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ABSTRACT This paper surveys the state-of-the-art contributions supporting the validation of virtual
testing toolchains for Automated Driving System (ADS) verification. The work builds upon the well-known
limitations of physical testing while conceiving the virtual counterpart as a fundamental ingredient for the
type-approval of high automation level ADS. The purpose of the research effort is to summarize computa-
tional tools, validation methodologies, and the corresponding fidelity levels delivered by state-of-the-art sim-
ulation toolchains. The ultimate goal is to establish how effectively simulation can play the role of a ‘‘virtual
proving ground’’ for ADS certification independently from any specific ADS implementation/effectiveness.
The contribution includes classic high-level validation approaches and modern specific computational tools
that can be adopted depending on the type of data under analysis. Moreover, the investigation covers
approaches embraced both within the scientific community and in technical regulations for the sake of
completeness. Ultimately, we identified two high-level validation schema: integrated environment and
subsystem-based solutions. In addition, we found that modeling and validating virtual sensors for ADS is the
most lacking area from a subsystem-level approach. On the other side, the closed-loop interaction between
the ADS and other virtual traffic participants makes it difficult to directly compare the experimental results
with simulated generated evidence as the emergent behaviors of the ADS may amplify minor discrepancies
between the environments.

INDEX TERMS Automated driving, model validation, simulation, virtual testing.

I. INTRODUCTION
Virtual testing is gradually becoming part of the certification
process of future Automated Driving System (ADS) [1],
[2]. Virtual tests are starting to complement the tradition-
ally performed proving ground and public road experiments
after decades of simulation’s utilization for new technology
development purposes. Introducing a virtual component in the
ADS certification pipeline brings all the well-known advan-
tages of simulation with respect to physical testing. These
include tests repeatability across different ADS/vehicle com-
binations, the possibility of scaling up the number of tests,
a safer technology assessment, and a reduction in the costs
associated with the certification process. Indeed, validating a
high-automation level ADS bymeans of physical testing only
would require traveling for decades, as already pointed out in
several literature works [3], [4]. Simulation is thus the ideal
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testing environment to investigate how an ADS perform in
high-mileage tests and in edge-case driving scenarios [5].

Naturally, the adoption of virtual testing as an ADS cer-
tification tool shall first investigate the appropriateness of
the simulation environment for such a purpose. Despite the
mentioned simulation’s assets, suitable validation procedures
have to be established before promoting a virtual testing
environment as a certification environment. In particular, a
validation activity shall ensure that the simulation-generated
evidence is characterized by a fidelity level that serves the
certification process’s need. A virtual testing environment
fulfilling such validation criteria could be regarded to as a
‘‘virtual proving ground’’. However, an acknowledged val-
idation practice to accomplish the accreditation task is a
research topic that is not yet regulated. Instead, a plethora of
approaches exists which depend on the specific application.

Unlike widely acknowledged scientific contributions deal-
ing with the implementation and validation of ADSs (see
for instance [6]–[9]), our effort concentrates on the (simu-
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FIGURE 1. V-Model workflow, adapted from [11].

lated) environment used to support the ADS certification task.
Indeed, the objective of this work is to survey the state-of-
the-art approaches adopted to validate both complete ADS
virtual testing toolchains and simulation submodels involved
in the virtual experiments. Such a selection of the topics
sets our work apart from the research stream focusing on
the ADS development. In fact, the validation approaches
presented here can be adopted regardless of the specific ADS
implementation and its safety effectiveness. Despite some
of the state-of-the-art surveys (for instance [7], [9]) also
list simulation softwares, the fidelity of the tool is typically
not discussed nor computational methods for a quantita-
tive assessment are presented. Our contribution aims to fill
the mentioned research gap by presenting a review of the
approaches and computational tools adopted in actual sim-
ulation validation practices together with the corresponding
acceptance correlation thresholds whenever applicable to the
end of establishing the fidelity level that a virtual testing
toolchain for ADS simulation can deliver.

A. STRUCTURE OF THE WORK
The work opens by recalling the general principles of val-
idation in Section II, focusing on the validation of virtual
models. The associated computational tools are presented in
Section III. Then the discussion shifts to the ADS-specific
validation approaches and challenges Section IV. Open issues
as reported in Section V whereas conclusions are eventually
drawn in Section VI.

II. VALIDATION IN ENGINEERING
The validation process, in general, aims at determining the
capability of a product to fulfill its purpose and expectations
for the required application. In contrast to the verification
task, the process of validation takes place upon the comple-
tion of the product to ensure that the ‘‘correct’’ product was
built. The verification, instead, is mainly concerned with the
correct implementation of the conceptual (or mathematical)
model [10] into the actual product. The considerations are
graphically emphasized in Fig. 1, where the typical V-Model
product development workflow is displayed.

The general definition for validation had been given a
bespoke formulation for the field ofModeling and Simulation
(M&S) in several literature works [12], [13]. In particular,
the validation of a virtual model (product) can be defined as a
procedure aimed at establishing the model’s accuracy (capa-
bility) in representing the real-world (purpose) from the per-
spective of the intended use (application).

Ensuring suitable accuracy for a virtual model is a cru-
cial task whenever the model plays a critical role. That is
becoming more relevant in recent years due to the widespread
adoption of simulation at any design and decision-making
level [14].

One of the first attempts to build up a validation framework
for virtual models was carried out by Carson in [15]. Accord-
ing to the author, the validation should be made up of a three
steps procedure:

1) face validity (i.e., answering the question: ‘‘is the model
returning reasonable results?’’);

2) test the model over a range of input parameters (‘‘stress
test’’);

3) comparison of the model’s predictions with physical
data whenever possible, in particular:
a) collection of input data from real-world experiments;
b) re-execution of the simulation model with the col-

lected input;
c) performance comparison with respect to the real-

world;
d) use statistical techniques to create confidence inter-

vals in case multiple datasets are available.
Carson’s scientific contribution also mentions a list of pos-
sible modeling errors, which include: project management
(e.g., missing key personnel or decision-makers at crucial
meetings), data modeling (e.g., use of incorrect data collec-
tion procedures), logic model (e.g., modeling assumption not
replicating physical behavior of the system), and experimen-
tation errors (e.g., too few executions of the model).

In [16], a three-steps validation approach is proposed as
graphically reported in Fig. 2. More in detail, the virtual
model is first compared against the real one in terms of pre-
dicted output. Secondly, an interpolation/extrapolation anal-
ysis over the required domain is carried out. Thirdly, the
prediction uncertainty is characterized.

A widely recognized practical approach for the validation
of simulation models has been proposed in [14] and depicted
in Fig. 3. The approach foresees the distinction between the
‘‘conceptualization’’, i.e., the mathematical/logical represen-
tation of the model and the ‘‘computerization’’, i.e., the real-
ization of the conceptual model in terms of a programming
language. Validation then takes place by determining the
adoption of reasonable theories/assumptions (‘‘conceptual
validation’’), the correctness of the computer implementation
(‘‘computerized model verification’’, i.e., static and dynamic
code testing), and the accuracy of the realized virtual model
(‘‘operational validation’’). Eventually, a ‘‘data validity’’ pro-
cedure should assess that accurate data were available to forge
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FIGURE 2. Validation workflow, adapted from [16].

FIGURE 3. Validation workflow, as of [14].

the conceptual model, allow its computerization, and conduct
a quantitative assessment of the truthfulness.

