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ABSTRACT The exponential growth of deep learning networks has allowed us to tackle complex tasks, even
in fields as complicated as medicine. However, using these models requires a large corpus of data for the
networks to be highly generalizable and with high performance. In this sense, data augmentation methods are
widely used strategies to train networks with small data sets, being vital in medicine due to the limited access
to data. A clear example of this is magnetic resonance imaging in pathology scans associated with cancer.
In this vein, we compare the effect of several conventional data augmentation schemes on the ResNet50
network for brain tumor detection. In addition, we included our strategy based on principal component
analysis. The training was performed with the network trained from zeros and transfer-learning, obtained
from the ImageNet dataset. The investigation allowed us to achieve an F1 detection score of 92.34%. The
score was achieved with the ResNet50 network through the proposed method and implementing the learning
transfer. In addition, it was also concluded that the proposed method is different from the other conventional
methods with a significance level of 0.05 through the Kruskal Wallis test statistic.

INDEX TERMS Artificial intelligence, biomedical imaging, cancer, machine learning, medical diagnostic
imaging.

I. INTRODUCTION
Since the end of the 20th century and the beginning of
the 21st century, we have witnessed the new industrial
revolution, the second informatics revolution [1]. The emerg-
ing developments and technological advances have allowed
us to create increasingly powerful tools with incredible
performances in different areas, where medicine could not
be the exception [2]. Advances range from simple tasks
to tasks so complex that they were usually performed by
professionals or experts [2], [3]. These advances are largely
thanks to artificial intelligence (AI), one of the most awaited
paradigms since several decades ago [4]. It is perhaps a
little challenging to define artificial intelligence since many
authors establish intelligence as the ability to generate a
response to a stimulus or achieve a goal in a specific
environment [5]. In this sense, artificial intelligence can range
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from the most straightforward systems to highly complex
processes that resemble the cognitive processes performed by
the human brain [6], [7]. The latter is the desired approach,
where deep learning (DL) has managed to address some of
these processes, even surpassing human performance in some
tasks [8]–[10].

Moreover, DL is one of the fastest-growing topics in
recent years, arousing interest in various research areas that
rely on manual, extensive, or tedious processes, such as
medicine [11], [12]. Besides, DL artificial neural networks
have advantages that make them even more attractive. For
example, DL networks do not require prior feature extraction
and can be used directly on the raw data [13]. Moreover,
despite the complexity of the tasks, the network model is
usually governed by a few mathematical expressions [14].
While the model becomes complex because of the number of
layers that constitute it, the forte of deep learning is focused
on task performance and not on statistical or mathematical
inference, i.e., for most researchers, DL models can be
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treated as black boxes that need input data and labels to
replicate tasks (Supervised Learning) [15]. These examples
are detection, classification, segmentation, and prediction,
among the most common applications in medicine [16], [17].
-Unfortunately, not everything is so simple in DL-. One of the
main challenges is having a large amount of data to efficiently
train AI models in different tasks. This constraint is the most
critical point, especially in medicine, where access to images
is limited by cost or few study subjects. Besides, the images
require the authorization of the subjects, whomay refuse even
if their data are anonymized [18]. Consequently, strategies
to synthesize or augment data are becoming increasingly
common in studies with small data sets [19].

On the other hand, artificial intelligence (AI) has taken a
vital role in radiology, allowing it to automatically address
tasks such as lesion detection or image quantification [18].
Moreover, due to high effectiveness and reduced processing
times, AI (especially deep learning) has been highly involved
in cancer pathology or brain tumors, one of the most
recurrent diseases worldwide [20]. Brain tumors are a type
of cancer manifested by excessive and uncontrolled growth
of abnormally functioning cells [21]. The damage to the
cells is generated by different factors that can range from
genetic (increasing the risk of suffering from this pathology)
to external factors such as chemical substances or exposure to
high radiation sources [22]. In general, tumors are classified
into heterogeneous neoplasms that include differentiable
lesions (e.g., meningiomas) or highly invasive and poorly
differentiable lesions such as multiform gliomas [23]. Glioma
has the highest mortality rate among brain tumors, mani-
festing with increased progression of pathology. Statistics
show that glioma accounts for almost 80% of malignant
tumors [24], generating a 5-year survival rate of less than 21%
in people older than 40 years [25]. However, early detection
leads to a significant reduction in these statistics [26].
Fortunately, great efforts are invested today to address this,
and other targets related to brain cancer [27]. Research is
conducted using different tools, including DL, a science that
has been very popular in recent years in the radiological field.
For example, so far in 2021, DL research related to brain
cancer can be found, such as Radiation therapy planning
of head and neck cancer patients [28], automatic diagnosis
of brain tumors [29], detection and classification of brain
tumors [30]–[33], diagnostic feasibility assessment with DL
networks [34], detection of brain metastases [35], prediction
of survival in patients with infiltrating gliomas [36], the
prognosis of glioblastoma multiforme [37], analysis for
diagnostic biomarkers of glioma [38], segmentation of brain
tumors [39]–[42], segmentation in dosimetry in organs at
risk [43], and denoising to improve quality in subjective
imaging [44].

