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ABSTRACT This paper provides a subspace method for closed-loop identification, which clearly specifies
the model order from noisy measurement data. The method can handle long I/O data of the target system to
be noise-tolerant and determine the model order via nuclear norm minimization. First, the proposed method
compresses the long data by projecting them to an appropriate low dimensional subspace, then obtains a low
order model whose order is specified by a combination of data compression and nuclear norm minimization.
Its effectiveness is demonstrated through detailed numerical examples.

INDEX TERMS Closed-loop system identification, nuclear norm minimization, subspace identification
method.

I. INTRODUCTION
It is essential to construct mathematical system models in
control system design and analysis. Among various sys-
tem modeling problems, closed-loop identification is often
necessary for many engineering applications. For example,
when the target system itself is unstable, we must collect its
I/O data in a stabilized closed-loop setting. Even when the
target system itself is stable, feedback control is required
to collect the data at certain operating points. Thus, data
acquisition under feedback control is often required in prac-
tice due to safety/economic reasons. In addition, if we look
at networked control systems or large-scale interconnected
systems, it is difficult to identify the whole system simulta-
neously. Instead, we have to identify each subsystem where
there exists some feedback from the other subsystems. Hence
closed-loop identification becomes more and more important
these days. Since it is well known that closed-loop identi-
fication is difficult due to the correlation between the mea-
surement noise and the input, various methods have been
extensively developed so far (see survey papers, e.g., [1], [2]).

In the prediction error framework [3], the closed-loop iden-
tification methods may be classified into three categories,
namely, (a) direct identification, (b) indirect identification,
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and (c) joint input-output methods [2]. The first approach
uses only the I/O data of the target system while ignoring
the presence of feedback. Hence the controller could be of
the higher-order or nonlinear. Instead, accurate noise mod-
eling is necessary, which is difficult in practice. The second
approach requires the exact knowledge of the feedback con-
troller (except the Dual-Youla approach mentioned later), and
the obtained model tends to be of higher-order. The third
approach identifies both the target system and the controller
in the loop from the I/O data with the excitation signal infor-
mation, but both the target system and the controller should be
linear. One common weak point of most methods (in (a), (b),
and (c)) is that they may not be suitable for the identification
of (open-loop) unstable systems due to numerical problems.
This point may not be well-recognized except [4]. As for the
identification of unstable systems, the Dual-Youla method [5]
is known to be quite effective, which is an indirect method and
transforms the closed-loop identification problem (for a pos-
sibly unstable system) into an open-loop problem (for a stable
system). Furthermore, the accuracy of the identified model
does not depend on the feedback controller model so much.
This method has been further developed by [6] and [7], which
may accept non-accurate (and possibly nonlinear) controller
models. However, one big practical issue is how to specify the
model order in advance. The identified model accuracy could
strongly depend on this class.
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While, within the framework of the subspace identification
methods, various methods have been developed so far to
handle the closed-loop data (see e.g., [8]–[11]). Joint input-
output subspace approach can be found in [12], [13]. Innova-
tion estimation approach was developed by [14]. Two stage
methods proposed by [15]–[17] may provide us with unbi-
ased models. However, these methods may not be suitable
for open-loop unstable systems, or the results may not be
reliable when the feedback controllers are of high order or
nonlinear. On the other hand, SSARX (State Space Auto
Regressive with eXogenous input) [18] and its variant PBSID
(Prediction-Based Subspace IDentification) [19] are direct
methods and do not have such drawbacks. These methods
work for stable/unstable systems irrespective of the controller
complexity. The key is to use innovation form and identify
higher-order vector ARX models first, and then some model
reduction steps are employed. This approach can be regarded
as one of themost promisingmethods (see [10]). The origin of
this approach can be traced back to [8]. In the subspace identi-
fication, the system order is usually selected from the singular
values of some matrix (related to the so-called extended
observability matrix). Unfortunately, the system order selec-
tion is not automatic (i.e., not so straightforward) in most
cases. In addition, this approach also requires an accurate
noise model to obtain a bias-free plant model. However, this
is not easy at all in practice.