A. VALIDATION LIMITATIONS
The cited literature works highlight, however, inherent val-
idation caveats. The first (and major) point is related to the
context-dependent nature of the validity analysis: absolute
validity is generally not achievable. Thus, a simulation model
will always be an approximation of the real-world phenomena
and will only serve the need of the specific application it aims
at replicating.

The second point is the lack of globally defined user-
acceptance criteria. Despite the outstanding cited contribu-
tions in terms of validation pipeline, in the real-world, the
validation procedures are tailored to the specific application
and Operative Design Domain (ODD). This limitation leads
to a plethora of validation tools and corresponding compli-

FIGURE 4. Type-approval based on virtual testing. EU regulation
schematic process view, adapted from [19].

ance thresholds, some of which are presented in the following
sections whenever available. Nevertheless, to the best of the
authors’ knowledge, an ultimate ‘‘validation criterion’’ for a
complex virtual testing toolchain is not available.

Eventually, on a practical level, obtaining validation-grade
data might be very challenging, extremely costly, or even
impossible (e.g., when modeling a system not yet existing),
thus limiting the applicability of the validation analysis.

In order to partially account for the limitations, a credibility
analysis is typically carried out in parallel to the valida-
tion [17]. The credibility investigation aims at enhancing the
confidence in the developed virtual toolchain [15]. A com-
mon framework for the credibility analysis of virtual models
was developed at NASA and released publicly [18]. Similarly,
a credibility framework is currently being discussed at the
UN/ECE level1 for ADS applications.

B. EXISTING REGULATIONS LEVERAGING ON VIRTUAL
TESTING
Simulation models have recently started to be adopted
in passenger vehicles regulations for type-approval pur-
poses. For instance, the EU 2018/858 [19] regulating the
type-approval of motor vehicle classes M{1,2,3}, N{1,2,3}, and
O{1,2,3,4} according to the UNECE classification scheme,2

allows the use of virtual testing for a list of regulatory acts
which include superstructure’s strength and interior visibility.
Generic guidelines on how the model’s validation should be
carried out and its relationship to the approval process are also
given and reported in the flowchart Fig. 4.

For what concerns ADAS/ADS, the UN/ECE R140 [20]
which regulates the Electronic Stability Control (ESC) sys-
tem, allows the ‘‘sine with dwell’’ maneuver to be carried

1https://wiki.unece.org/pages/viewpage.action?pageId=117508578
2https://unece.org/fileadmin/DAM/trans/main/wp29/wp29resolutions/

ECE-TRANS-WP29-78-r4e.pdf
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out in a simulation set-up provided that the corresponding
virtual model accounts for a list of parameters and complies
with a selection of Key Performance Indicators (KPIs). Sim-
ilarly, the recently released Automated Lane Keeping Sys-
tem (ALKS) regulation [2] permits the usage of simulation to
validate the system for a lane-keeping maneuver. However,
neither of the documents gives any quantitative specification
on how the validation should be carried out. Instead, only a
qualitative ‘‘comparability’’ of the simulated and physical test
results is demanded. Moreover, no requirements are given for
the used simulation environment.

III. VALIDATION METHODOLOGIES
From Section II, a validation effort is typically a multi-step
approach embracing several techniques. A common starting
point for the validation pipeline is the conceptual valida-
tion activity. The next tier in the validation process requires
assessing the simulation model’s degree of discrepancy with
respect to the real-world system. Eventually, the simulation
model shall be investigated from an uncertainty analysis per-
spective. The following paragraphs provide extensive details
on how the three steps can be fulfilled. Whenever possible,
the literature examples provided are concerned with vehicle
dynamics or ADS virtual testing to promote methods that
have already found their way into the case of study.

A. CONCEPTUAL VALIDATION OF THE VIRTUAL
REALIZATION
Before any quantitative/qualitative assessment of the simula-
tion results is undertaken, the validation task has to prove that
the correct system theories were implemented while virtual-
izing the real process and that the simulation model is capa-
ble of representing the target device’s structure, input/output
relationships, and functioning logic [14], [15], [21], [22]. The
conceptual model validation is thus mainly concerned with
checking the consistency of the modeling hypotheses and
level of detail with the target objective the model aims to
accomplish [17].

Additionally, the conceptual validation may involve study-
ing the validity of the data used to develop the model as in
Fig. 3. At this stage, an assessor might question whether the
dataset used to build the simulation model was sufficiently
informative to capture all the nuances of the real-world rele-
vant for the target application.

Concerning vehicle dynamics, an early attempt to pro-
vide a conceptual validation framework was proposed in
both [23] and [24]. The works delineated the appropriateness
of the modeling approach depending on the target maneuver
the virtual realization is requested to replicate. The effort
of establishing suitability is, however, mostly demanded to
experienced engineers, thus making the overall assessment
largely subjective.

Since then, the conceptual validation gradually started to
recede from the scientific discussions as the increased com-
putational capability allowed more extensive virtual experi-

mentations and validation over a larger domain using tech-
niques described in Section III-B.

Nonetheless, the concept was brought to new attention
with the advent of complex cyber-physical systems [25],
[26] and agent-based simulations [27], such as the case of
study. In an ADAS/ADS application, the overall system to
virtualize can be functionally decomposed in layers (ver-
tical decomposition) or submodels (horizontal decomposi-
tion). A typical functional organization of a virtual testing
toolchain for ADS is shown in Fig. 10. A similar modeling
abstraction framework was also presented in [28, Fig. 5] and
[4, Fig. 3]. The conceptual validation of a submodels-based
pipeline shall assess that each component is a reasonable
virtualization of the corresponding physical counterpart for
the given purpose. For example, the level of detail needed
to model an automotive powertrain for a fuel-consumption
application study is substantially finer than what is demanded
by microscopic traffic simulation frameworks. On the other
side, the modeling philosophy of the virtual sensors plays
a critical role for ADS. Thus, they require suitable concep-
tualization methods to ensure the required fidelity level as
summarized in Section IV-C1.

B. MODEL VALIDATION VIA RESPONSE ANALYSIS
After assessing the theories employed to develop the model,
the validation shall determine that the degree of discrepancy
between the simulated model and the physical realization is
contained below a prescribed threshold level. Such a phase
is typically accomplished via defining a selection of KPIs
and the appropriate computational method to compare the
recorded signals. Selecting the suitable list of signals is not
a trivial task, nor is it supported by established literature for
the specific case of ADS. In general, the list of variables to
investigate should be large enough to cover the phenomena to
model attempt to replicate with sufficient confidence.

Once the eligible list is determined, one has to apply a
computational tool to effectively contrast the model’s output
to the physical system’s response. Several options are offered
to the designers, which are described in the continuation of
the section.

1) GRAPHICAL COMPARISONS
Graphical comparisons provide an intuitive and straightfor-
ward way to compare the results. Typical ways of visually
representing data include 2/3D plots, histograms, and scat-
ter charts. They can alternatively be supported by anima-
tions [14] to graphically represent of evolution in time of the
virtual system.

In addition, the visual inspection of the model’s output is
a first step to accomplish the face validity task pointed out
by Carson. That is particularly effective when exploring the
response of the model to a combination of inputs that are not
easily reproducible with the real system [14].

The drawback with graphical comparisons is the lack
of objective criteria to validate the modeling assumptions
despite being a quite widespread method in the actual
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FIGURE 5. Graphical comparison of vehicle trajectories (black solid line),
simulation (top) vs. proving ground (bottom), [31, Fig. 17].

engineering practice [29]. The corroboration can nevertheless
be carried out adopting Turing tests-like approaches [30],
or by relying on Subject-Matter Experts (SMEs) [22], indi-
viduals who have a long experience in the discipline and are
able to tell from the charts is the model shall be deemed
valid.