Recent research shows promising findings and results,
covering many applications in favor of brain tumor detection
and treatment. However, despite the good results highlighted
by the authors, few investigations have validity in the real
clinical context due to serious limitations. Mainly, the authors

highlight the limited access or the small amount of data
for training the models, preventing the generalization of
the results. For example, Olin et al. state that the models
used were trained with small data sets for head and neck
patients, limited to a study of no more than 800 scans [28].
Similarly, Jayachandran et al. have only 775 patients with
glioblastomas [34]. Similarly, Amemiya et al. work with
127 patients, stating that the data are small, which would
imply a better performance if the number of data is
augmented [35]. For their part, Tandel et al. are limited
to 130 patients with brain tumors; however, they avoid
this drawback by using transfer learning and augmenting
the data with image scaling and rotation [30]. Similarly,
Jiang et al. increase the number of images through flipping,
scaling, and smoothing [39]. Similarly, Wang et al. use
rotation, flipping, image warping, and color (contrast) change
through gamma function [41]. In general, most authors
performed the applications with a small data set; however,
they did not implement any data augmentation strategy or
learning transfer. Examples of these are: Menze, Al-Saffar,
Khairandish, Islam, Song, Poel, Yan, and Wong et al. [29],
[31], [32], [36]–[38], [43], [44].

The presented literature clearly shows the need to augment
the number of training data due to the limited available data
set. Moreover, the few studies that use data augmentation
do so without reporting which strategy is more efficient.
Therefore, in this work, we explore the different data
augmentation strategies on the performance of the ResNet50
network in brain tumor detection in magnetic resonance
images.

• This research work offers the following novel contribu-
tions:

• A review of conventional data augmentation methods is
presented.

• A new data augmentation method based on principal
component analysis is proposed.

• A comparative framework between different data aug-
mentation methods is proposed.

• The effect of transfer learning on the performance of the
convolutional neural network ResNet50 is compared.

• The results are evaluated through the non-parametric
Kruskal Wallis test, based on the distribution of means
of the data.

A comparison between the activation maps of the ResNet50
layers under the similarity coefficient is presented with
centered kernel alignment.

II. MATERIALS AND METHODS
A. DATASET
The investigation was based on The Cancer Genome Atlas
Low-Grade Glioma (TCGA-LGG) database [45], [46]. The
set has 110 participants and three types of image acquisition
sequences, with fluid-attenuated inversion-attenuated inver-
sion recovery (FLAIR) imaging being the sequence of choice
for data augmentation. The images are axial slices of size
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256 × 256 in uint8 format, i.e., images with 8-bit unsigned
integer data.

B. DATA PREPROCESSING
The images were only reformatted and normalized, leaving
the intensity values on the 0 to 1 scale in float32 format.
Deep learning methods are generally designed to work on the
raw data [47]–[49]; therefore, no further preprocessing was
performed on the images.

C. CONVOLUTIONAL NEURAL NETWORK
There are many deep learning neural networks, and this
approach is of great interest since greater depth allows the
network to perform more complex tasks [50]. However, the
increase in depth poses two main problems. First, deeper
networks require a larger number of training parameters,
hence a larger dataset to arrive at a high-performance
network, and second, depth limits training due to gradient
fading [51]. In this research, the different data augmentation
strategies are used to solve the first drawback and, to solve
the second one, the ResNet50 network was chosen [52]. The
network is described in detail in appendix A.

D. DATA AUGMENTATION
The inherent need for large amounts of data in deep learning
networks has encouraged the development of many strategies
ranging from simple transformations such as geometric
transformations to complex images composed of mosaics.
Among the most commonly used techniques [19], [53], are
the following basic techniques:
• Translation [54], [55].
• Rotation [55], [56].
• Flip
• Resizing
• Distortion [57]–[60].
• Cropping [61].
• Image overlay [19].
• Noise injection [62].
• Color space [63].
• Linear filters [64], [65].
• Random deletion of frames [66].
The methods are classified as basic and/or deformable

and represent about 86% of the data augmentation methods
applied in medical imaging for deep learning [53]. Each
method listed is described in detail in Appendix B.

1) PCA-BASED AUGMENTATION (PROPOSED METHOD)
Principal component analysis (PCA) is generally used to
reduce the dimensions of a data set or even eliminate noise
if it is used as an encoder-decoder [67]–[69]. The method
takes a series of samples or observations and creates new
components generated as the linear combinations of the first
ones. The components are generated hierarchically, and each
component represents a percentage of the variability of the
data, where the first component z1 has the largest percentage,
and each new component has a smaller percentage than the

previous one. Mathematically, the first principal component
has the form expressed in Equation (1) or (2).

z1 = u11x1 + u12x2 + u13x3 + . . .+ u1mxm (1)

z1 = U1 · X (2)

In other words, let X be an observation of m variables, i.e.,
X ∈ Rm. The observation can be represented from a smaller
number of latent variables Z , as shown in Equation (3).

