit error was detected.

Table 1 summarizes a performance comparison of the
proposed 4-, 6-, 8-bit OR key coding with 8B10B coding
and 6466B coding. In the proposed OR key designs, the
hardware usage is greater than 8B10B due to the OR key
selector block for disparity control. When 8B10B coding
system is implemented with logic operations described in [1],
the hardware consumption is the minimum. The bit overhead

FIGURE 5. (a) Transmitter, (b) Receiver, (c) and Waveforms from the FPGA
of the proposed 6-bit OR key encoder/decoder.

is reduced to 3.33% from 25% of 8B10B. The 64B66B code
has a 3.13% overhead, but a high baseline wondering due
to an undefined high running disparity. The maximum run
length (10 bits) of the 6-bit OR key coding technique is
longer than 8B10B. Because in most high-speed interfaces
AC coupling is the major interconnecting scheme between
transmitter and the receiver, the DC balance (i.e., running
disparity) is another important performance metric in an AC
coupled interface. The 8B/10B coding technique is designed
to have +/−2 running disparity, which is suitable for an
AC coupled interface without using a heavy DC blocking
capacitor. The running disparity of+/−12 for a 6-bit OR key
system was achieved while minimizing the running disparity
using OR key selector logic. The baseline wandering due
to the running disparity can be attenuated by increasing
the size of the DC blocking capacitor. When used with a
100nF DC blocking capacitor, the baseline wandering of a
6-bit OR key coding is 0.024% compared to 0.012% with
8B10B coding. If the interface needs tighter control of the
baseline wandering, a circuit to correct baseline wandering
should be added. The logic gate count of the OR key code
is higher than 8B10B because of the OR key selector block.

VOLUME 10, 2022 21191

J. Bak et al.: Overhead-Reduced Key Coding Technique for High-Speed Serial Interface

FIGURE 6. Measured eye-diagram at the receiver (a) 4-bit OR key coding,
(b) 6-bit OR key coding, (c) 8-bit OR key coding, (d) 8B10B coding, and
(e) 64B66B coding.

TABLE 2. Measured total jitter at receiver (5Gb/s data rate).

The proposed work is focused on reducing the overhead
ratio with a minimal cost of running disparity and hardware
consumption.

Fig. 6 shows the measured eye-diagrams in five different
coding cases measured at the receiver. As shown, 64B66B
coding has a narrower eye than with the OR key coding
technique and 8B10B coding due to the large, undefined
running disparity.

Table 2 summarizes the total jitter measurement results
with measured BER of 10−12. The proposed OR key coding

shows almost the same total jitter as with the conventional
8B10B coding technique. However, 64B66B shows a larger
jitter because the running disparity is undefined.

IV. CONCLUSION
An overhead-reduced key coding technique was proposed.
Using the proposed technique, an encoder/decoder with three
different bit-size OR key systems were designed. With a 6-bit
key coding system design, the OR key is generated in every
30 sub-packets. The overhead is reduced to 3.33% from 25%
with 8B10B coding, and the run length is 10bits in a 6-bit
key coding system. The OR key code selector was added to
maintain the running disparity the minimum in the processing
packets, fromwhich the running disparity is controlled within
+/−12. By using a DC blocking capacitor of proper size, the
baseline wandering of the OR key coding technique can be
well controlled with a 100nF DC blocking capacitor.

ACKNOWLEDGMENT
The authors would like to thank the IDEC Program and
for its hardware and software assistance for the design and
simulation.

REFERENCES
[1] A. X. Widmer and P. A. Franaszek, ‘‘A DC-balanced, partitioned-block,

8B/10B transmission code,’’ IBM J. Res. Develop., vol. 27, no. 5,
pp. 440–451, Sep. 1983.

[2] Y.-W. Kim, B. Shin, and J.-K. Kang, ‘‘High-speed 8B/10B encoder design
using a simplified coding table,’’ IEICE Electron. Exp., vol. 5, no. 16,
pp. 581–585, 2008.

[3] R. C. Walker and R. Dugan, 64b/66b Low-Overhead Coding Proposal
for Serial Links, IEEE 802.3 High Speed Study Group, Jan. 2000,
pp. 18–20.

[4] C. S. Thierauf, High-Speed Cricuit Board Signal Integrity. Norwood, MA,
USA: Artech House, 2004.

[5] Maxim Integrated Products Application Note, NRZ Bandwidth—LF Cutoff
and Baseline Wander, Maxim Integrated, San Jose, CA, USA, Apr. 2008,
pp. 1–7.

[6] Y. Kang, L. W. Chang, Y. C. Wu, and W. T. Chen, ‘‘A 5 Gbps/lane intra-
panel interface for ultra-high-definition TFT-LCD application,’’ SID Symp.
Dig. Tech. Papers, vol. 46, no. 1, pp. 1278–1280, Jun. 2015.

[7] H.-Y. Chen, C.-H. Lin, and S.-J. Jou, ‘‘DC-balance low-jitter transmission
code for 4-PAM signaling,’’ IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 53, no. 9, pp. 827–831, Sep. 2006.

[8] J. T. Stonick, G. Y. Wei, J. L. Sonntag, and D. K. Weinlader, ‘‘An adaptive
PAM-4 5-Gb/s backplane transceiver in 0.25-µm CMOS,’’ IEEE J. Solid-
State Circuits, vol. 38, no. 3, pp. 436–443, Mar. 2003.

[9] A. Athvale, ‘‘High-Speed Serial IO Made Simple Designer’s Guide With
FPGA Applications, Connectivity Solution Edition 1.0 Xilinx, San Jose,
CA, USA, 2021.

21192 VOLUME 10, 2022