An example of a virtual model validation using the graphi-
cal comparison of the recorded trajectories for an experimen-
tal automated vehicle is given in Fig. 5.

2) SCALAR QUANTITIES
Scalar quantities analysis affords the possibility of introduc-
ing a quantitative assessment despite being limited in terms
of the provided information with respect to other methods
described later.

Scalar quantities can derive from extracting a reference
value from a time-history, for instance, by applying min or
max operators. A widely established validation framework
exploiting scalar quantities is the ISO standard 19364 [32],
where the relative difference between the yaw-rate peaks
(simulation �sim vs. real-world �rw experiment)

|max�rw −max�sim|

max�rw
, (1)

is computed for a reference lane change maneuver and then
compared to a threshold error. Eq. (1) is also known as the
‘‘Relative Error Criterion’’ (REC) and is adopted in other
technical standards and fields, such as the EASA certification
memorandum on structural mechanics [33] for a different set
of KPI.

When studying higher-level automated driving functional-
ities, several scalar KPIs can be computed and clustered in
a table such as in the summary of results of the European
Project Enable-S3 [34], here adapted in Fig. 6. Additionally,
Fig. 6 demonstrates how scalar metrics can account for high-
level information, such as the number of times the vehicle
stopped during the experiment and low-level information
about the driving policy such as the maximum longitudinal
jerk.

FIGURE 6. List of scalar KPIs for a lane change application, adapted from
[34, Table 3].

3) TIME-HISTORIES
Time-histories relationships give extensive information about
the virtual model’s fidelity but require extra care when carry-
ing out the assessment with respect to the scalar quantities.
In fact, the comparison of the M&S output with respect to
the corresponding real-world experiment might need data
conditioning procedures such as time synchronization and re-
sampling.

A popular method for synchronization is the Time
of Arrival (ToA) [35], [36] criterion. ToA is based on
time-shifting the signals until the time-histories reach, for
the first time, a reference amplitude. The time-occurrence
when the reference amplitude is reached is compared for
each signal making up the dataset and the computed time
difference used to shift the signals in the time-domain.

Once the data are synchronized, a common method for
validation is introducing an absolute or relative tolerance
interval around the experimental reference data [37]. Tol-
erance intervals are representative of the measurement and
model’s uncertainty. For example, a validation assessment
procedure can require the virtual model’s output to stay
within the±5% amplitude interval of the corresponding real-
world realization. A similar approach is adopted in the tech-
nical ISO standards 19364, 19365 [32], [38]. Alternatively,
confidence levels can be used to define the validation inter-
vals as displayed in Fig. 7 where the acceleration recorded
on the proving ground (PG) is compared against multiple
repetitions in a vehicle-hardware-in-the-loop (VeHIL) setup
for a car-following study.

Time-histories can also be characterized in terms of their
amplitude distance [36], [40], [41] via studying the residuals.
Several options are available when assessing the magnitude
discrepancy:

• residuals vector p-norms

(
N∑
i=1

∣∣xsim,i − xrw,i∣∣p)
1
p

, (2)
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FIGURE 7. Example of relative tolerance intervals based on the standard
deviation of the signal, [39, Fig. 8].

where N is total number of samples, xsim,i is the generic
KPI’s time-sample deriving from the simulation envi-
ronment, xrw,i the corresponding real-world evidence,
and p the order on norm. Typical solutions include the
L1-norm (p = 1), L2-norm (p = 2) or Linf-norm
(p→ inf);

• normalized vector norms according to N , such as the
Mean Absolute Error (MAE)

1
N

N∑
i=1

|xsim,i − xrw,i|, (3)

following the normalization of L1-norm. The normal-
ization of the L2-norm yields instead the Root Means
Square Error (RMSE)√√√√ 1

N

N∑
i=1

(
xsim,i − xrw,i

)2
; (4)

• normalized distances, such as the Theil’s inequality
coefficient (TIC) [42]√∑N

i=1
(
xsim,i − xrw,i

)2√∑N
i=1 x

2
sim,i +

√∑N
i=1 x

2
rw,i

, (5)

which lies between 0 (perfect agreement) and 1 (total
incompatibility) and enables setting dimensionless vali-
dation thresholds.

The distance analysis can be further informed by exploiting
more advanced tools capable of decoupling the mismatch
in magnitude and phase (hence, the shape of the signal).
Such techniques are known as Magnitude Phase Compos-
ite (MPC) [35]–[37]. Among the MPC methods, a widely
acknowledged solution is represented by the Sprague and
Geers (S&G) criterion, which combines the phase discrep-
ancy information:

dP =
1
π
arccos

 ∑N
i xsim,i xrw,i√∑N

i x
2
sim,i

∑N
i x

2
rw,i

 , (6)

FIGURE 8. DTW graphical example with obtained warping path, [40].

and (integral) magnitude error

dM =

√√√√∑N
i x

2
sim,i∑N

i x
2
rw,i

− 1, (7)

into a ‘‘comprehensive factor’’

dSG =
√
d2M + d

2
P. (8)

A complementary solution to the S&G metric is Dynamic
Time Warping (DTW) [43]. DTW provides a method to
assess independently errors in phase, magnitude, and topol-
ogy by aligning patterns (picks and valleys as in Fig. 8) in
data through time axis scaling.

DTW-based validation metrics have compared favorably
against SMEs’ judgment in the field of simulation models for
predicting the acceleration the human body is subjected to
during a car accident in [40]. The proposed method, labeled
Error Assessment of Response Time Histories (EARTH),
exploits DTW to assess the magnitude, phase, and topol-
ogy discrepancies independently. An enhanced version of
EARTH (EEARTH) was recently developed, which uses lin-
ear regression to combine the three separate discrepancy
components into a unique global error [44].

4) CORRELATION
Time-histories distance analysis can also be supported
by the computation of the Pearson correlation coefficient
r(xsim, xrw) ∑N

i=1
(
xsim,i − x̄sim

) (
xrw,i − x̄rw

)√∑N
i=1

(
xsim,i − x̄sim

)2∑N
i=1

(
xrw,i − x̄rw

)2 , (9)

to detect the extent to which the model stays in a linear rela-
tionship with the real data. The squared value of r originates
the coefficient of determination R2, which is representative
of the amount of variance predicted by the model. Both r and
R2 are widely adopted tools to assess the validity of the model
as of several references [31], [39], [45].

5) FREQUENCY DOMAIN
Frequency domain approaches do not require time synchro-
nization, and they are particularly suitable for the validation
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of physics-based inspired models such as vehicle dynam-
ics [46], [47]. Frequency analysis can help to disentangle
the noise contribution to the actual true signal in evaluat-
ing the discrepancy between a real and a simulated dataset
since the noise will mostly appear in the high-frequency
region, whereas the true signal will be concentrated in the
lower frequency area. Using frequency domain techniques,
the distance analysis could thus account for the discrepancy
affecting only a share of interest of the frequency spectrum.
Fig. 13 depicts, for instance, the frequency responses of two
virtual models for lateral vehicle dynamics with respect to the
experimental transfer function.