As for the automatic model order selection, the nuclear
norm minimization has been employed in recent subspace
identification literature (e.g, [20]–[24]). The nuclear norm
minimization is known as a powerful convex relaxation for
the rank minimization problem. Hence it would be useful in
determining the system order. In particular, N2SID (Nuclear
Norm Subspace Identification) [24] employs the innovation
form and provides an interesting identification framework.
However, most papers employing nuclear normminimization
focus on open-loop identification except [25], which com-
bines PBSID with N2SID for closed-loop subspace identi-
fication. Hence it is not still clear whether this approach will
work in closed-loop. More importantly, one disadvantage of
the nuclear normminimization is that it requires a heavy com-
putation burden. Therefore, the existing methods can handle
very short I/O data, and SNR(signal to noise ratio) should be
very high to obtain an accurate plant model. Consequently,
it is not clear if nuclear norm minimization is useful enough
in practical identification problems with noisy data.

The purpose of this paper is to provide a subspace method
for closed-loop identification, which clearly specifies the
model order against noisy measurement data in the pres-
ence of unknown feedback controllers. For this purpose,
the method should be able to handle arbitrarily long data
in order to be noise-tolerant (i.e., robust against any col-
ored noise and low SNR) and should employ the innovation
form to handle unstable systems as well as stable systems.
First, we compress the data by projecting them to a low
dimensional subspace which does not have any correlation
with measurement noise. Then, based on a nuclear norm

minimization with the compressed data, the system order is
selected automatically, and the model of the selected order is
obtained immediately. In order to evaluate the effectiveness
of the proposed method, detailed simulation results will be
given. In the simulation, various stable/unstable systems are
accurately identified in the presence of heavy (and colored)
measurement noises under which the existing reliable sub-
space identification method may not work.

The earlier version of this work can be found in [26]. This
paper provides an improved algorithm, where it is unneces-
sary to include any tuning parameter, and contains detailed
numerical examples for validation.

We use the following notation. Hn×m
k×l denotes the set of

block Hankel matrices which consists of n row blocks and
m column blocks and each block is k×l matrix.Tn×mk×l denotes
the set of block Toeplitz matrices which consists of n row
blocks and m column blocks and each block is k × l matrix.
Note that each element inHn×m

k×l (orTn×mk×l ) is a nk×ml matrix.
N (µ, σ 2) denotes the normal distribution with mean µ

and variance σ 2. U(a, b) denotes the uniform distribution
between a and b.

II. PROBLEM SETTING
We consider the stabilized closed-loop system shown
in Fig. 1. The plant P is described by

xp(k + 1) = Apxp(k)+ Bpu(k) (1)

y(k) = Cpxp(k)+ Dpu(k)+ η(k) (2)

for k = 1, 2, . . ., where xp(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rp

are the state, the input and the measured output, respectively.
The plant output measurement is contaminated by η(k) ∈ Rp

which is given by

η(k) = H (q)w(k) (3)

with some white noise w(k) and an unknown noise shaping
filter H which is stable. Here, q denotes the forward shift
operator (i.e,, qw(k) = w(k + 1)). The stabilizing controller
K is unknown which could be of the high order or nonlinear.
The vector r(k) ∈ Rm is the external excitation signal which
is not correlated to the measurement noise and is specified by
the user. We assume that both u(k) and r(k) are rich enough
to identify the plant.

The purpose is to determine the minimal system order n
and identify

P(q) := Cp(qI − Ap)−1Bp + Dp

from the available data

{u(k), y(k), r(k) | k = 1, 2, · · · ,N }

without any knowledge of K and H .

III. SUBSPACE IDENTIFICATION
In this section, we will briefly describe the subspace identifi-
cation method which is used in this paper.
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FIGURE 1. Closed-loop system.

We employ the innovation form given by

x(k + 1) = Ax(k)+ Bu(k)+ Kee(k) (4)

y(k) = Cx(k)+ Du(k)+ e(k) (5)

where x(k) ∈ Rn denotes the estimated state, A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m and Ke ∈ Rn×p are
matrices to be determined. The vector e(k) ∈ Rp represents
the innovation process which is supposed to be zero mean
white, and Ke is the Kalman gain. It is assumed that A−KeC
is stable. Let

A = A− KeC, B = B− KeD,

then, from (4) and (5) we obtain

x(k + 1) = Ax(k)+ Bu(k)+ Key(k) (6)

y(k) = Cx(k)+ Du(k)+ e(k). (7)

Now define the following matrix U ∈ Hs×(N−s+1)
m×1 by

U =


u(1) u(2) · · · u(N − s+ 1)

u(2) u(3)
...

