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ABSTRACT Red light running at signalised intersections is a growing road safety issue worldwide, leading
to the rapid development of advanced intelligent transportation technologies and countermeasures. However,
existing studies have yet to summarise and present the effect of these technology-based innovations in
improving safety. This paper represents a comprehensive review of red-light running behaviour prediction
methodologies and technology-based countermeasures. Specifically, the major focus of this study is to
provide a comprehensive review on two streams of literature targeting red-light running and stop-and-
go behaviour at signalised intersection – (1) studies focusing on modelling and predicting the red-light
running and stop-and-go related driver behaviour and (2) studies focusing on the effectiveness of different
technology-based countermeasures which combat such unsafe behaviour. The study provides a systematic
guide to assist researchers and stakeholders in understanding how to best identify red-light running and stop-
and-go associated driving behaviour and subsequently implement countermeasures to combat such risky
behaviour and improve the associated safety.

INDEX TERMS Red-light running, stop-go at yellow onset, dilemma Zone, intersection, behavior
prediction, statistical and machine learning models, countermeasures.

I. INTRODUCTION
A. BACKGROUND
Road crashes and the resulting fatalities are one of the major
factors contributing to approximately 1.3 million people
dying annually from road traffic crashes globally. A further
20 to 50 million suffer from life-threatening injuries as a
result of motor-vehicle related crashes [1], [2]. Although
some countries with a greater income level per capita have
been able to achieve a significant reduction in road crash-
related fatalities, the global rate is still alarmingly high,
with 18.2 deaths per 100,000 population [2]. Intersection
crashes represent a significant portion of these fatalities and
life-threatening injuries, with theUSA, for instance, reporting
45% of severe injuries and 22% of fatal crashes occurring at
intersections [3]. The major factors of signalised intersection
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crashes are identified to be a failure to break immediately
at the red light onset, miscalculating turning angles and dis-
tances of other vehicles, and deliberately running the red
light [4]. At signalised intersections, drivers are often faced
with such judgement errors during the onset of yellow or
amber signals and may become confused and accelerate
through the amber light or brake hard, potentially resulting
in a rear end or right angle collision and or serious injury
outcomes [5], [6]. Drivers may also commit a red light run-
ning (RLR) violation due to misjudgment at the onset of
yellow at a signalised intersection Qian and Dong [7] defined
the RLR behaviour as the act of a vehicle encroaching the
intersection once a red signal has appeared. Combating the
RLR violation is a major safety concern due to the associated
high crash risk and the crash severity outcomes resulting from
such unsafe driving behaviour [8], [9]. Transport authorities
around the world invest significant efforts to devise measures
to reduce this unsafe behaviour and the associated safety
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risks. For instance, in the USA during 2005, a $14 billion
investment served to identify different intervention strate-
gies [10].

The RLR behaviour of drivers can be categorised as
either passive or deliberate factors. Passive factors can be
defined as drivers’ inadvertent decisions caused by insensi-
tivity and surrounding events, including driving inexperience,
age, weather, road geometry and obstructed views. Delib-
erate factors are the deliberate decisions of a driver to be
engaged in dangerous driving behaviour, which include an
aggressive driving nature, peer pressure, and speeding to save
time [11]–[13]. RLR associated with such deliberate factors
is likely to result in frequent crashes with a higher level of
injury severity outcomes at signalised intersections [14].

As such, driver behaviour is identified as one of the
most critical factors in devising countermeasures to com-
bat RLR behaviour [15], receiving significant attention
from road safety researchers. Researchers have developed
machine learning models such as random forest, support
vector machine, artificial and deep neural networks, and
econometric models. The use of advanced artificial intelli-
gence (A.I.) techniques, such as machine learning (ML) and
deep learning (DL) algorithms, has added significant value
to the modelling and prediction of driver behaviour [16]
since they are able to incorporate driver intention measures,
driving manoeuvres, driver characteristics, vehicle and driver
state, weather conditions, environment and light conditions as
exogenous features. More recently, understanding the effect
of advanced driving assistant systems (ADAS) on driver
behaviour has received significant attention [17].

B. CONTRIBUTIONS
The major focus of this study is to provide a comprehen-
sive literature review focusing on driver behaviour prediction
models specific to RLR and stop-go decisions in the dilemma
zone. While previous literature analysed similar topics of
RLR and stop-go decisions at yellow onset [17], [18], the
studies that review the effect of advancement in vehicle
safety features and their impact on RLR behaviour are few.
At the same time, the significant advancements in modelling
and data collection techniques have enabled better and more
accurate prediction of RLRbehaviour, with technology-based
countermeasures targeting RLR behaviour also improving
considerably over the last five years. With the emergence of
new technology such as ADAS and connected and automated
vehicles (CAV), it is of utmost importance to revisit the effect
of these countermeasures and understand how these may
impact RLR behaviour. Therefore, this comprehensive review
is of the two streams of literature targeting RLR and stop-
and-go (SAG) behaviour – (1) studies focusing on modelling
the RLR and SAG related driver behaviour, and (2) studies
focusing on the effectiveness of different technology-based
countermeasures in combating unsafe behaviour. The first
stream of studies evaluates the modelling techniques used to
predict RLR and SAG related driving behaviour, the associ-
ated model accuracy measures, the parameters considered in