The power spectrum of the residual is also particularly
important to gain insights into the robustness of the calibrated
models. Residuals mostly concentrated in the high-frequency
domain are indicative of a robust calibration procedure which
yielded a model grasping the real dynamics of the sys-
tem without overfitting the noise (high-frequency) compo-
nents [48].

6) STATISTICAL TESTING
Ultimately, the validation procedure shall enable an assessor
to answer the question: ‘‘is the simulation model an accurate
representation of the physical phenomenon for the intended
purpose?’’. That is exactly the formulation of the null hypoth-
esis (H0) of a hypothesis testing [49], [50] problem. Con-
versely, the alternative hypothesis Ha reads instead as ‘‘the
simulation model is not an accurate representation of the
physical phenomenon for the intended purpose’’. The goal of
validation can thus be seen as avoiding both Type I errors, i.e.,
rejecting valid virtual models (model’s builder risk), and Type
II error, i.e., accepting an invalid simulation model (model’s
user risk) [21]. The probability of Type I error equals the
significance level α assumed in the hypothesis testing, where
α = 0.5 is a common assumption.
Statistical methods might also be particularly suitable to

handle data generated by non-deterministic or hybrid (more
on this in Section IV-A) virtual environments. Taking into
account distribution functions allows, for instance, consider-
ing simulation stochasticity with no need of averaging over
the repetitions, hence preserving a higher amount of infor-
mation. Such an approach was exploited in [51] to derive
validation metrics for a lane-keeping application.

Several works investigated which statistical tool to exploit
for the sake ofmodel validation, among them [13], [49], [52]–
[56]. The cited contributions suggest the following methods
as viable candidate tools to assess the validity of a model:

T-test: consists of checking whether two distributions have
the same means (two-sample testing) or whether a pop-
ulation mean differs significantly from a sample;

F-test: similarly to the T-test, the F-test examines the con-
sistency of the variances;

Kolmogorov-Smirnov test: measures the vertical dis-
tance between two Cumulative Distribution Functions
(CDFs);

Anderson-Darling test: evaluates if a sample comes from a
population characterized by a specific distribution [57].

A downside of statistical model validation is that statis-
tical testing is mainly concerned with stationary distribu-
tions [58], which limits its effectiveness in investigating the
transients behavior of the system. For example, one can
straightforwardly utilize the T-test to validate a finite element
method (FEM) model for a static structural analysis against
experimental evidence. The same is not true in the case of
the velocity profile of a vehicle dynamics simulation model,
which typically exhibits time-varying components. Further-
more, handling transients requires the adoption of aggrega-
tion operators, which will inevitably drop relevant informa-
tion about the signals [39]. Devising aggregation operators
capable of retaining the amount of signal information neces-
sary for the sake of validation is still, to the best of the authors’
knowledge, an open point in the scientific literature that shall
be addressed in the upcoming years.

7) STATISTICAL DISCREPANCY
Whenever multiple repetitions of the same driving scenario
subjected to stochasticity are available (for either the simu-
lated models and/or for the real-world), statistical tools can
be exploited to appraise the distance between the generated
distributions.

The statistical discrepancy can be computed exploiting one
of the following tools:
z-score and its corresponding multidimensional generaliza-

tion Mahalanobis distance [59]√
(xrw/sim − µsim/rw)T6

−1(xrw/sim − µsim/rw), (10)

which assess how many standard deviations a point
stands apart from a given distribution given the6 covari-
ance matrix;

Kullback-Leibler divergence (DKL) measures the distance
between two distributions [60], a method that can be
helpful to analyze stochastic models such as probabilis-
tic models for traffic behaviors [56].

C. SENSITIVITY ANALYSIS & UNCERTAINTY
QUANTIFICATION
Beyond the model accuracy discussed in Section III-B, the
validation should quantify the expected uncertainty from
the model as resulting from input data error and modeling
approximations. The combination of techniques capable of
explicitly addressing the uncertainty content of a simulation
model on top of the mentioned methods for validation in
Section III-B, yields the so-calledVerification, Validation and
Uncertainty Quantification (VV&UQ) methodologies [61].
VV&UQ methods aim at improving conventional valida-
tion activities by specifically addressing some of the critical
aspects associated with validation practices based on correla-
tion thresholds only. In particular, VV&UQ allows:
1) accounting for the uncertainty in the calibration/

validation dataset, which is especially critical for
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applications where direct measurements are difficult or
expensive to obtain;

2) surmounting the binary validation outcome, i.e., the
model can be either valid or invalid with an estimation
of the degree of validity;

3) studying the extrapolation capabilities in the proximity
of the validation domain.

1) SENSITIVITY ANALYSIS
Sensitivity analysis examines how small perturbations of the
simulation model’s input quantities, both in terms of the
time-invariant model’s parameters and time-varying model’s
inputs, propagate to the output. Such an analysis is particu-
larly beneficial to support the validation activity. In fact, the
sensitivity study affords the determination of the extent to
which the model satisfies the validation thresholds when it
is subjected to limited variations of the parameters. Thus, the
robustness and the generalization capabilities of the simula-
tion model can be established. As an additional outcome, the
model’s parameters which mostly contribute to the end result
of the simulation can be identified. Potentially, the sensitivity
analysis investigation of the virtual model output can be one
of the few tools available to validate a model in the absence
of real-world data together with the SMEs’ judgment.

An overview of the sampling-based sensitivity analysis
techniques for model validation can be found in [62]. The
survey work identifies two main approaches: ‘‘traditional’’
techniques, which are best suited for a small number of
parameters and operating points (also known as one-factor-
at-a-time methods or first-order analysis), and ‘‘modern’’
techniques capable of supporting hundreds of parameters
and their interaction through efficient sampling operations.
An example of a traditional technique within the field of
vehicle dynamics is proposed in [63] where a 20 parameters
tire wear model is validated against real-world experiments
and the individual individually parameters perturbed (±25%)
to study the sensitivity. Overall, 60 model executions, which
do not account for parameters’ interdependence, are required
using the traditional method for a relatively simple applica-
tion compared to anADS toolchain. Indeed, such an approach
may turn out not to be a feasible option to globally (i.e., first-
order analysis plus interactions) assess complex ADS testing
toolchain which might have thousands of parameters and
efficient techniques shall be enforced such as Monte-Carlo
or Latin Hypercube Sampling [64].

An alternative approach to sampling is to characterize a
model based on differential equations using automatic dif-
ferentiation [65] and first-order analysis given the higher
computational efficiency of the method. An application of
automatic differentiation is proposed in [66] for the sensitiv-
ity analysis of a complex multibody (18 degrees of freedom,
DOFs) vehicle dynamics model.

The interdependency of parameters’ variation was studied
in [67] for a 9 DOFs, 12 parameters vehicle model using
a two-steps approach. Firstly, the elementary effect of each
parameter variation was investigated to reduce the model

complexity. Secondly, a global sensitivity analysis (GSA)
index was calculated using Sobol’s method [68] based on the
ANOVA theory. The GSA was found to be in agreement with
the elementary analysis for most of the effects considered
with expect of the vertical acceleration, which is underes-
timated for some elementary parameters’ variations given
the non-linear dynamics of the model. For the considered
KPIs, the sprung mass and suspension damping coefficient
turned out to be the most sensitive parameters. Moreover, the
robustness of the study is further enhanced, given that two
model parametrizations are analyzed with similar findings.