...
. . .

u(s) u(s+ 1) · · · u(N )

 (8)

Here,N is the available data length, and s is chosen by the user
which should be larger than the state dimension n. Similarly,

define Y ∈ Hs×(N−s+1)
p×1 from y(k) and, E ∈ Hs×(N−s+1)

p×1
from e(k). Then, the data equation

Y = OsX + TuU + TyY + E (9)

is obtained, where thematricesOs ∈ Rps×n,X ∈ Rn×(N−s+1),
Tu ∈ Ts×sp×m and, Ty ∈ Ts×sp×p are defined as follows:

X =
[
x(1) x(2) · · · x(N − s+ 1)

]
(10)

Tu =



D 0 · · · · · · 0

CB D
. . .

...

CAB CB
. . .

. . .
...

...
. . .

. . .
. . . 0

CAs−2B · · · CAB CB D


(11)

Ty =



0 0 · · · · · · 0

CKe 0
. . .

...

CAKe CKe
. . .

. . .
...

...
. . .

. . .
. . . 0

CAs−2Ke · · · CAKe CKe 0


(12)

Os =


C
CA
...

CAs−1

 (13)

The matrix Os ∈ Rps×n is called the extended observability
matrix.

Various subspace identification methods have been pro-
posed to calculate Os, Tu and Ty based on I/O data U and
Y with the data equation (9). We will propose our method in
the next section. Once Os, Tu and Ty are obtained, it is easy
to determine {A,B,C,D,Ke} as shown below.
Partition Os by 3 row blocks as

Os =

Os1Os2
Os3

 , Os1 ∈ Rp×n

Os2 ∈ Rp(s−2)×n

Os3 ∈ Rp×n

and let

Tu1 =
[
Mu1
Mu2

]
,

Mu1 ∈ Rp×m

Mu2 ∈ Rp(s−1)×m

Ty1 =
[
My1
My2

]
,

My1 ∈ Rp×m

My2 ∈ Rp(s−1)×m

be the first column blocks of Tu and Ty, respectively. Then,
from (13), C and A can be determined by

C = Os1 (14)

A = argmin
Â

∥∥∥∥[Os1Os2

]
Â−

[
Os2
Os3

]∥∥∥∥2
F

(15)

where ‖·‖F denotes the Frobenius norm. From (11) and (12),
D and B are obtained by

D = Mu1 (16)

B = argmin
B̂

∥∥∥∥[Os1Os2

]
B̂ −Mu2

∥∥∥∥2
F

(17)

Ke = argmin
K̂e

∥∥∥∥[Os1Os2

]
K̂e −My2

∥∥∥∥2
F

(18)

Then, we have

A = A+ KeC, B = B + KeD (19)

Hence, the model of the system is given by

P(q) = C(qI − A)−1B+ D.
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IV. PROPOSED METHOD
This section proposes an identification method which focuses
on the following two points.
• Property (A) The system order can be selected
automatically.

• Property (B) It is robust against heavy (possibly colored)
measurement noise.

As for property (A), the nuclear norm minimization is known
to be effective. Hence, we will exploit it. On the other hand,
one simple way for property (B) is to use the long data. Since
data storage cost is getting cheaper and cheaper these days,
this could be a good option. However, the computation burden
of the nuclear norm minimization becomes serious when the
data length N grows. Hence, in the next section, we propose
how to take advantage of the long I/O data while exploiting
the nuclear norm minimization.

A. DATA COMPRESSION
We will compress the long data by projecting them on some
low-dimensional subspace S . Let n ≤ sJ � N be its
dimension. Each element in S is a N − s+1 dimesional row
vector. Let8 be the matrix whose rows are coincide with the
orthonormal basis of S . Namely, it satisfies

S = span(8), 88T
= IsJ .

Then, by projecting the data matrix U on S , we obtain

ZU := U8T
∈ Rms×sJ (20)

which solves

min
ZU
‖U − ZU8‖2F . (21)

By projecting the data matrices U and Y on S , the data
equation is compressed as

Y8T
= (OsX + TuU + TyY + E)8T . (22)

It is crucial to choose an appropriate subspace S , which
should be not correlated to the measurement noise but
strongly related to the deterministic part of the I/O data.
In what follows, we give one way to find such S .
(PROCEDURE 1) First, pick up an nJ -th order sta-

ble system FJ (q) whose poles are chosen randomly (for
example, within the interval [0.5, 1]). Inject the excitation
signal r(k) (k = 1, 2, · · · ,N ) to FJ (q), and let xF (k)
(k = 1, 2, · · · ,N ) denote its corresponding state trajectory.
Define R ∈ Hs×N−s+1

m×1 and XF ∈ RnJ×N−s+1 by

R =


r(1) r(2) · · · r(N − s+ 1)

r(2) r(3)
...