Z = WX (3)

W =


U1
U2
...

Un

 =

u11 u12 . . . u1m
u21 u22 . . . u2m
...

...
. . .

...

un1 un2 . . . unm

 (4)

where, Z is the vector of n principal components, with n <
m. In other words, Z t equals (z1, z2, z3, . . . , zn), with each
principal component zi being the linear combination of the
original m variables and W the matrix of the coefficients
of these linear combinations, which are calculated following
the following considerations: For the first component z1 the
maximum variance subject to the constraint of Equation (5)
must be satisfied.

U1U t
1 =

m∑
i=1

u1iu1i = 1 (5)

Subsequent components are calculated under the same
reasoning, considering that the new components must be
orthogonal to the previous ones, i.e., the i-th component must
fulfill the restriction of Equation (6).

UiU t
j = 0 ∀j < i (6)

For the case of images, the reasoning is the same. However,
each image would represent an observation X and each pixel
of the image a different feature. Thus, for an image of 128×
128 there would be 16.384 features. Therefore, it is possible
to represent the pixels of an image in a smaller number of
features while preserving the higher variability of the images.

The transformation by PCA to several latent variables is
reversible, i.e., the original variables can be obtained from
the principal components, and the greater the number of
components taken, the greater the similarity in the reconstruc-
tion of the original variables. Generally, the reconstruction
of images with a smaller number of components is used to
eliminate noise because components associated with such
noise are eliminated [67]. The process is based on finding the
projections of the components on the original centered space,
as shown in Equation (7).

X = W t Ẑ = W tWX̂ (7)

where, X̂ is the observation with them variables centered with
respect to their meansµi (i = 1, . . .m), for the case of several
observations.

As mentioned above, PCA can be used to eliminate noise
by taking a smaller number of principal components for the

VOLUME 10, 2022 23219



A. Anaya-Isaza, L. Mera-Jiménez: Data Augmentation and Transfer Learning for Brain Tumor Detection

FIGURE 1. Graphical description of the proposed new method for data
augmentation based on PCA.

reconstruction. In other words, eliminating the last principal
components would preserve most of the explained variance
and, therefore, the fundamental essence of the image would
be preserved. In this order of ideas, altering the principal
components with random noise would imply the partial
modification of the image, preserving its primary attributes,
i.e., it could be possible to generate new images from a
reference image.

Based on the above considerations, it was proposed
to generate images as follows: The original images were
flattened to vectors of 16, 384 features. The features were
projected into a latent space of lower dimensionality through
PCA. Each vector was multiplied pointwise (Hadamard
Product) by a random noise vector Vr with the same
dimensions but with values from a threshold t to 1 (Vr ∈
[t, 1]). The threshold was determined as t = 1 − noiseR,
where noiseR is the proportion of noise added. For example,
if noiseR equals zero, the values of Vr would be constrained
to 1, implying that the latent variables would not be altered.
Finally, the modified latent variables Z ′ were used to generate
the new features through the inverse transformation. The
process is exemplified in Figure 1.

Mathematically, the model of the new images would be
given by the expression of Equation (8).

X ′ = W tZ ′ (8)

Z ′ = (Ẑ � Vr ) (9)

E. TRANSFER LEARNING
As mentioned above, DL networks need a large amount of
training data due to the high number of parameters. In this
sense, transfer learning is another widely used method to
initialize the model weights, avoiding training from zeros
or random distributions. The process consists of taking a
network and training it with an extensive database, allowing
filters to take the weights to create the complex activation
maps associated with that dataset. Generally, if the database
is large enough, the network learns the task with a high

degree of generalization. The attribute can be retained for an
equivalent task with another dataset, and the network would
generate good results if subsequently trained with the new
data, even if the data is sparse [70], [71]. Following this
order of ideas, data augmentation methods were trained from
zeros and implementing transfer learning with the ResNet50
network and the ImageNet natural image database [72].

F. LOSS FUNCTION
Although many loss functions exist, cross-entropy remains
one of the most reported and used for the case of two-
class classifications [73], as is this case. Precisely, the
function measures the difference between two probability
distributions, calculating the entropy associated with each
class or element. The concept can be applied to images, taking
each pixel as one of two distribution elements (e.g., healthy
tissue and tumor) [74]. The binary cross-entropy (LBCE ) is
defined mathematically, as shown in Equation (10).

LBCE
(
y, ŷ
)
= −

(
y log

(
ŷ
)
+ (1− y) log

(
1− ŷ

))
(10)

where, y is the actual data set and ŷ is the predicted set.

G. EVALUATION METRICS
As an important part of an objective comparison of themodels
used, our approach was based on four evaluation metrics:
Accuracy, Sensitivity, Specificity, F1 score, and Precision.
Themetrics are expressed as shown in Equations (11) through
(15) [75]–[77].