2) UNCERTAINTY ANALYSIS
Partially related to the sensitivity study is the assessment
of the uncertainty. While the sensitivity analysis is mainly
concerned with the establishing properties of the model in
a local portion of the input space, the uncertainty exam-
ination explores the set of outcomes’ distributions. Two
sources of uncertainty are typically assumed for the sim-
ulation models: aleatory (random) components, epistemic
(lack-of-knowledge) factors. Ultimately, examining how the
model extrapolates for input perturbations provides sounder
credibility to the virtual realization.

The uncertainty of simulation models can be established
by specifying ranges for the model parameters as resulting
from robust calibration procedures such as bootstrapping [69]
or known aleatory properties of the modeled elements [70].
The virtual realization uncertainty can then be estimated by
propagating through the model samples from the parameters’
distributions. This can be done by exploiting Monte-Carlo
techniques [71]. TheMonte-Carlo method is based on execut-
ing deterministic simulations where, at every new simulation
instantiation, a random set of parameters are drawn from the
parameters’ distributions. Such a methodology is graphically
shown in Fig. 9. The uncertainty analysis’s effectiveness
depends on the total amount of virtual tests carried out: the
higher the number of simulations performed, the more accu-
rate the estimation of the output distributions. Convergence
criteria based on the output variance have been proposed
in [72].

From an industrial perspective, an exact quantification of
the uncertainty is typically not pursued due to the high com-
putational demand in executing a large number of simulations
and collecting all the simulation model inputs’ variance. Con-
versely, safety factors are adopted to investigate worst-case
scenario parametrizations [33], [61]. This is also the case for
the field of vehicle dynamics, where models are typically
validated without resorting to an explicit formulation of the
uncertainty [46]. Instead, a tolerance envelope is defined
around the experimental data: only if the output is within the
interval, the model is accepted.

Nonetheless, some recent scientific contributions dealing
with vehicle models have started introducing uncertainty
assessment [73]. For instance, in [74], the uncertainty of a
simulation model for fuel consumption prediction is assessed
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FIGURE 9. Uncertainty quantification through Monte-Carlo approaches,
[33, Fig. 10].

via the propagation of input and parameters uncertainties
following the approach visually represented in Fig. 9.

IV. VIRTUAL VALIDATION FOR ADS
ADS virtual testing can take advantage of a huge number
of simulation tools that help the design and development of
autonomous driving functionalities. However, the validation
of the ADS technology is still largely based on physical
testing, using either scenario-based approaches [75] or the
number of miles before disengagements [76]. Given the dis-
cussed benefits of simulation in the introductory Section and
the limitation of real-world testing alone in terms of scenario
coverage and the unmanageable number of miles to be driven,
it is in the authors’ view that virtual testing will be a crucial
pillar of future ADS certification.

This Section, thus, building up on the general concepts
presented in Section II and on the specific methods presented
in Section III, surveys the procedures empowered to support
the virtual validation of ADS functionalities. The consider-
ations here presented start from the underlying assumption
that the validation of a virtual testing toolchain is pursued
regardless of the specific ADS implementation. A virtual
testing environment is here considered as the overall simu-
lation framework that allows running a simulation once an
ADS is plugged in. The validation of an ADS via virtual
testing has first to demonstrate the validity of the toolchain
involved, which is somehow implicitly done for the physical
tests only.

From the literature analysis we carried out, we can split
the validation of a virtual testing environment into two
methodologies: ‘‘integrated system’’, where the overall sim-
ulation toolchain is tuned to replicate a distinct maneuver
Section IV-B, and ‘‘submodels-based’’ Section IV-C, where
each ingredient of the simulation pipeline is individually val-
idated with respect to its physical counterpart. Hybrid solu-
tions combining both integrated system and submodel-based
validation in a cascade fashion are also foreseen as explained
in [28]. However, no practical application of such an approach
is available in the literature yet.

A. VIRTUAL ENVIRONMENTS FOR ADS SIMULATION
Before presenting the validation methodologies for ADS
virtual testing, a brief explanation of the simulation envi-
ronments’ setups provides valuable insights for the later
discussion. The flexibility of modern days simulation soft-
ware enables the combination of hybrid simulation/real-
hardware testing configurations known as ‘X-in-the-Loop’’
(XiL) approaches. A common classification in the scientific
literature and industrial practice is to discriminate among:

Model-in-the-Loop: (MiL) full toolchain simulation on a
general computing system;

Software-in-the-Loop: (SiL) full toolchain simulation
using compiled code;

Hardware-in-the-Loop: (HiL) hybrid solution combining
simulated models with real hardware components;

Vehicle-Hardware-in-the-Loop: (VEHiL) hybrid approach
combining a real vehicle placed on a chassis dynamome-
ter while environmental information is provided by
either data injection or sensor stimulation;

Vehicle-in-the-Loop: (ViL) the vehicle can drive on a prov-
ing ground, however, virtual sensor information is still
provided by the simulation environment via either signal
injection or sensors stimulation.

Further details about testing using XiL-based approaches
are outside the scope of the present paper and the reader
may refer to the widely acknowledged survey works
such as [77]–[79].

B. INTEGRATED SYSTEM VALIDATION
This set of validation methodologies are concerned with the
definition of a reference maneuver and the tuning of a sim-
ulation environment to reproduce the driving task virtually.
According to this methodology, the validation is carried out
for a list of KPIs which are representative of the full (closed-
loop) simulation environment and not of the models making
up the toolchain, such as virtual sensors and virtual vehicle
models. Additionally, these techniques are typically framed
in a scenario-based approach [75].

From a legislation perspective, an approach following this
philosophy is currently under discussion for the AEBS virtual
test [80] based on an ad-hoc devised computational method.
A similar method is already implemented in the UN/ECE
R140 [20] for the Electronic Stability Control (ESC) type-
approval, where generic guidelines are given on the sim-
ulation model’s structure and which relevant KPIs to use
for validation albeit the exact correlation threshold is not
provided.

Several proposals are also found within the scientific lit-
erature, in particular in [45], [51], and [39]. In [45], the
authors study the fidelity level that a Vehicle-Hardware-
in-the-Loop (VeHIL) setup can deliver with respect to a
MiL environment by comparing the real-world experiments
against the evidence generated by simulation environments.
Given the limitation of the VeHIL in not the allowing steering
action, the chosen KPIs are representative of the longitudinal

VOLUME 10, 2022 24357



R. Donà, B. Ciuffo: Virtual Testing of Automated Driving Systems

FIGURE 10. Sub-modules-based modeling framework for ADS simulation,
[39, Fig. 1].

dynamics only. In particular, the relative vehicles spacing, ego
vehicle velocity, and longitudinal acceleration time-histories
are compared. The correlation is carried out by analyzing the
mean values, standard deviations, and Pearson correlations.
Overall, the VeHIL returned significantly better fidelity than
the MiL. In [51], a method is suggested which firstly checks
validation scenario coverage and then computes the correla-
tion between the simulated and logged lateral acceleration
for a lane-keeping application by also considering stochas-
tic effects of the particular VeHIL environment. Similarly
to [45], in [39] a VeHIL setup is investigated in terms of
the achievable fidelity level for increasing complexity driving
scenarios using camera stimulation rather than signal injec-
tion. The paper is complemented with statistical validation
methods in addition to traditional discrepancy analysis tech-
niques. The KPIs selection includes the ego vehicle veloc-
ity and longitudinal acceleration for which 95% confidence
intervals are provided as resulting from the multiple repeti-
tions carried out in the VeHIL environment.