...
. . .

r(s) r(s+ 1) · · · r(N )

 (23)

XF = [xF (1) xF (2) · · · xF (N − s+ 1)] (24)

Then, we choose

S = span
([

R
XF

])
. (25)

Note the dimension of S is given by sJ = ms + nJ . Here,
it would be natural to include R in the above equation. While,
inclusion of XF may look strange. This term implies that
the projected space contains filtered signals with various
modes (i.e., poles of FJ (q)). So the above equation implies
that the projected space consists of not only the excitation
signal but also its filtered signals. As demonstrated later in
the simulation section, this choice of S works well.

B. NUCLEAR NORM MINIMIZATION
Now we focus on property (B). Assuming that both X and
X8T have full rank, the model system order n is given by

n = rankOs = rankOsX = rankOsX8T . (26)

Note that the above equation hold in almost all X8T . This
implies that we have to minimize the rank ofOsX8T in order
to obtain a low order model. From (22), we have

(OsX + E)8T
= (Y − TuU − TyY )8T . (27)

Based on the above observation, we propose to solve the
following minimization problem.

min
T̂u∈Ts×sp×m

T̂y∈Ts×sp×p

‖(Y − T̂uU − T̂yY )8T
‖? (28)

where ‖·‖? denotes the nuclear norm (i.e., sum of all singular
values). Note that we can always obtain the (globally) optimal
solution, because this is a convex relaxation of the rank
minimization problem.
Let T ∗u and T ∗y be the optimal solution, and define

ÔsX := (Y − T ∗uU − T
∗
y Y )8

T (29)

which can be regarded as an estimation ofOsX , and calculate
its singular value decomposition (SVD) as

ÔsX = [Un,Ue]
[
6n 0
0 6e

]
[Vn,Ve]T (30)

where 6n is the diagonal matrix consisting of the first n sin-
gular values (i.e., dominant part), andUn and Vn are the dom-
inant unitary parts corresponding to 6n. Then, we determine

O∗s = Un61/2
n , X∗ = 61/2

n V T
n . (31)

From O∗s , T
∗
u and T ∗y , we can calculate (A,B,C,D,Ke) as

shown in the previous section.
Remark 1: In N2SID [24], the problem is to find E ∈

Hs×N−s+1
p×1 , Tu ∈ Ts×sp×m and Ty ∈ Ts×sp×p minimizing

‖Y − E − TuU − TyY‖? +
λ

N

N∑
k=1

‖e(k)‖22 (32)

Here, what we have to look for are e(k)(k = 1, 2, · · · ,N )
and the first (block) columns of Tu and Ty rather than the
whole matrices E, Tu and Ty. This is a nice idea. Also the
above minimization avoids the use of instrumental variables
to remove the effect of innovation term E. This point could
be an advantage when the available data is short as claimed
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in [24]. However, when the available data is long enough, the
use of instrumental variables (or introduction of projection)
may work well. Hence we adopt (28). In addition, when we
adopt (32), the obtainedmodel strongly depends on the choice
of the weight λ. Consequently, it is really difficult to choose
an appropriate λ in practice. In order to avoid such difficulty,
we eliminate such a weight in (28). This is very convenient for
the user. Besides, if λ→∞ in (32), then eventually we have
‖e(k)‖ → 0, which corresponds to the optimization of (28) up
to the projection. Hence we may consider that the proposed
method tries to minimize (32), while choosing the weight λ
extremely large. However, note that the projection plays a
crucial role to be able to handle long data. So this makes a
big difference from N2SID.
Remark 2: Most subspace methods try to minimize the

Frobenius norm of ÔsX. In this case, it is often very diffi-
cult to select the appropriate system order, especially when
the measurement noise is significant. As shown later in the
numerical examples, the nuclear norm minimization is really
effective even in such a case.
Remark 3: Compared to the earlier version of this

work [26], two points are different. One is the minimization
problem. In [26], the problem is to find ZŶ ∈ Rps×sJ ,
Tu ∈ Ts×sp×m and Ty ∈ Ts×sp×p minimizing