these models, along the methods adopted for collecting data
for such models. The second stream of studies served to anal-
yse the progress in devising the countermeasure technologies
and innovations targeted toward combating unsafe driving
behaviours. Together, these analyses provide a systematic
guide to enable researchers to best identify RLR and SAG
associated driving behaviour and subsequently implement
countermeasures to combat such risky behaviour and improve
safety.

The rest of the paper is organised as follows. In the first
section, themethodology and research protocol to identify the
most relevant studies focusing on the SAG and RLR predic-
tion are presented. In the second section, the causes and con-
sequences of SAG and RLR behaviour are discussed, along
with a succinct discussion of typical modelling techniques
and parameters. In the third section, the models selected
are then presented and discussed in detail. In the fourth
section, current countermeasure technologies are identified
and reviewed. Lastly, future recommendations are put for-
ward and conclusions are drawn.

II. METHODOLOGY AND RESEARCH PROTOCOL
Titles, abstracts, and keywords of existing relevant studies
were extracted from electronic databases into EndNote X9.
Screening of studies was conducted in three stages. First,
duplicates were removed using an in-built EndNote function,
followed by manual inspection and removal of remaining
duplicates. Following this, titles and abstracts were screened
for papers highly unrelated to the topic of the review and
removed, followed by a second, more focused screening and
removal process.

A search strategy was employed to identify all relevant
articles for the systematic review until May 2021 (shown in
Fig 1). The identification stage occurred using a keyword
search strategy in Scopus, Web of Science and IEEE elec-
tronic databases. This search utilised the in-built boolean
functions in the electronic databases. The keyword string
consisted of three primary segments, which were all joined
with the ‘AND’ boolean. The first segment targeted all
papers relevant to red light running and dilemma zones
by joining the following keywords with the ‘OR’ boolean;
‘‘Red light running’’, ‘‘Red light turning’’, ‘‘Dilemma zone’’,
‘‘Dilemma behaviour’’, and ‘‘RLR’’. All models were identi-
fied in the second-string segment by searching for ‘‘Model’’,
‘‘Prediction’’, ‘‘Countermeasure’’, and ‘‘Behaviour’’. Lastly,
to remove any papers unrelated to the field of car safety,
‘‘Vehicle’’ was also added at the end of the search. After
importing all relevant papers into the bibliographic software,
EndNote, papers were manually excluded based on their
relevance. Irrelevant articles included those which focused
on predicting, analysing or offering countermeasures for
motorcycles and pedestrians only, rather than conventional
vehicles. Articles that predicted pedestrian behaviour in
vehicle-pedestrian interactions were also excluded, as well as
any papers related to policy measures. The systematic review
scheme is shown in following Figure 1.
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FIGURE 1. Systematic review scheme.

The eligibility criteria for choosing RLR and SAG papers
in our review were dependent on the article being assessed.
RLR-based articles required the inclusion of prediction meth-
ods. Articles that focused on predicting SAG decisions at the
yellow onset were also reviewed in the chapter.

A total of 58 papers were identified using the above-
mentioned eligibility criterion. Each article was read fully,
and the data extracted included the data source, predic-
tor variables, prediction model (with any parameters) and
model accuracy. During the manual data extraction, 3 papers
were removed because the full-text version could not be
accessed by the authors, and 2 papers were removed because
they were conference proceedings that were expanded and
improved further in published peer-reviewed articles by the

same authors later. Many papers which focused on RLR
or SAG decisions did not predict the act of RLR or stop-
go, but rather a feature that was implicit in the act. Papers
that focused on using RLR or stop-go to predict distraction,
aggression or other behaviours were also excluded. These
ineligibility criteria removed 35 papers, leaving 23 relevant
papers (10 RLR, 13 SAG) for further analysis. The results
of the review on RLR and SAG behaviour prediction are
demonstrated in Table 1 and 2. Unless otherwise specified,
the model accuracy extracted was the accuracy metric for the
best performing prediction model presented in the associated
paper. An exception to this is the work of Zhou, et al. [8],
where the accuracy reported is the best mean accuracy of
6 models.
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TABLE 1. RLR prediction models.