Accuracy =
TP+ TN

TN + TP+ FP+ FN
(11)

Sensitivity =
TP

TP+ FN
(12)

Specificity =
TN

TN + FP
(13)

F1score =
2TP

2TP+ FP+ FN
(14)

Precision =
TP

TP+ FP
(15)

The above metrics are expressed in terms of true positives
(TP), true negatives (TN), false positives (FP), and false
negatives (FN). In addition, for this specific case, the metrics
represent the following observations:
Accuracy: The ability of a network to correctly classify the

different classes, i.e., tumor and non-tumor.
Sensitivity: The ability of a network to classify actual

tumors.
Specificity: The ability of a network to correctly classify

real non-tumor images.
F1 Score: The ability to correctly identify the different

classes in proportion to the number of classes.

H. STATISTICAL ANALYSIS
The Kruskal Wallis test was used for statistical estimation
between groups, which evaluates whether two or more
samples belong to the same distribution based on the median
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of these samples. The test uses the null hypothesis with the
assumption that all samples come from the same distribution.
Then, for a p value less than 0.05, it would imply that the null
hypothesis is false and, therefore, a statistically significant
difference would be established between the two groups
tested. Note that the value of 0.05 or significance level can
have a lower or higher value. However, this value is the most
accepted since it represents only 5% of concluding that there
is a difference when there is none [78]. Themethod, assuming
k groups with n observations, defines the H statistic given by
the mathematical expression of Equation (16).

H =
12

N (N + 1)

k∑
i=1

ni(ri. − r)2 (16)

rij =

∑ni
i=1 rij
ni

(17)

where, ni is the number of observations in the i-th group, N is
the total number of observations in the two groups, rij is the
rank of the i-th observation over the j-th observation among
all observations and k is the number of groups [79], [80].

I. CENTERED KERNEL ALIGNMENT (CKA)
Finally, to understand the behavior of neural networks
as a function of different layers, the similarity between
layers was included through the centered kernel alignment
method [81]. Particularly, CKA takes two feature maps as
inputs and calculates the normalized similarity, as shown in
Equation (18).

CKA(K ,L) =
HSIC(K ,L)

√
HSIC(K ,K )HSIC(L,L)

(18)

where, K and L are the similarity matrices of any two
feature maps (see Equation (A.1)), HSIC is the Hilbert-
Schmidt independence criterion for similarity based on the
dot product [81], [82].

J. EXPERIMENTAL DESIGN
The different data augmentation strategies were compared
by training the ResNet50 network with the TCGA-LGG
database. The data were normalized and split into training
and validation data. The ResNet50 network was trained from
scratch and implemented transfer learning from the trained
network with the ImageNet database. Each training was
executed with the k-foldsmethod using 10 folds. The network
was used under the binary cross-entropy loss function.
In addition, the performance of the network during training
was validated with the accuracy metric. Subsequently,
the network was evaluated with the F1 score, accuracy,
sensitivity, specificity, and precision metrics through the test
data.

It is worth noting that the network was run an average of
40 times under the following hyperparameters:

- Loss function: binary cross-entropy.
- Number of epochs: 50
- Optimizer: Adadelta

FIGURE 2. Image generation through PCA-based data augmentation.

- Batch size: 10
- Initialization of weights: Uniform Glorot
- Bias initialization: Zeros
Finally, the different configurations were compared

through the Kruskal Wallis statistical model, where the
p-value between these configurations was calculated to
establish statistically significant differences. In addition, the
similarity matrices generated by the centered kernel align-
ment methodwere also compared. The ResNet50 architecture
was modeled with the main Keras and TensorFlow libraries
under the Python programming language. The execution was
performed on the Colab platform configured with 25 GB of
Ram and Tesla T4 GPU.

The implemented codes are publicly available in the
following GitHub repository: (https://github.com/Qsinap/
Data_augmentation_with_PCA).

III. RESULTS
Initially, the images were generated through the proposed
method based on principal component analysis (PCA). The
reconstruction of the images with different noise ratios is
illustrated in Figure 2. The results clearly show that the
images retained part of their spatial characteristics, even for
the case with a high percentage of noise (0.9 Noise equivalent
to 90%). Consequently, we used the images with 90% random
noise for data augmentation in this work.

As mentioned above, the network was trained under
the different data augmentation methods, with and without
transferring theweight values (Transfer Learning). Therefore,
the results shown below obey both cases. It should be
clarified that the tables and spider graphs are shown in
percentage values, while the box-and-whisker and training
figures are given in their fractional equivalents, i.e., with
values from 0 to 1. Table 1 shows the maximum values
achieved by the data augmentation methods. Additionally,
this is ordered from highest to lowest, taking the F1 score as
a reference. The results show that the proposed PCA-based
method achieved the maximum values in both cases, i.e.,
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TABLE 1. Maximum results of the 12 data augmentation methods with and without transfer learning.