‖ZŶ − TuZU − TyZY ‖? (33)

subject to

‖ZY − ZŶ ‖
2
F < γ (34)

where ZU := U8T and ZY := Y8T . This minimization
corresponds to N2SID after the data compression, and it
contains a tuning parameter γ . Though it is very difficult to
choose γ properly in advance, the solution strongly depends
on the choice of γ . On the other hand, this paper adopts (28)
as the minimization problem, it overcomes such a problem.
This turns out to be a big advantage in practice. In addition,
we optimize just the first columns of Tu and Ty in (28), which
implies that the number of parameters to optimize is much
smaller than that of [26]. As a result, the computation burden
decreases.
The other is the choice of S . In [26], first, calculate
{uJ (k)}(k = 1, 2, · · · ,N ) by projecting the input data
{u(k)}(k = 1, 2, · · · ,N ) on the excitation signal space
span(R). Then obtain the output sequence {yJ (k)} (k =
1, 2, · · · ,N ) by injecting {uJ (k)} to an initial plant model
PJ (q). From {uJ (k), yJ (k) | k = 1, 2, · · · ,N }, construct the
Hankel data matrices UJ and YJ . Then, the spaceS is given
as follows:

S = span
([
UJ
YJ

])
. (35)

Furthermore, an iterative procedure to update the initial
plant model PJ (q) is given so that the updated model
becomes closer to the true plant P(q). Consequently, the
procedure in [26] is complicated. Compared to this, (25) in

FIGURE 2. I/O data (Example 1, SNR = 3 dB, only the middle 300 samples
are shown).

(PROCEDURE 1) is quite simple, and turns out to be fairly
effective empirically.

The proposed procedure is summarized as follow:
PROPOSED PROCEDURE
(Step 1): Choose S from {r(k)}k=1∼N and FJ (q).
(Step 2): Minimize (28) to obtain {Os,Tu,Ty}.
(Step 3): Calculate {A,B,C,D,Ke} from {Os,Tu,Ty}.

V. SIMULATION
In this section, three examples are given to illustrate the
features of the proposed method. For each configuration,
30 trials based on different random number realizations were
conducted to reveal the statistical performance. The result-
ing models were evaluated by comparing their frequency
response and step response to those of a true plant. For
simplicity of presentation, we treat SISO systems only here.

The data generation system in each example is configured
as shown in Fig. 1, and the settings for plant P and con-
troller K are summarized in the Table 1.
As the excitation signal, we used the multisine signal,

r(k) =
r0(k)√

1
N

∑N
k=1 r0(k)2

(36)

r0(k) =

N
2∑
`=1

cos
(
2π

`

N
k + ϕ`

)
(37)

ϕ1, ϕ2, . . . , ϕ N
2
∼ U(0, 2π ), (38)

which is commonly used in system identification [29], and
the number of data is set to N = 200 000.

The frequency characteristics of noise in real problems
often cannot be represented by lower-order models, and
their characteristics vary widely. To reproduce the prob-
lem caused by this, we use a 100th order FIR filter with
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TABLE 1. Example settings.

FIGURE 3. Singular value plots for order selection (Example 1,
SNR = 3 dB, N = 200 000).

random coefficients

H (q) = h0 + h1q−1 + h2q−2 + · · · + h100q−100

h0, h1, . . . , h100 ∼ N (0, 1) (39)

to generate the noise. The noise source w is Gaussian
white noise with zero mean and the variance is adjusted for
each example to obtain the desired SNR. In the following,
30 trials with different random realizations of the coeffi-
cients h0, . . . , h100, the noise source w, and the randomized
phase of the excitation ϕ1, . . . , ϕ N

2
are performed for each

example.
In applying the proposed method, the parameters are set as

s = 30 and nJ = 20.

FIGURE 4. Frequency response of the obtained models (Example 1,
SNR = 3 dB, N = 200 000).