III. CAUSES AND CONSEQUENCES OF RLR AND SAG
BEHAVIOUR
Understanding the psychology behind RLR and SAG
behaviour is a necessary step to identify the critical param-
eters for use in predictive models. RLR and SAG are often
associated with misjudgment at the onset of a yellow light,
where the driver requires an immediate and decisive action
during the approach to the intersection, known as the dilemma
zone [38], [39]. Indecision in this zone can lead to the driver
stopping or accelerating at an inappropriate time, resulting
in a crash. Decisive actions at the dilemma zone during
the amber signal may also result in RLR. Transportation
researchers defined the dilemma zone as either type I or
type II [39]–[42]. Dilemma zone type I is likely to occur
due to inadequate intersection planning with an inaccurate

sensor setup and signal timing [43], [44]. The Dilemma
Zone at a four-armed signalised intersection is presented
in Figure 2.

In the dilemma zone, drivers are less likely to maintain the
necessary distance to avoid collisions when instant break-
ing is required. This may be the result of the yellow sig-
nal turning red while the driver is within the intersection,
potentially causing a right angle collision [5]. In dilemma
zone type II scenarios, drivers are indecisive when actions
are required [41], for example, when drivers stop at the onset
of yellow but intend to run the intersection if they are near
the stop line [45]. This indecision has been termed as the
option zone, and it is unwise to underestimate this problem
in road safety considerations [32]. The stochastic behaviour
of drivers near the intersection, such as the type II dilemma
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TABLE 2. Stop-Go prediction models at yellow onset.
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FIGURE 2. Dilemma zone detection in four-armed signalised intersection [Example is for the right-hand driving condition] [14], [38], [39]
(https://icograms.com/icograms-designer.php).

zone, is seldom predictable, and such behaviours are likely to
be associated with fatal crashes and serious injuries [38].

RLR at signalised intersections can lead to different types
of crashes, but most commonly are rear end [46] and right
angle collisions. A rear end crash is likely to occur from
the sudden stopping decision by the driver of a lead vehicle
at the yellow phase [47], [48], while a right angle crash
can be the result of RLR at the yellow onset [5], [6], [49]
Rear end collisions often result in minor injuries, such
as whiplash [46], while right angle crashes are likely to
result in higher injury severity outcomes due to the dissi-
pation of higher kinetic energy of such crashes. Based on
a Florida study in 2006, approximately 45% of right angle
crashes resulted in incapacitating, non-incapacitating and
fatal injuries [50]. Speeding and acceleration were found to
be important factors in right angle collisions by Ogden and
Newstead [51], noting that misunderstanding, driving inexpe-
rience, vehicle type and the number of lanes also contributed
to right angle collision risk. Rear end (a) and right angle
(b) collisions are shown in Figure 3.

IV. RESULT AND DISCUSSION ON PREDICTION OF RLR
AND SAG BEHAVIOUR
Different driving features and human characteristics like reac-
tion time, lane positioning, maneuvering, frequency of using

the car horn, heart rate and eye movement have been noted
to influence driver response at the intersection [52]–[54].
Differences in the driving experience, such as the differ-
ence between professional and non-professional drivers, also
impact the likelihood of a driver engaging in RLR. For
instance, taxi drivers have been shown to have a higher prob-
ability of engaging in RLR but have lower crash rates [55].
Some external distractions such as cell phone interfaces and
phone calls have been identified as having a significant
impact on driver behaviour at the dilemma zone [44]. The
influence of weather on driver behaviour has also been shown
to be significant [56]. Chen, et al. [57] mentioned that snow
weather might increase the likelihood of engaging in RLR,
but more data was necessary to confirm this claim. Some
vehicle-related characteristics such as speed and pedal activ-
ity have been used to predict driver behaviour [58]. External
prediction methods, such as video surveillance, have proven
useful as a less intrusive method of measuring predictor
variables [3]. More intrusive methods, such as electroen-
cephalogram (EEG), can be used to give incredibly accurate
information about drivers speeding behaviour which will help
in SAG behaviour prediction [8] though this method is still
considered too intrusive for commercial implementation.

Several different models of RLR and SAG behaviour pre-
diction have been adopted which utilise the aforementioned
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FIGURE 3. Traffic collisions in the dilemma zone due to red light running: (A) the rear end collision, (B) the right angle
collision. (https://icograms.com/icograms-designer.php).

variables. These models include the logistic regression
model, Bayesian model, Probit model, decision tree model,
agent-based model, and the fuzzy logic model incorporated
with a classical logic model [55], [59]–[73]. Pathivada and
Perumal [74] performed some research utilising numerous
controlled experiments in India, including both two- and
three-wheeler vehicles with cars and trucks to analyse
mixed traffic conditions and employed binary logistic regres-
sion models from different experimental data to demon-
strate driver behaviours at the dilemma zone. However,
their experimental data did not include intersection geom-
etry, surrounding land-use, signal visibility, driver knowl-
edge on signal phases, type of vehicle, emotional state

of the driver or distraction due to in-vehicle technology
attributes [33], [38], [74]. The effect of surrounding vehi-
cles on RLR at the dilemma zone has also incorporated the
level of aggressiveness exhibited by drivers at the onset of
the yellow signal. Pathivada and Perumal [38] used a sta-
tistical approach to SAG behaviour prediction, which anal-
ysed driver behaviour on homogeneous and mixed traffic
conditions. Predictions of RLR have also been extended to
connected vehicles in mixed traffic conditions by integrat-
ing connected vehicle data and traffic sensor information.
From analysing Table 1 and Table 2, the number of RLR
and SAG studies based on modelling technique and pre-
dictor variables are shown in Table 3 and the significance
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TABLE 3. RLR and SAG studies for different modelling techniques and
predictor variables.