On the positive side, this methodology does not foresee the
validation of each simulation submodel making up the vir-
tual testing environment, thus reducing the validation effort.
The main focus is instead on providing high correlation
with real-world data on a global level for the specific KPIs
considered. On the downside, this philosophy provides little
information on how the toolchain is going to extrapolate
outside the validation domain, which affects the credibility
of the developed solution [28].

C. VALIDATION OF VIRTUAL SUBMODELS
The validation of the testing environment can alternatively be
carried out by validating each individual simulation model
making up the toolchain. The methodology is based on the
functional decomposition of the virtual testing toolchain into
submodels that replicate the physical counterpart. In general,
a widespread approach is to adopt the decomposition shown
in Fig. 10, a common solution also depicted in [28, Fig. 5], [4,
Fig. 3], and in the recently published ISO/TR document [81].

In Fig. 10, the toolchain is functionally divided into 4 main
blocks: the sensors models, the vehicle model, the virtual
world model and the ADS implementation which are dis-
cussed in the remaining of the Section.

1) SENSOR MODELS
A preliminary investigation of virtual vs. real sensors was
qualitatively carried out in [82]. Thework focused on present-

ing the simulation environment ‘‘Virtual Test Drive’’ (VTD)
but also provided nuances on how to generate synthetic
data and reusable (parametric) models for sensors. In the
end, several charts are reported which compare the recorded
position of a static traffic obstacle with respect to the same
setup replicated by the virtual toolchain. The work does not
provide acceptance thresholds nor validation methodologies
that could be straightforwardly generalized to other case
studies. However, it highlights the strong coupling that exists
between models’ fidelity level and the quality of the virtual
environment-generated synthetic data.

In [83], the authors examine the modeling approaches for
sensors from white-box modeling i.e., based on the repli-
cation of the physical phenomena happening in the actual
sensor device, to the black-box methods, which are con-
cerned only in replicating the observed statistical I/O relation-
ship. In addition, the authors propose a third-way grey-box
modeling philosophy as a trade-off solution to combine the
pros of white- and black-boxes approaches. Such a modeling
approach defines a functional decomposition of the sensors’
components rather than a physical reconstruction to allow a
versatile and re-usable model parametrization.

The authors of [84] focus on the virtual validation for
sensors and propose a two-steps approach where the virtual
model is initially assessed in terms of a direct comparison
with the real sensor’s output. Secondly, the next tier in the
ADS chain is fed the synthetic data, and its output is com-
pared against the outcome originating from the real input. The
authors’ claim is that the direct comparison of the sensors’
models is necessary but not sufficient as sensors are highly
coupled with the consecutive layers in the ADS pipeline.

More recently, in [85], the lack of experience and clearly
defined requirements with respect to other modeling fields
(as vehicle dynamics for instance) is highlighted in addition to
the difficulty in replicating trajectories in the simulation envi-
ronment with a precision that matches the fidelity required
by the sensor validation. The scientific effort is completed
via repeating the metrics calculation in [86] for a different
scenario and obtaining similar scores.

Overall, designers have several opportunities to model
sensors despite the overall classification is still under discus-
sion [83], [85]–[87]:

low-fidelity: also known as ‘‘black-box’’ models or ‘‘object
list’’. Low-fidelity models retrieve the traffic objects’
list and status directly from the simulation environment
kernel. This modeling paradigm does not afford sta-
tistical aspects related to the perception, such as false
positives/negatives rate. However, low fidelity models
might account for basic sensor effects such as the Field
of View (FoV) and occlusions to filter the whole object
list;

medium-fidelity: also known as ‘‘grey-box’’ [83] or
‘‘phenomenological/data-driven’’ according to the clas-
sification presented in [85]. They share the basic
working principle of low-fidelity models. Nonetheless,
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they introduce the possibility of modeling false posi-
tives/false negatives rates, the effect of traffic objects’
shape and texture on the detection, and environmental
effects such as atmospheric degradation;

high-fidelity: also known as ‘‘white-box’’ or ‘‘physics-
based’’. High-fidelity models try to replicate the phys-
ical phenomena regulating the interaction between the
sensor and the external environment in simulation.
Typically, advanced computer graphics techniques are
adopted, such as ray-tracing and rasterization to render
the 3D simulation environment.

Strongly linked to the modeling philosophy is the informa-
tion level at which carrying out the calculation of the KPIs.
The viable opportunities depend on modeling abstraction and
can be summarized as:
objects detection level: the highest level information pro-

vided by the sensors’ models, e.g. class and size of the
object. This option is the only available when adopting
the lowest fidelity virtual sensor models which cannot
provide pixel-level detailed information;

occupancy grid: (OG) intermediate level sensor informa-
tion which refers to the probability of a pixel to be
occupied by an obstacle;

raw data: lowest level sensor information extracted before
any tracking/classification algorithm is employed.
It needs static obstacles (e.g. buildings, fences, . . . ) to
be digitized and included in the simulation environment
for the pixel-level comparability of the results.

Considering the object detection level, popular metrics to
compare the generated bounding boxes (BB) are:
• the Intersection over Union (IoU), also knonw as the
Jaccard distance [88]:

Area (BBrw ∩BBsim)

Area (BBrw ∪BBsim)
; (11)

• the multiple object tracking accuracy (MOTA) [89]:

1−

∑N
i (FNi + FPi +MMi)∑N

i nobj,i
, (12)

where FNi are the false negatives at time-step i, FP the
false positive, MM the misdetections and nobj the total
number of objects.

Based on the OG, some of the computational tools
exploited in the literature to quantitatively evaluate the
fidelity level are:
• OG cell-loss:∑width

xc=0

∑height

yc=0
|| OGsim (xc, yc)− OGrw (xc, yc) ||,

where:

OGsim(xc, yc) =

{
1, if P (obstacle) > 0.5
0, else

OGrw(xc, yc) =

{
1, if P (obstacle) > 0.5
0, else;

(13)

• OG Pearson correlation:∑Nc
i

(
OGsim,i−OGsim

) (
OGrw,i−OGrw

)√∑Nc
i

(
OGsim,i−OGsim

)2∑Nc
i

(
OGrw,i−OGrw

)2 ,
(14)

where Nc is the total number of cells;
• the occupied cells ratio (OCR):∑width

xc=0
∑height

yc=0
OGsim (xc, yc)∑width

xc=0
∑height

yc=0
OGrw (xc, yc)

. (15)

Assuming the availability of the point cloud (PC) raw data,
the following assessment criteria can be adopted:
• normalized minimum Euclidean distance between point
clouds [90]:

1
N

N∑
i

min
∥∥PCsim,i−PCrw,i

∥∥ , (16)

where N is the total number of rays per scan;
• PC Pearson correlation [84]:∑N

i
(
PCsim,i−PCsim

) (
PCrw,i−PCrw

)√∑N
i
(
PCsim,i−PCsim

)2∑N
i
(
PCrw,i−PCrw

)2 , (17)

• PC RMSE [90]:√∑N
i
(
PCsim,i−PCrw,i

)2
N

. (18)

Finally, sensors might be investigated by means of:
explicit open-loop simulations (E-OL): where only the

sensors’ output is obtained via the re-simulation of a
previously recorded driving scenario and the validation
is carried out on the point cloud level (IF1 interface in
Fig. 11);

implicit open-loop simulations (I-OL): where only the
sensors’ output is obtained via the re-simulation of a
previously recorded driving scenario and the validation
is carried out after clustering and tracking (IF3 interface
in Fig. 11);

closed-loop simulations (CL): where the actual virtual sen-
sors generated information is fed to the ADS and the
ego-vehicle motion is part of the validation process sim-
ilarly to the process described in Section IV-B