FIGURE 3. Spider graph with the five network evaluation metrics. Values obtained with the test data for network a) without learning transfer
and b) with learning transfer.

with the model weights initialized at zero and learning
transfer. Additionally, it can be seen that the scores reached
higher values with learning transfer in all data augmentation
methods, showing the effectiveness of such a strategy.

Similarly, Figure 3 shows the results of Table 1, being
possible to observe that some methods presented similar
behaviors. For example, random frame removal, overlapping,
and noise addition had relative values in all five metrics.
On the other hand, the proposed method is highly effective in
both cases, i.e., without Transfer Learning and with Transfer
Learning, generating the largest pentagons.

Additionally, it is worth noting that the trend in the scoring
order of data augmentation methods was partially preserved,
i.e., the proposed method generated the best results in the two
cases. Similarly, noise addition and superposition maintained

their positions, being the worst-performing strategies. In fact,
the results show a maximum variation of up to 3 positions,
where Flip, Distortion, and Random frame deletion, moved
up three positions for the case with transfer learning.

Figure 4 presents the distributions of the 40 runs for each
data augmentation method. Results were generated with the
test data for the F1 score, accuracy, sensitivity, and specificity
metrics. The distributions presented scores above 0.5, and it
is even observed that the limits of the distributions reached
values close to 1, demonstrating the effectiveness of the
network combined with the data augmentation strategies.
Additionally, the figure shows that the proposed method
presented a compact distribution with the interquartile ranges
with a more significant upward trend than the other methods.
The behavior of the proposed method was maintained in
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FIGURE 4. Score distributions of the metrics of a) F1 score, b) accuracy, c) sensitivity and d) specificity as a function of the 12 data
augmentation methods. Network without learning transfer.

FIGURE 5. Score distributions of the metrics of a) F1 score, b) accuracy, c) sensitivity and d) specificity as a function of the 12 data
augmentation methods. Network with learning transfer.

all four metrics, where it reached values close to 1 in the
sensitivity and specificity metrics.

Similarly, Figure 5 presents the distributions of the 40 runs
for each data augmentation method, but with learning
transfer. In particular, the distributions generated with the
learning transfer presented an upward shift, i.e., the results

improved in all four metrics. Additionally, the figure shows
that the proposed method presents the best distribution.
Therefore, the proposed method is more likely to obtain a
network with better performance.

The results presented better scores with the proposed
method; therefore, only the training and similarity matrices
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FIGURE 6. Training of the ResNet50 network with data augmentation by PCA as a function of epochs for training and validation data. Accuracy
with the model trained from zeros a) and with learning transfer c). Loss with the model trained from zeros b) and with learning transfer d).

FIGURE 7. Similarity between layers given by the center kernel alignment coefficient. The similarity of the ResNet50 network a) trained with
PCA data augmentation without learning transfer and evaluated with the MR images. b) trained with PCA data augmentation with learning
transfer and evaluated with the MR images. c) trained with the ImageNet images and evaluated with the same images (reference network for
learning transfer).

for the ResNet50 network with the PCA-based method are
shown below. Additionally, the results with and without
learning transfer are also included.

Figure 6 shows the training of the ResNet50 network for
training with data augmentation by PCA, where Figure 6a
and Figure 6b present the results starting from zeros and
Figure 6c and Figure 6d with transfer learning. The results
show similar behavior, i.e., progressive growth of model
accuracy and decreasing losses as a function of epochs. Also,
it is worth noting that the error bands are small, which
implies a homogeneous training between the different model
runs. On the other hand, the main difference between the
training from zeros and the one implemented with the transfer
learning lies in the fact that, for the first case, the network
did not reach values as high as in the second case. In other

words, transfer learning allowed for higher accuracy and
reduced loss. In addition, the training and validation curves
did not present significant differences, guaranteeing reduced
overfitting, as can be deduced from the results obtained in
Table 1.

Figure 7 shows the similarity between the 190 ResNet50
network layers for the case of training from zeros and
with learning transfer. Additionally, Figure 7 presents the
similarity between layers for the network trained with the
ImageNet data, with the activation maps generated by the
same dataset; in other words, Figure 7c is the reference
similarity matrix. The reference matrix has little similarity
between the farthest layers, i.e., between the first and the last
layers. On the contrary, the closest layers present coefficients
with similar values.
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TABLE 2. p-value for the Kruskal Wallis test statistic between the different data augmentation methods generated results.

In the case of transfer learning training (Figure 7b), the
pattern is preserved in the matrix; however, the similarity
between layers increases in the layers far from each other.
Finally, training from zeros (Figure 7a) essentially loses the
pattern concerning the reference matrix; however, the layers
at the extremes still have reduced similarity.