For comparison purpose, we also applied SSARX, which
is a well-established subspace identification method that can

VOLUME 10, 2022 21417



I. Maruta, T. Sugie: Closed-Loop Subspace Identification for Stable/Unstable Systems Using Data Compression

FIGURE 5. Step response of the obtained models (Example 1,
SNR = 3 dB, N = 200 000).

handle closed-loop setting, and the implementation in n4sid
function of MATLAB System Identification Toolbox is used.
For simplicity, the initial states of all systems are set to zero,
and SSARX uses that information. Other settings of SSARX
were left at their default values. In SSARX, the order of the
model, including the noise model, is automatically selected
based on the Hankel singular values, and the final model is
obtained by reducing the dimensionality of the non-noise part
of the model to the order of the true plant using balanced
truncation method.

In the following, we also discuss the ease of order selection
by showing plots of the Hankel singular values used for order
selection in SSARX and the singular values of ÔsX used for
order selection in the proposed method.

A. EXAMPLE 1: OPEN-LOOP BENCHMARK [27]
First, the characteristics of the proposed method are demon-
strated through a benchmark problem of open-loop system
identification [27]. The input and output data, where the
SNR is about 3 dB, is shown in Fig. 2.
The thick red lines in the figure show the response without

noise (where η(k) = 0), and the thin blue lines show the
response with noise. Note that this example is an open-loop
setup (K = 0), so no noise appears in the input signal.

FIGURE 6. Number of data versus singular value plots for order selection
averaged over 30 trials (Example 1).

FIGURE 7. I/O data (Example 2, only the middle 300 samples are shown).

The singular value plot obtained in this setting is shown in
Fig. 3 along with the result for SSARX. The blue×marks in
the figure indicate the singular values of ÔsX divided by the
maximum singular value, and the 30 red lines correspond to
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FIGURE 8. Frequency response of the obtained models (Example 2).

the 30 trials. Also, Figs. 4 and 5 show the frequency response
and step response of the obtained models, respectively. The
30 blue solid lines in the figure correspond to the models
obtained in each trial, and the red dashed lines show the true
response of the plant P.
In methods that rely on the identification of a noise model,

such as SSARX, the dynamics of the noise and the target
system are not separated. Therefore, when the noise has
complex dynamics, there is no clear threshold for the singular
value plot as seen in Fig. 6(b), and a sufficiently high order
model, which is difficult to identify, has to be constructed.
Indeed, the final model obtained by reducing the order of the

FIGURE 9. Step response of the closed-loop systems with obtained
models (Example 2).

non-noise part to the correct order does not agree well with
the target system (Figs. 4(b) and 5(b)).

On the other hand, the noise component is reduced by pro-
jection and dimensionality reduction. It appears as a sequence
of small, uniform singular values in the proposed method,
as can be seen in Fig. 6(a). In the proposed method, the
dynamics of the target system correspond to a small number
of superior singular values, and by extracting these, a good
model is obtained, as shown in Fig. 4(a).
In the existing studies on system identification, higher-

order noise such as (39) have not been taken into account, but
it is known that such noises are ubiquitous [30]. Therefore, the
proposed method is expected to be effective in many practical
situations. In addition, it is difficult to overcome this problem
by increasing the number of data in the method relying on
the noise model. Fig. 6 shows the average of singular value
plots for 30 experiments with increasing number of data N .
As shown in Fig. 6(a), the noise part is reduced by increasing
the number of data in the proposed method, while in SSARX
(Fig. 6(b)), increasing the number of data does not directly
contribute to the ease of separation.

B. EXAMPLE 2: TYPICAL CLOSED-LOOP SETTING
Next, closed-loop system identification is performed for a sta-
ble system with poles close to 1. Such a situation is common
in practical plants andmakes open-loop experiments difficult.
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FIGURE 10. Singular value plots for order selection (Example 2).

FIGURE 11. I/O data (Example 3, SNRu = −6.7 dB, SNRy = 11.5 dB, only
the middle 300 samples are shown).