TABLE 4. Significance of predictor variables.

of these predictor models based on their use in number
of models in different RLR and SAG studies is shown
in Table 4.

A. DISCUSSION ON MODELS SELECTION AND
PREDICTION ACCURACY
In predicting RLR and SAG behaviour, logit-based models
have been the most common, followed by neural networks
and random forest. The binary logit model is considered
standard due to the binary decision of SAG or run versus do
not run in the case of the RLR decision. When considering
RLR prediction, regression has been adopted in fewer studies
compared to stop-go decision studies. Several variations of
this model have been proposed and are demonstrably better.

The accuracy of binary logistic regression models is typically
found to be lower than other logit-based models, with the
exception of work performed by Pathivada and Perumal [38].
Model accuracy is heavily influenced by the data collection
technique. For instance, accuracy produced by loop detec-
tors for binary logit models was inferior to the accuracy of
SMART-SIGNAL detectors [29] and video recording and
analysis [38]. Multinomial logistic regression models have
proven to be accurate, with all accuracies reported at over
80%. The model types employed for examining RLR and
SAG decisions are illustrated in Figure 4.

Extensions of these basic logistic regression models have
been adopted by several authors [23]. The use of modi-
fied rare events logistic regression by Ren, et al. [23] was
identified to provide a better fit in recognising RLR events.
The model accuracy was considerably higher than the binary
logistic model the authors tested. However, the modified rare
event logistic regression model by Ren, et al. [23] showed
reduced performance when compared with other model per-
formance. The performance reduction of the rare event logis-
tic regression model is likely due to the data source solely
being based on data from a single loop detector 122m from
the stop line. Random parameter and latent class logit mod-
els have been used to analyse signal timing strategies [36].
Based on the research findings by Savolainen [36], drivers
were more partial to stop when warning flashes and enforce-
ment cameras were present. Four parameter and exponential
logistic regression models were used to estimate the actual
entrance time of vehicles at an intersection [27]. Lower resid-
uals were achieved for the exponential logistic regression
model for most of the intersections considered in the analysis.

Machine learning models have also proven to be quite
accurate in predicting RLR and SAG behaviour, with neu-
ral network-based models the most prominent, followed by
random forest. The incorporation of simulation [21], video
footage [22], radar [28] and EEG signals [8] as data sources to
produce high accuracy neural network models demonstrates
the robustness of this technique. However, the lack of models
which incorporate lower resolution data, such as loop detec-
tors, means they may be less appropriate than more rudi-
mentary models in some circumstances. A weighted average
hybrid model (WAHM) proposed by Biswas and Ghosh [28],
which is a coupling of ANN and fuzzy logic models, was
shown to have an incredibly high level of accuracy (96.15%)
when detecting both crossing and stopping vehicles.

Random forest and AdaBoost models have been used with
several different optimal hyperparameters for RLR behaviour
prediction Jahangiri, et al. [19] used 800 trees, with 6 factors
considered per tree. Jahangiri, et al. [20] used 500 trees and
2 factors per tree. Conversely, Elhenawy, et al. [31] only used
50 trees in their study regarding the impact of driver aggres-
sion on RLR events. Findings from Elhenawy, et al. [31] and
Jahangiri, et al. [20] showed that, in comparison to other
models tested, the random forest was a poor performer in
terms of SAG behaviour prediction that has reasonable, due
likely to the tree-type structure of the model not being able
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FIGURE 4. Comparison of model types found in the study for RLR and SAG behaviour.

to capture the nuances of a driver’s decision to run a red
light. Neither of these models considered leading vehicle
behaviour, which is often an influential factor in drivers’ SAG
and RLR behaviour prediction.

Other machine learning models, such as SVM and discrim-
inant analysis, have demonstrated very high levels of accu-
racy. SVM with a Gaussian kernel scored 90+% in studies
where both were used. Similarly, discriminant analysis (DA)
has shown to be the best performing model in terms of accu-
racy, scoring over 95% accuracy. However, the ability to adapt
these DA models for realistic use is ambiguous, considering
simulator studies are vastly different to observational studies,
and the data sourcing and post-processing required to produce
the inputs into these models is time-consuming. By contrast,
SVM models have used lower resolution observational data
and still maintained good levels of accuracy.