Table 2 and Table 3 show the p-value of the Kruskal
Wallis test statistic. Table 2 shows the results between the
data augmentation methods for the two cases: from zeros
and with learning transfer. For the first case, it is observed
that there is a more significant number of pairs of methods
that have p-values above the significance level (greater than
0.05 highlighted in bold), indicating that the methods come
from the same distribution, i.e., they have no difference
between them. On the other hand, the proposed method only

had a p-value above the significance level with the Cropping
method with the network without learning transfer. Almost
similarly, the proposed method did not have p-values above
the significance level with any method in the case of the
trained network with learning transfer, i.e., the proposed
method is statistically different from the others.

Finally, Table 3 shows no p-value above the significance
level, i.e., all methods have statistically significant differ-
ences when trained from zeros and with learning transfer,
showing the high effectiveness of weight transfer.

IV. DISCUSSION
This paper presents a robust experimental framework for eval-
uating different data magnification methods in brain tumor
detection with magnetic resonance imaging. The study was
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TABLE 3. p-value for results trained from zero and implemented with
transfer learning.

based on 12 different data augmentation methods, including a
new image generation method based on principal component
analysis (PCA). Additionally, a comparison between the
training process from zero and with transfer learning is
presented. The results showed the high effectiveness of the
proposed method, achieving a maximum F1 score of 92.34%
and outperforming the other evaluatedmethods. Additionally,
all data augmentationmethods were run in 40 runs to generate
the distributions of model behaviors, with a better distribution
observed for the proposed method under training with and
without learning transfer. The scores of the distributions
were subjected to the Kruskal Wallis non-parametric test
statistic, where it was estimated that the proposed method
is statistically different with a significance level of 0.05,
guaranteeing the high effectiveness concerning the other
conventional methods.

Although the results are promising, the work has some
limitations or concepts that were not addressed in this article
and would be interesting to explore as future work. For
example, data augmentation was explored for each strategy
individually; however, in some research, data augmentation
is used by combining two or more strategies, creating a larger
amount of data from the same reference image.

On the other hand, our focus was on 1.5 Tesla FLAIR
images and, therefore, the results are extrapolated only to this
type of image. Future work needs to be explored with other
types of sequences, such as T2, T1, with contrast agents or
proton density, and even with images generated by resonators
of higher field strength (e.g., 7 Tesla). In this same sense,
the study focused on the ResNet50 network since it is one of
the most reported and efficient detection tasks. However, it is
necessary to implement the strategies on other convolutional
networks to generalize the results obtained in this work.

The proposed method showed promising results; however,
the technique was used with a noise percentage of 90% on
the principal components, being the noise ratio a variable
that was not considered for the training of the models.

In addition, since the images are subject to noise randomness,
it is possible to generate several images from one. Therefore,
it would be possible to explore the performance of the
networks by augmenting the same image several times with
this strategy. Finally, the study was performed on a single
dataset, presenting homogeneity in the data, implying biased
results towards that dataset.

V. CONCLUSION
An experimental framework for detecting brain tumors in
magnetic resonance images was proposed, comparing 12 data
augmentation methods with a new method based on principal
component analysis. The generated images retained part of
the spatial features, allowing to train the ResNet50 network
until reaching an F1 score of 92.34%. The network, together
with the proposed method, proved to be statistically different
from conventional methods with a significance level of 0.05,
guaranteeing the high effectiveness of themodel. On the other
hand, it was also possible to establish that data augmentation
presents better results, generating significantly better models
than models trained from zero.

APPENDIX
A. CONVOLUTIONAL NEURAL NETWORK RESNET50V2
The ResNet50v2 network consists mainly of convolutional
layers, which use a convolutional operator. The operator, also
known as filter or kernel, processes the image generating
feature maps that are in turn used by the subsequent
convolutional layers. The maps are patterns or abstractions
that generally lack statistical inference but are the funda-
mental basis of the network to arrive at the desired task
(e.g., detection) [83]. The ResNet50 network uses a total
of 50 convolutional layers (see Figure 8); each map is
established by the same mathematical model described by
Equation (A.1).

A(l)j = ϕ
(l)

b(l)j + M (l−1)∑
i=1

A(l−1)i ∗ K (l)ij

 (A.1)

here, K (l)ij represents the j-th kernel of the l-th layer. ∗ is
the convolutional operation between the kernel and the input
feature map, which corresponds to the previous convolutional
layer’s output and has a depth of i feature maps. b(l)j is
the bias associated with the convolutional operation with
the j-th kernel and ϕ(l) is the activation function of that
layer [84], [85].

Additionally, the network is based on the concept of
residual connection or mapping. In particular, the connec-
tion creates trajectories parallel to the convolutional layer
sequences, allowing smooth transmission of the gradient
through the layers and preventing the gradient value from
being zero. Furthermore, the connection forces the network
to learn the residual mapping f (x) − x, being easier to train
if the ideal residual mapping is the identity function f (x) = x
(see Figure 8c) [86]. The convolutional layers are connected
through such connections every three layers, as illustrated
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FIGURE 8. ResNet50 convolutional neural network. a) Block of three convolutional layers with the residual connection. b) General architecture
of the ResNet50 network. c) Residual connection and mathematical model.

in Figure 8a and Figure 8b. Therefore, the output of each
residual connection would be given by Equation (A.2) or its
equivalent Equation (A.3), where R represents the output of
the residual block.