Ultimately, the validation of the sensor models is an open
topic in the scientific literature and industrial practice. Cur-
rently, no realistic correlation thresholds have been estab-
lished to accept the models, and, secondly, no consolidated
modeling framework has been adopted.

a: RADAR
RADAR sensors are particularly demanding when it comes
to accurately replicate in simulation their working princi-
ple [85]. There are, in fact, several non-trivial factors that
affect the performance of RADARswhich include:multi-path
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TABLE 1. Validation metrics and correlation levels for RADARs virtual
models.

reflections, interference, ambiguities, clutter, ghost objects,
and attenuation [91]. On one side, the replication of such
phenomena in the virtual world is better accomplished using
white-box modeling approaches. On the other side, the solu-
tion of the governing equations of a RADAR in real-time
is an extremely challenging demand [92]. Indeed, the solu-
tion of Maxwell’s equations for ≈77 GHz electromagnetic
radiations (automotive RADAR operative frequency) using
the Finite Difference Finite Time (FDFT) method [93] is not
a viable option for most commercial automotive simulation
environments and modeling assumptions have to be intro-
duced. The most widespread solution to partially replicate
the physics behind the RADAR is to adopt the ray tracing
framework. Ray tracing is still a computational intensive
alternative and requires a detailed 3D representation of the
obstacles’ geometry. Nonetheless, ray tracing can capture
reflection, diffraction, and ghosts objects [94].

Regardless of the modeling framework adopted for the
RADARs, there exists no generally accepted evaluation cri-
teria to validate a virtual sensor model, nor unified testing
procedure [95]. Additionally, from a modeling perspective,
there is little difference in the virtual models for RADARs
with respect to LiDARs, given the similar working principles
as they both rely on similar modeling techniques.

In [96], a sensitivity analysis is performed to deter-
mine the most critical aspects that contribute to realistic
RADAR simulation. The analysis is carried out by com-
paring real sensor data vs. synthetic ones generated using
the open-source CARLA simulator [97]. Among the stud-
ied factors, the RADAR Cross Section (RCS) model and
long-distance obstacles were found to be themain responsible
for the dissimilarity with respect to the experimental data.
A similar work is proposed in [95] which highlights themulti-
path propagation, separability, and sensitivity to the RCS as
the major modeling challenges.

In [98], a neural network is trained to predict whether
a point cloud is real or simulated. In addition, the classi-
fier’s confidence is used as a metric to determine the fidelity
degree with respect to state-of-the-art methods. In a follow-
up work, [90], multiple RADAR sensor models are compared
by means of quantitative metrics in an explicit open-loop and
implicit open-loop manner. The correlation level computed
for the highest fidelity model is reported in Table 1.

b: LiDAR
LiDAR sensors are based on a working principle comparable
to RADARs. However, their modeling effectiveness using
ray tracing is considerably higher with respect to RADARs
thanks to the higher frequency range where they operate
(infrared spectrum region), which reduces interference [83].

FIGURE 11. Functional decomposition of LiDAR sensors, [86].

Ray tracing can thus be safely exploited for white-box mod-
eling approaches.

In [84], a ray tracing-based LiDAR model is studied and
validated both explicitly and implicitly using Pearson cor-
relation. Additionally, the authors investigated the robust-
ness of the validation routine by manipulating the simulation
scenario through the removal of a traffic vehicle present in
the real-world and verifying the worsening of the validation
KPIs.

In [99], the authors investigate LiDARs’ sensitivity char-
acteristics to determine which effects are prominent for the
sake of defining requirements for LiDARs’ virtual replica-
tion using high-fidelity models. The most critical aspects to
reproduce were identified as the temporal scan order, noise
figures, and the received signal’s intensity. A first contribu-
tion comparing different LiDARs’ models parametrization
was published in 2019 in [86]. The work also proposes a
functional decomposition that helps to standardize interfaces
for metrics assessment as shown in Fig. 11.

The same work also proposes a validation method based
on the occupied cells ratio (OCR) and point cloud distance
criteria over 250 scans repetition. In [86], four high-fidelity
sensor models are analyzed for the same set of inputs. OCR
is shown to be dependent on the distance of the object, and
in general poor performances were reported for the models.
However, the contribution constitutes one of the first attempts
to thoroughly compare different LiDAR modeling options
given the same input and assessment criteria. The correlation
levels obtained are reported in Table 2. From Table 2, a large
variation of the fidelity is denoted where the highest correla-
tion level corresponds to the portion of the validation scenario
where the target obstacle is closer to the ego-vehicle.

A follow-upwork, [100], a high-fidelity model is presented
which is compatible with popular the popular Open Simula-
tion Interface (OSI) [101] and the Functional Mock-up Inter-
face (FMI). The model is then implicitly validated against
both a real LiDAR’s output and the ground-truth information
derived from Real Time Kinematic (RTK) device by compar-
ing the RMSE of the target vehicle trajectory.

c: CAMERA
Differently from RADARs and LiDARs, cameras are passive
sensing devices. Therefore ad-hoc modeling techniques are
required to craft high-fidelity models.

A first study involving the characterization of the fidelity
level attainable with state-of-the-art camera models was pro-
posed in [102]. The cited contribution introduces the model-
ing framework in Fig. 12, where the camera system is made
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TABLE 2. Validation metrics and correlation level for LiDARs virtual
models.

FIGURE 12. Camera model for simulation [102].

up of an optical module and a CCD sensor creating an RGB
representation of the simulation engine rendered frame. The
work details the implementation of the virtual optics and the
virtual sensor and provides a preliminary validation activity
using static reference scenarios.

Similarly to [102], in [103], the authors described the
implementation of the main factors affecting cameras behav-
ior before presenting an explicit validation of their realized
camera model against three real camera systems. However,
in [103], the focus is shifted for the first time towards
ADAS/ADS applications.

In [104] a phenomenological camera model is presented
and implicitly validated against real-world data and an ideal
sensor model using a frequency-based approach. In [89] two
camera models implemented in the simulation environments
Vires VTD and IPG CarMaker are compared under different
lighting conditions against both proving ground tests and the
corresponding ground-truth. The authors of [89] defined sev-
eral implicit validationmetrics to ultimately compute an over-
arching index representative of the fidelity level obtained,
the ‘‘Simulation-to-Reality Gap’’. In [89], weak points of the
simulation environment under test are reported, such as the
difficulties of replicating the real-world noise levels and the
limited capabilities of reproducing the weather conditions,
which affect how the Deep Neural Network (DNN)-based
object tracking modules perform.

2) VEHICLE MODELS
Modeling vehicle dynamics is an established activity sup-
ported by technical regulations and widely acknowledged
scientific literature, including excellent textbooks.

Technical regulations such as [32], [38] provide specifi-
cations on how to virtualize and validate vehicle models for
Electronic Stability Control (ESC) applications. Fidelity lev-
els associated with the modeling approaches are also pointed
out in the recent regulation [105].