The input and output data obtained with a noisy setting are
shown in Fig. 7. As in the previous figures, the red line shows
the response without noise. The SNR is difficult to evaluate in
the closed-loop setting because the noise-derived components

FIGURE 12. Singular value plots for order selection (Example 3,
SNRu = −6.7 dB, SNRy = 11.5 dB, N = 200 000).

can also carry information. Here, we call the ratio of the
contribution by r to that by η the SNR,

SNRy := 20 log10

√∑N
k=1 y0(k)2√∑N

k=1 (y0(k)− y(k))
2
= 5.9 dB (40)

SNRu := 20 log10

√∑N
k=1 u0(k)2√∑N

k=1 (u0(k)− u(k))
2
= 1.3 dB (41)

where u0(k) and y0(k) are input and output signals obtained in
noise-free simulation, respectively. The frequency responses
of the models obtained with this setup are shown in Fig. 8,
and the step responses of the closed-loop systems P̂(q)K (q)

1+P̂(q)K (q)

with the obtained models P̂(q) are shown in Fig. 9. Note that
the step response is taken in closed-loop because the target
system here is unstable and the step response in open-loop
does not make sense. From the figures, it can be seen that the
model obtained by SSARX is strongly affected by the colored
noise, while the proposed method produces a good model.

When the noise dynamics are complex and the SNR is low
as in this example, noise-model dependent methods such as
SSARXdo not performwell. Theoretically, the desiredmodel
should be obtained by using a sufficiently high order model
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FIGURE 13. Frequency response of the obtained models (Example 3,
SNRu = −6.7 dB, SNRy = 11.5 dB, N = 200 000).

that can accommodate the noise model, and then reducing the
non-noise portion of the obtained model to an appropriate
dimension. But in practice, system identification based on
such high order models is difficult, and MATLAB’s auto-
matic order selection does not select orders greater than 10.
On the other hand, the proposed method, which attempts to
suppress noise components, works better in such a situation.
Since high SNR data is difficult to obtain from operating
plants for economic and safety reasons, such a situation is
typical in closed-loop system identification.

The singular value plot used for order estimation is shown
in Fig. 10. As shown in Fig. 10(b), the dynamics of the plant

FIGURE 14. Step response of the closed-loop systems with obtained
models (Example 3, SNRu = −6.7 dB, SNRy = 11.5 dB, N = 200 000).

are difficult to distinguish in SSARX because it is buried
in the higher-order dynamics of the noise. In the proposed
method (see Fig. 10(a)), the boundary between the noise and
the plant dynamics is clearer because noise is compressed by
the projection and the nuclear norm minimization.

C. EXAMPLE 3: UNSTABLE PLANT WITH ROBUST
CONTROLLER
The third example is the closed-loop identification of an
unstable plant and is based on the model of the actual mag-
netic levitation system in [28].

An example of input and output data is shown in Fig. 11.
As seen in the figure, the effect of noise on the input is
particularly large due to the robust controller used. The
singular value plots for order selection and the frequency
response of the model obtained in this setting are shown in
Figs. 12 and 13, respectively. As in the previous example,
the step responses of the closed-loop systems P̂(q)K (q)

1+P̂(q)K (q)
with

the obtained models P̂(q) are shown in Fig. 14. The results
show the same trend as in the previous examples, indicating
that the dynamics of the plant and noise are well separated by
the proposed method even for the unstable plant with strong
control.
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FIGURE 15. Number of data versus singular value plots for order
selection averaged over 30 trials (Example 3).

In addition, the change of the singular value plot when
the number of data N is increased is shown in Fig. 15. The
figure shows the average of the singular values over 30 trials.
As can be seen from the figure, the trend in the case of
closed-loop identification of unstable systems is similar to
that of Example 1, which again confirms that the proposed
method is more effective for large amounts of data with low
SNR, which is typical in closed-loop identification.
Remark 4: Note that noise models are highly complex (of

the order 100th) and 30 different noise models are used
in each example here unlike [26]. As a result, the iden-
tification results demonstrate that the proposed method is
really insensitive to the noise dynamics. More importantly,
Figs. 6 and 15 show that, in the proposed method, the
noise contribution to the singular plots is clearly sepa-
rated from that of the target plant dynamics when the data
length grows. This contrasts with the existing methods such
as SSARX.

VI. CONCLUSION
This paper proposed a subspace method for closed-loop
identification, which clearly specifies the model order in
the presence of noisy measurement data. The method
identifies both stable and unstable systems without any
knowledge of noise models in the presence of unknown

(possibly nonlinear) feedback controllers. This can be
achieved through a combination of the nuclear norm min-
imization and data compression, while exploiting long I/O
data and the innovation form in a subspace identification
framework. Its effectiveness was fully demonstrated by var-
ious numerical examples for stable/unstable systems in the
presence of heavy colored noises. Future work includes val-
idation through experiments and theoretical analysis on the
consistency of the proposed method.
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