A(R)j = ϕ
(l)

b(l)j + M (l−1)∑
i=1

A(l−1)i ∗ K (l)ij


+ϕ(R)

b(R)j +

M (l−3)∑
i=1

A(l−3)i ∗ K (R)ij

 (A.2)

A(R)j = ϕ
(l)

b(l)j + M (l−1)∑
i=1

A(l−1)i ∗ K (l)ij


+ϕ(R)

b(R)j +

M (R−1)∑
i=1

A(R−1)i ∗ K (R)ij

 (A.3)

On the other hand, although the ResNet50 network receives
its name because it comprises 50 convolutional layers (see
Figure 8.b), it has four types of layers apart from the
convolutional layers, residual mapping input, and output.
The additional layers are activation, pooling, batch nor-
malization, and padding. In general, the ResNet50 consists
of the 190 layers shown in Figure 9, being this the
network implemented in this research. The additional layers
are described in the following sections, except for the
padding layer because it simply fills the images from zero
to recover the original size lost after the convolutional
layers.

1) ACTIVATION FUNCTION
In the mathematical models of the previous section, the
activation function was defined and denoted by the Greek
letter ϕ. The function is one of the fundamental elements in

neural networks since it allows emulating the activation of the
artificial neuron as a biological one would. The operation is
constituted by a nonlinear relationship between the weighted
input and the neuron’s output and can vary depending on
the design. However, we used the ReLu function [87] in this
study since it allows faster training than other functions while
maintaining its nonlinearity [88].

2) POOLING
In the convolution process, small changes on the input
image generate small changes in the feature maps. Then,
pooling layers were devised to endow the convolutional
layers with some transitional invariance. Generally, the
process calculates the maximum (or average, as the case
may be) value for patches of a feature map and uses it to
create a downsampled (clustered) feature map. In this sense,
clustering reduces the size of feature maps, simplifies the
model, and reduces the computational burden [89], [90].

3) BATCH NORMALIZATION
Batch normalization was devised to mitigate the problem
of changing internal covariates produced by the change in
the internal distribution of each feature map and the random
initialization of the weights. The effect limits the learning rate
but can be reduced by modifying the distribution toward a
normal distribution, i.e., with mean 0 and standard deviation
1, as shown in Equation (19). The normalization is adjusted
by training to an optimal distribution by a linear transfor-
mation, as shown in Equation (20). The parameters γ and
β are learned by the model generating the new distribution,
which improves the model performance [91]. The process
also smooths the gradient flow and acts as a regularization
layer [92]. Therefore, no additional regularization method
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FIGURE 9. The complete structure of the resnet50 network.

was used in the implemented network.

A
′(l)
Nj =

A(l)j − µ
(l)
B√(

σ
(l)
B

)2
+ ε

(19)

A(l)Nj = γ · A
′(l)
Nj + β (20)

In Equations (19) and (20), A
′(l)
Nj represents the normalized

feature map of the l-th layer, A(l)Nj is the optimal distribution

of the same layer, A(l)j is the non-normalized input (see

Equation (A.1)), µ(l)B and σ (l)B represent the batch mean and
variance respectively and ε is a stabilization coefficient, used
to prevent the denominator from taking the value of 0.

B. DATA AUGMENTATION METHODS
This section shows how the algorithms of the main data
augmentation methods work. In addition, the mathematical
model governing each model is also included.

1) TRANSLATION
As mentioned above, the most common and simple methods
are geometric transformations. The first of these is transla-
tion, which, as can be deduced from its name, the image is
translated preserving the relative positions between pixels,
but not its original position. Mathematically this operation is
described by Equations (A.4) and (A.5).

x ′ = x + tx (A.4)

y′ = x + ty (A.5)

where, x and y are the original positions of each pixel and x ′

and y′ are the new positions resulting from the translation tx
and ty. In some cases, Equations (A.4) and (A.5) are matrix
represented as shown in Equation (A.6).(

x ′

y′

)
=

(
x
y

)
+

(
tx
ty

)
(A.6)

FIGURE 10. Horizontal translation.

here, the column vector is the translation vector. It is worth
noting that, although Equation (A.6) is shown for two
dimensions (on the x and y axis), the transformation can be
applied for n dimensions, where the transformation vector
will be a column vector of dimensions n [54], [55]. The above
process is illustrated in Figure 10.

2) ROTATION
Rotation-based data augmentation is performed by rotating
the image concerning its original position. Similar to
translation, rotation consists of retaining the same relative
position of the pixels but with a new coordinate axis system.
Mathematically the transformation is given by Equation
(A.7). (

x ′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
(A.7)

here, again the rotation matrix is a square matrix where
the angle θ is the rotation of the image concerning the
origin [55], [56]. Rotations can take any angle, with rotations
multiples of 90◦ being the most used in square images.
In addition, rotations are generally taken concerning the
image center and not from the origin, as illustrated in
Figure 11.
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FIGURE 11. 90◦ clockwise rotation.