Probabilistic models have also been shown to have inherent
advantages over their deterministic counterparts and have
incorporated DARE into their formulations. The use of point
detectors [26] and inductive loop detectors [24] in these
models demonstrate their usefulness for SAG behaviour pre-
diction, as these only require rudimentary technology, which
has been more commonly implemented than other data cap-
ture devices (i.e. video footage followed by post-processing).
Since there are only two probabilistic models with largely
varying degrees of accuracy, it is difficult to know whether
this method is accurate. The Bayesian network (B.N.) model
used 17-day historical radar data to build the predictionmodel

and achieve a high level of accuracy [18]. Notably, the B.N.
model, which considered all features performed better than
R.F., non-linear SVM and logistic regression. Importantly,
the findings of the research by Chen, et al. [18] suggested
that continuously monitored trajectory, used as a data source,
produced a significantly better model than inductive loop
detector data. A comparison of model accuracy and the data
types used are illustrated in Fig 5.

B. PREDICTOR VARIABLES CONSIDERED IN STUDIES
Several predictor variables are consistently highlighted
within the literature and used to identify RLR and SAG
decisions made by drivers. Of these variables, time-to-
intersection (TTI), distance-to-intersection (DTI), vehicle tra-
jectory related variables, consideration of other vehicles,
yellow time remaining, epidemiological and vehicle type
are the most commonly found. Other variables identified
within the literature (denoted ‘Other’) included driver aggres-
sion [31], pavement condition [31], [32], distraction [36],
physiological signals [8] and police presence [32]. The fre-
quency in which these variables appear within the literature
reviewed is illustrated in Figure 6.

Of these papers, few have indicated the most significant
of all predictor variables considered. Variables were con-
sidered significant if the p-value in the regression was less
than 0.05 in some cases [31], [34]. Other authors preferred
a p-value of 0.01 to demonstrate significance [23], [29],
[32], [33]. Gates, et al. [75] used model elasticity to identify
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FIGURE 5. Comparison of reported model accuracy for different data collection methods.

which features were most indicative of RLR behaviour [75].
Moreover, feature importance from random forest models
produced by Jahangiri, et al. [19], [20] identified which pre-
dictor variables are best in identifying RLR. Here, variables
were considered significant if stated so by the author. Models
which included common variables were compared to the
number of models which identified the variable as significant.
These findings of the comparison of the number of statistical
models which considered a common variable and those which
found the common variable significant are demonstrated in
Figure 7.

Figure 7 indicate that TTI and yellow time remaining
are highly relevant in predicting RLR and SAG behaviours.
Yellow time remaining is demonstrably one of the best
indicators of SAG decisions and RLR. Each statistical
model has a p-value of less than 0.01 [23], [29], [33].
Ding, et al. [29] extended the notion of statistical signifi-
cance by performing gradient boosting and feature impor-
tance rankings, showing that yellow time remaining ranked
first, with a relative importance of 57.42%. Gates, et al. [75]
used elasticity to determine the importance of the yellow time
remaining and found that this value was 125.5%, more than
three times higher than the second most important variable,
which is platooning behaviour. The behaviour of surrounding
vehicles, especially the leading vehicle, have a significant

influence on a driver’s SAGdecision and participation in RLR
behaviour [23], [29], [33]. This surrounding vehicle impact
has been extended beyond vehicles within the same lane
in SAG and RLR behaviour. For instance, Gates, et al. [75]
found vehicles were 41% more likely to commit RLR if
they were travelling as a platoon of vehicles. These findings
of Gates, et al. [75] were corroborated by Ren, et al. [23],
who successfully incorporated car behaviour in adjacent
lanes into their prediction model, and studied in-depth by
Ding, et al. [29], who found that the time gap between a
vehicle and its leading vehicle was the second most important
feature considered, with a relative importance of 21.12%.

Trajectory and DTI are often considered, albeit with mixed
results in terms of predictor significance. Trajectory most
commonly observes the speed or mean speed of a vehi-
cle prior to the intersection [19], [20], [31]–[34], [75].
Some authors have extended mean speed to consider accel-
erations [19], [20], [23]. However, acceleration did not
demonstrate any superiority to speed, and, in the case of
Jahangiri, et al. [19], the maximum acceleration and decel-
erations were ranked lower than the velocity at the yel-
low onset. In the case of Elhenawy, et al. [31], speed was
significant in their original logistical model but became
insignificant once driver aggression was included in the
model.
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FIGURE 6. Common predictor variables identified in RLR and SAG studies.