FIGURE 12. Vertical flip.

3) FLIP
Image flipping is another geometric transformation, where
the position of the pixels is inverted concerning one of the two
axes (in the case of two-dimensional data). The mathematical
model is governed by Equation (A.8), and the process can be
seen in Figure 12.(

x ′

y′

)
=

(
xmax
ymax

)
−

(
x
y

)
(A.8)

where, xmax and ymax are the last positions reached by the
image pixels on the respective axes.

4) RESIZING
Resizing or rescaling consists of assigning the new posi-
tions in proportion to a scale factor, which may be
the same for each axis or have different proportions.
In particular, the change of scale can be interpreted as
zoom in (scale factor >1) or zoom out (scale factor
<1). Mathematically the resizing is expressed as shown in
Equation (A.9). (

x ′

y′

)
=

(
fx 0
0 fy

)(
x
y

)
(A.9)

where, fx , and fy are the scale factors for the x and y
axes, respectively. Figure 13 shows two examples of image
resizing.

5) DISTORTION
Distortion shifts the position of pixels to new positions
that follow some function. Even this strategy can be the
combination of one or several translations, rotations, and
resizing. For example, the distortion of Equation (A.10)

FIGURE 13. Example of image resizing with a scale factor less than 1 and
one greater than 1.

FIGURE 14. Distortion.

contains the rotation, resizing, and translation processes
in that respective order. It should be noted that Equation
(A.10) represents the transformations in the homogeneous
coordinates [57]. x ′

y′

1

 =
 fx · cos θ −fx · sin θ tx
fy · sin θ fy · cos θ ty

0 0 1

 x
y
1

 (A.10)

Figure 14 shows an example of distortion on an axial image
of the brain.

Geometric transformations in discrete space (such as
digital images) can generate new positions that do not
correspond to an integer pixel. Consequently, transformations
are used with interpolation methods to find intensity levels
that correspond to discrete pixel positions. For example,
Figure 15 shows the resizing of 2.5 on a 3 × 3 figure.
The process would assign new positions to the initial pixels.
However, these positions would not correspond to discrete
positions, and, in addition, there would be intermediate
pixels that would not have an assigned value. In this
sense, interpolation becomes necessary to determine the
intensity levels in the discrete positions and the interme-
diate pixels, being linear and cubic interpolation the most
used [58]–[60].

6) CROPPING
Image blending is a rarely implemented strategy. The process
involves taking elements from several images with the same
features to generate a new image like a mosaic [19], [61]. For
example, Figure 16 shows the composition of a new image
from the regions of 9 different images with the same features
(axial images).
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FIGURE 15. Representation of the resizing of a figure and interpolation.

FIGURE 16. Mixing images with the same characteristics to generate a
new image like a mosaic.

7) IMAGE OVERLAY
Another way of blending images is overlapping, as shown
in Figure 17. The process consists of taking two images of
the same size and matrix summing them multiplied by an
attenuation factor [19].

8) NOISE INJECTION
Noise aggregation consists of summing a matrix of the same
size with random values, usually with normal distributions
(Gaussian) [62]. The process can help networks learn
more robust functions by removing or hiding some image
information, as illustrated in Figure 18 [19].

FIGURE 17. Superimposition of two images with the same characteristics.

FIGURE 18. Random noise injection.

FIGURE 19. Changing the color space of a grayscale image to HSV, Winter,
Spectral, Inferno, and Hot spaces.

9) COLOR SPACE
Generally, images are stored as arrays of three channels
with the same dimensions. The channels represent each of
the intensity levels that make up the RGB image, i.e., the
intensities of red, green, and blue. Therefore, it is possible
to change the image’s color while preserving its spatial
characteristics, as shown in Figure 19. The process is known
as color space shift and can be performed in any number of
spaces since each space combines the original channels in
different proportions.

Color spaces can even be created by assigning to each
intensity level a combination of the three RGB channels, i.e.,
a grayscale image (one channel) can be converted to an RGB
space (three channels) [63]. The variety of color spaces is so
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FIGURE 20. Blurring through a Gaussian filter.

FIGURE 21. Random deletion of frames.

extensive that even PCA-based developments can be found,
as performed by Krizhevsky et al. [93].

10) LINEAR FILTERS
Another of the most used strategies is linear filters. Generally,
filters are used to focus and blur the image, as illustrated
in Figure 20. The method consists in sliding the filter
through the whole image, obtaining new values in the new
image [64]. Particularly, this process is known as convolution
and, in fact, is the fundamental basis in convolutional neural
networks [65].

11) RANDOM DELETION OF FRAMES
Deletion is a strategy inspired by regularization based on
neuron dropout. The process randomly eliminates regions of
the image, preventing the neurons from learning part of the
information, as illustrated in Figure 21 [66].
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