While it appears DTI performs poorly, it has only been
found insignificant in two studies [32], [75]. One issue
with this DTI measure is that it is similar to TTI in that
it attempts to gauge RLR and SAG behaviour without
considering variable speed limits. The closer the DTI is
measured to the intersection, the better the model will be
at predicting these driver decisions [26]. Thus, it is diffi-
cult to discern whether DTI is an inappropriate measure or
whether the measurement distance was simply too far in
these studies to make it a viable predictor variable. Each
study, which states variable significance, either considered
both TTI and DTI significant or only considered one of the
measures, thereby making it difficult to compare. The only
study that performed a direct comparison of TTI and DTI is
Jahangiri, et al. [19], who found the feature importance of
TTI was the highest of all variables, whereas DTI was only
third.

Epidemiological factors typically included were the age
and gender of the participant. Elhenawy, et al. [31] found
that age was significant, while gender was not. These findings
corroborate with those from Jahangiri, et al. [19], who ranked
gender as the 10th and 11th most important factors, whereas
age ranked significantly higher at 7th. Vehicle type is typically

insignificant, as demonstrated by Che Puan, et al. [34]. While
Pathivada and Perumal [33] found different vehicle types
significant or insignificant, these were not grouped into a
categorical variable, therefore making it difficult to discern
whether this class as a whole had a significant impact on stop-
go decisions.

‘other’ variables considered in RLR and SAG behaviour
prediction are generally insignificant. Pavement condition
has never been demonstrated as significant [31], [32],
nor has police presence [32] or secondary task interac-
tions [20], [32]. Drivers’ aggression was found a significant
parameter for stop go behaviour prediction [31] and also
variables closely related to other vehicles, such as queue
length and occupancy [23].

V. COUNTERMEASURE TECHNOLOGIES
Given the large impact of driver behaviour on RLR and SAG
related collisions, it is necessary to analyse current models
and technology which use driver behaviours to predict their
intention to engage in RLR and SAG at intersections and
pedestrian crossings. Ideally, thesemodels are affordable and,
most importantly, reduce the rate of road traffic collisions,
injuries, and deaths as countermeasures.
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FIGURE 7. Comparison of the number of statistical models which considered a common variable (orange+blue) and those which found
the common variable significant (blue).

Recently, a cooperative intelligent transportation system
(C-ITS) has been recognised for safety implementation to
reduce RLR and onset yellow events. In this system, vehicles
are facilitated with C-ITS vehicle stations (V-ITS-S) and
communicate with other vehicles and infrastructure nearby
regarding the prediction and warning of safety-critical situ-
ations such as advanced red light warning and warning for
vulnerable road users (VRU) crossing at the signalised inter-
section. This technology extends driver senses by producing
safety warnings. For instance, it provides safety information
even when the driver has a poor line of sight and so helps
maintain robust road safety at intersections and pedestrian
crossings [76]–[78].

Similarly, the Dynamic all red extension (DARE) system
is designed to prevent collisions from occurring dur-
ing RLR violations [79]. The DARE system automat-
ically maintains the red signal at all intersection legs
to reduce RLR violations. It does so by extending the
red interval time dynamically by predicting a driver’s
intent to engage in RLR. By manipulating RLR viola-
tions, this system also prevents right angle collisions [80].
Proper implementation of such technologies may improve
driver behaviour prediction prior to RLR at the signalised
intersection.

Though prediction is important, systems need to be in
place when these models fail to predict/identify RLR. Several
collision prevention systems have been identified and are
discussed in the following sections as a secondary set of
countermeasures against RLR.

A. ALL RED EXTENSION AND DYNAMIC ALL RED
EXTENSION (DARE)
DARE has primarily seen use in Europe, Australia, and the
USA to reduce collision rates which would typically occur as
a result of RLR. It is considered one of the leading right angle
collision mitigating technologies for RLR vehicles. In 2011,
the North Carolina transportation department implemented
DARE in nine traffic signals across the state, analysing the
impact of DARE on the driver’s behaviour at the intersec-
tion [79]. By analysing kinematicmotion and time to collision
among vehicles, the all-red interval time was calculated for
the vehicles running the red light after the dilemma zone [81].
If DARE is incorporated into C-ITS technology for real time
implementation, RLR rates can be reduced significantly.

B. COUNTDOWN TIMERS
Countdown timers are also being implemented on intersec-
tionsworldwide. This technology displays the remaining time
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for the red signal to the driver. Psychologically, this comforts
the driver [82] and ensures higher safety by reducing traffic
entry on the red light [83]–[85]. However, some studies have
found that countdown timers actually increase the occurrence
of RLR [86], [87] because a longer countdown timer may
induce driver aggression, resulting in traffic violations [14].
Drivers often overly focus on countdown timers, and it
becomes a method of distraction, resulting in the driver not
focusing on their environment and being unaware of potential
collisions [88].

C. ACTUATED ADVANCED WARNING SYSTEM (FLASHING
LIGHT)
The actuated advance warning system has an uninterrupted
traffic monitoring facility in the dilemma zone and was
introduced by The Nebraska Department of Transportation
in the USA to predict the yellow onset at the signalised
intersection. The actual advanced warning system can notify
the driver of the SAG decision via signs and flashing signals
based on the prediction [89]–[91]. A disadvantage of this
technology lies within the signal display. The advanced stop
warning signal, which indicates that drivers will soon have
to stop, has been confused with the need to immediately
stop [92].

D. INTELLIGENT DRIVER WARNING SYSTEM (IDWS)
The IDWS has been implemented via safety messages.
In order to prevent a traffic collision, driver behaviour was
predicted from both test track and motorway data. However,
the models from motorway data showed some error char-
acteristics as they considered essential input variables like
controlled vehicle speed, range and range rate to the leading
vehicle, and the throttle angle history. These parameters have
not been considered sufficient for practical implementation
of the technology, and further exploration of this technology
is needed before it can be widely implemented [93].

E. COOPERATIVE VEHICLES INFRASTRUCTURE SYSTEMS
(CVIS)
CVIS has been implemented using a binary mixed-integer
linear program (BMILP) to eliminate the dilemma zone issue,
showing significant promise to reduce the traffic queue near
the intersection. The capacity of CVIS was limited due to
considering only two lanes and four dilemma zones [94].
It was proposed that more extensive testing in different envi-
ronments was required to demonstrate the robustness of the
BMILP.

F. CONNECTED VEHICLE (CV)
CV technology is a widely studied area of vehicle safety that
involves a semi-automated vehicle that supplies drivers with
a warning or assisted information through the transmission
of communication from vehicle to vehicle, vehicle to road
users and infrastructure. Unlike other technologies, C.V.s are
not heavily limited by proximity to the intersection and can
supply the driver with essential safety information well in

advance. However, themajor limitation of this CV technology
is that it requires all vehicles have this technology if they are
to communicate between vehicles. It is, therefore, currently
impractical to implement this technology commercially [95].
A recent European Union survey with 27,656 respondents
identified 45% of respondents felt comfortable with the
introduction of connected vehicles on the road [96]. Studies
have utilised real-time data to analyse the impact of this
technology on RLR using least-squares SVM learning mod-
els [97]. The promise of this technology to improve safety,
particularly when combined with existing countermeasure
technology, such as DARE, has garnered increasing attention
recently [98]. Moreover, the advent of artificial intelligence
has brought innovation, solving different problems of the
connected vehicle technology that drive the connected vehicle
technology to be used practically on-road [99]–[101] and
maritime [102], [103] too.

G. ADVANCED DRIVING ASSISTANT SYSTEM (ADAS)
ADAS has been developed to be incorporated at dif-
ferent levels of autonomous driving, including con-
nected vehicles. Significant efforts have been making to
improve ADAS-based algorithms within autonomous vehi-
cles [104]. Also, innovative controllers have been designed
to regulate vehicle speed and detect obstacles in front
of the vehicle [105]. In order to avoid collisions due to
lane changing manoeuvres, human-machine interactions are
implemented using a predictive control framework based on
corrective torque optimisation [106]. The American Automo-
bile Association recommends that if driver awareness can
be improved using ADAS, doing so might save 2.7 million
crashes, 1.1 million injuries, and 9,500 deaths per year [107].
A similar technology, Adaptive Cruise Control (ACC), can
improve safety and be commercially viable by incorporating
an onboard radar and camera to identify the primary target
and regulate the vehicle speed limit. ACC systems not only
ease driver effort but also prevent crashes. However, the acc
system is limited in identifying target vehicles in neighbour-
ing lanes and needs extensive research before it can be widely
implemented [108].

VI. DISCUSSION ON COUNTERMEASURE TECHNOLOGIES
Among the defined countermeasure technologies in this
study, DARE is most effectively used to prevent traffic colli-
sions as probable aftermath of red light violation. Usually,
when the red signal is activated for any direction of the
intersection to stop vehicles passage on that route, the right
angle direction of the intersection is activated with a green
signal to allow vehicle passage in a perpendicular direction
of the stopped route. When a vehicle violates the red signal,
it illegally appears in the intersection conflict zone. Mean-
while, the perpendicular side of the intersection is activated
green signal, allowing right angle vehicles to appear at the
intersection conflict zone as well that leads to right angle
collision among a green signal vehicle and the red light
runner. In order to remedy that deadly traffic circumstance,
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all red extension technology is imposed where the red sig-
nal is activated in all directions at the intersection for any
predicted red light violation. This extends the red signal of
the vehicles waiting at the right angle direction, delaying
their green signal activation time. Such a formula improve
road safety preventing deadly traffic collision but, at a time,
imposes strong traffic fine ticket to the red light violating
driver for violating traffic rules. Thus, all red extensions
improve road safety. The DARE system is further improved
and economical where the extension of red signal activation
time for right angle vehicles are measured dynamically based
on the time required for the red light runner to pass the
conflict zone of the intersection. Moreover, the red light
violation is prevented more precisely by incorporating the
DARE system with CV technology where vehicles wirelessly
communicate with other C.V.s and road infrastructures. Vehi-
cle kinematic information andGPS position are easily tracked
in CV technology using the embedded devices in vehicles
and road infrastructures other than external cameras, and
road signals can also operate dynamically, activating all red
for any detected red light violation incident. With statistical
and machine learning approaches (reviewed and discussed in
section II) considering red-light running incidents as datasets,
drivers’ intend to violate the red signal is predicted earlier.
This helps DARE and CV technology to get confirmed of the
red light runner in advance, and they can take more accurate
subsequent countermeasures using that time advantage.

Among the other countermeasures, countdown timers are
also effective, but drivers often get more aggressive for
extended countdown timers and rush to pass the conflict zone.
The flashing light in the road signal confuses the drivers,
especially in the dilemma zone. Drivers tend to stop imme-
diately on the activation of the flashing light while they
still have enough time to pass the intersection conflict zone.
However, the following vehicle gets confused about the unex-
pected stopping behaviour of the reading vehicle that leads
to the rear end collision in the dilemma zone. Considerably,
ADAS is much reliable to prevent any type of collisions, but it
is very expensive to install ADAS in all vehicles individually.

VII. RESEARCH GAPS AND RECOMMENDATIONS
Some research gaps on RLR behaviour prediction using con-
nected vehicle technology are discussed below:
• Predicting driver RLR behaviour prediction within C.V.s
and issuing appropriate warnings is complex, with
limited research going beyond the use of traditional
machine learning and shallow artificial neural network
approaches to create predictionmodels. Deep neural net-
works represent an excellent opportunity to advance the
understanding of these RLR behaviours with accurate
predictions and can be achieved by analysing naturalistic
driving datasets. Then the accuracy and robustness of
soft machine learning and shallow artificial neural net-
work models can increase if they are trained on a broad
range of different contexts. If this data includes trajec-
tory information at signalised information that changes

with time sequence order, then time series prediction of
RLR behaviour using recurrent neural network models
can be used as a highly accurate prediction method, even
more so than deep neural network models. The develop-
ment and implementation of thesemodels is the next step
in improving RLR behaviour prediction modelling.

• Combining DARE countermeasure technology with
C-ITS has the potential to predict RLR behaviour. How-
ever, the robustness of the technology needs future
improvement. Though countdown timers at intersections
are welcoming and easy to implement, researchers need
to understand why this technology sometimes increases
red light violations [87]. It is necessary to implement
variations of this technology were, such as internal mod-
ifications or implementation with C-ITS, so that safety
can be further improved. Studies into the distraction
of countdown timers are also necessary so that these
increases in red light violations can be mitigated.

• Increasing features for model input improve the per-
formance of RLR behaviour prediction models. Inter-
section geometry, surrounding land use, day and night
period difference, peak hour, signal visibility, and emo-
tional state of the driver are some of the many additional
parameters which may lead to better prediction accura-
cies of RLR prediction models.

• Though research has primarily focused on heteroge-
neous traffic conditions with conventional vehicles for
RLR behaviour prediction, mixed traffic conditions
should be taken into consideration for RLR behaviour
prediction, including conventional vehicles with con-
nected vehicles and autonomous vehicles.

• Implementation of more precise measuring technolo-
gies such as using EEG signals based sensors for RLR
behaviour prediction is a recent invention, but it needs
major updates in sensor technologies to be used feasibly
and presents a good balance between high data quality
and participant comfort 8].

Eliminating trajectory and GPS errors as model inputs [109]
must improve the data noises and scenario labelling, which
help in increasing RLR behaviour prediction using super-
vised learning machine learning algorithms.

VIII. CONCLUSION
Traffic violations and collisions for RLR and improper turn-
ing take a toll on human life and property. Millions in budget
and countless efforts have been used to improve road safety;
however, traffic collisions which result from RLR are still too
high. Evidently, RLR is primarily caused by the intentional
act to engage in RLR behaviour, and the unintentional act
caused by the SAG decision within the dilemma zone. The
review of SAG and RLR prediction models, their parameters
and data collection methods confirmed that the time remain-
ing on the yellow light, the presence of other vehicles, and
TTI are often statistically significant parameters used to iden-
tify RLR and SAG. Furthermore, A.I. and machine learning
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algorithms were found to be a highly accurate alternative
to the usually employed binary logistic regression model.
Countermeasure technologies, such as DARE, have proven
a popular choice for reducing RLR. It was found that the
incorporation of this technology with C-ITS is very promis-
ing, and more research into this integration is encouraged.
Several future research directions were also extrapolated.
Among these, it is suggested that driver RLR behaviour
should be analysed for C.V.s, in mixed traffic environments
and with different parameters such as time of day and
visibility.
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