Within the scientific literature, a comprehensive review
of modeling and validation methods for vehicle dynamics
models is given in [46]. The work effectively summarizes
the state-of-the-art contributions from the dawn of vehicle
modeling up to contemporary scientific efforts. Two main
applications for vehicle dynamics modeling are delineated:
the crafting of artifacts for driving simulator platforms and the
design of simulation models to support the development of
vehicular technology. Concerning the first case-of-study, the
topic has been widely discussed in [106] and goes beyond the
scope of the present work given the importance that human
feedback plays in validating the model for driving simulators,
an aspect which is not relevant for an ADS application.
Within the second class, models typically target a specific use
case such as handling or riding studies, and each application is
commonly backed by an ad-hoc devised validation procedure.
Most of the works do not specify nor suggest correlation
thresholds for validation. Instead, mainly subjective crite-
ria based on a qualitative evaluation a selection of charts
are reported. Moreover, statistical analysis and confidence
intervals definition for the validity of the simulation models
are only rarely found. On the other side, considerably broad
literature is available to the end of defining maneuvers for
the later characterization of the vehicle model’s parameters,
thus accomplishing the ‘‘data validity’’ objective suggested
by Sargent [14]. The authors of [46], based on the extensive
literature survey carried out, convey that a top-down approach
should be established where:

1) the validation maneuvers have to be defined depending
on the model requirements. In particular, the dataset
should include both repeated steady-state and transient
open-loop maneuvers with the aim of isolating the con-
tribution of distinct vehicle parameters and building con-
fidence intervals;

2) the validation procedures include both time-domain and
frequency domain-metrics able to account for the uncer-
tainty;

3) the validity domain of the simulation model is ulti-
mately defined given no global validation is possi-
ble. For instance, a set of lateral accelerations and/or
steering input frequency intervals can be used to limit
the domain’s validity.

In [47] two different models are validated with real-world
trajectories to investigate the effect of order reduction on
the fidelity delivered by the model. Interestingly, in the
time domain metrics, no discernible discrepancy is observed
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FIGURE 13. Effect of model reduction in the frequency domain (a), and
time domain (b). Adapted from [47].

as shown in Fig. 13b. However, when comparing the
transfer functions, an apparent deficit in replicating the
high-frequency component can be detected for the low-order
model as visible in Fig. 13a. Such a discrepancy is due to the
missing poles and zeros of the low-order model which do not
allow for replicating the real system’s high-frequency behav-
ior. Nonetheless, even a simple model proves to be faithful at
reproducing the steady-state response and maneuvers which
do not involve frequency components higher than 1 Hz.

More recently, in [107], a framework was proposed to
introduce the model’s uncertainty analysis into the validation
activity. The foundation of the framework is that the candi-
date model shall satisfy the validation threshold for multiple
vehicles (or different vehicle configurations) following the
suitable calibration of the model. In other words, the authors
try to decouple the validity of the model structure from the
actual parametrization to isolate the model’s inherent uncer-
tainty and increase the credibility of the developed simulation
framework. A graphical representation of the proposed solu-
tion is shown in Fig. 14.
Although the approach being particularly promising since

it would allow solving some of the critical aspects of
validation, namely the lack of sensitivity and uncertainty
characterization in most of the validation procedures, only
a formal description of the activity is presented, whereas
an actual practical application is deferred to future work.
Additionally, some aspects might still arise from the gradual
introduction of ADAS/ADS technologies, given the different
driving characteristics of artificial actuators with respect to

FIGURE 14. Viehof’s proposed validation framework for vehicle dynamics
models, [107].

human driving. For instance, the actuators’ higher bandwidth
might excite higher-frequency poles of the system [31] with
respect to human driving.

Ultimately, in [108], the impact of different modeling
approaches is investigated by comparing four classes of mod-
els having increasing complexity with real-world measure-
ments on both icy and dry roads. It is reported that even
the ‘‘simple’’ was able to predict surprisingly accurately the
traveling velocity and path recorded on the dry road, whereas
detailed modeling approaches were deemed necessary to
predict transients at the beginning and the exit of curves,
especially for the low-friction scenarios.

From the literature analyzed, we can summarize the mod-
eling approaches in three classes based on the fidelity level
that they can provide:
low-fidelity: point-mass or kinematic models. Mainly used

for controller synthesis and for simulations where
detailed vehicle modeling is not required such as micro-
scopic traffic studies;

medium-fidelity: chassis models such as single-track,
double-track, and lumped mass [47] with linear or non-
linear tires. Their range of application spans from the
synthesis of model predictive controllers [31], [109] to
intermediate fidelity simulations involving the testing
and prototyping of ADAS/ADS functionalities;

high-fidelity: multibody models [110], [111] including sus-
pensions geometry, chassis compliance, engine mount-
ing stiffness and damping characteristics, driveline
dynamics, and tires contact points to provide the ulti-
mate degree of faithfulness.

Concerning VV&UQ methods, a survey addressing the
estimation of the uncertainty content in vehicle dynamics
simulation models was proposed [73] which identifies four
key aspects originating the uncertainty:
1) the reconstruction of the input signals used for executing

the virtual tests;
2) the input model’s parameters aleatory and epistemic

uncertainty;
3) the parametrization of the model;
4) the model’s output.

The work summarizes scientific contributions also discussed
in [46] from the perspective of the ‘‘degree of statistical vali-
dation’’ (DSV). It highlights the potential beneficial effects
of the statistical validation concept applied to the field of
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vehicle dynamics in addressing the mentioned limitations
of conventional validation. Nonetheless, the novelty of the
approach is emphasized by the fact that no literature work
could be found that fulfilled all the uncertainty sources.

3) VIRTUAL WORLD MODELS
The ‘‘virtual world’’ is representative of a broad set of models
which include any virtual entity enabling the closed-loop
interaction of the ego-vehicle with the virtual environment.
These include: virtual road, traffic agents and weather mod-
els.

a: ROAD LAYOUT
The virtualization of the roads’ layouts is well supported by
the widespread ASAM modeling standards:
• OpenCRG3: which standardizes local properties of the
lane in terms, for instance, of asphalt granularity and
potholes location;

• OpenDRIVE4: which regulates the definition of the road
geometry in terms of number of lanes, curvature radius,
lane marking and slope/camber;

• OpenSCENARIO5: institutes a standard way to model
the behaviors of road users and traffic agents.

Although no explicit validation activities have been pursued
for the listed modeling approaches, they are widely recog-
nized as faithfully replicating road geometry for the sake
of ADAS/ADS virtual testing in the actual simulation prac-
tice [4], [112].

b: TRAFFIC AGENTS
Traffic models involve external agents to the ego vehicle
which participate and/or interact in the simulation. These
consist of pedestrians [113], drivers [114]. The validation
of traffic models is an open point in the literature given the
intrinsic stochasticity of human behavior, whichmakes it fun-
damentally impossible to obtain ground-truth information.
Additionally, high-fidelity traffic models might even not be
necessary in the case of scenario-based approaches where
targets’ trajectories are assigned beforehand [115].

c: STATIC OBJECTS
These include buildings, guardrails, and any other object
making up the virtual environment. Currently, no model-
ing standard exists which aims at standardizing the mod-
eling approaches for this class of components. Replicating
the optical and reflectance properties of static obstacles is
particularly important in the case of physics-based sensor
models as false positives/false negatives might arise due to
the complex phenomena involved.

d: COLLISION MODELS
Whenever collisions occur, the rigid body assumptions under-
lying the traffic participants and traffic objects might not hold

3https://www.asam.net/standards/detail/opencrg/
4https://www.asam.net/standards/detail/opendrive/
5https://www.asam.net/standards/detail/openscenario/

anymore. Thus collision models might be established and
assigned to the objects acting the virtual test depending on the
use-cases. Based on [81], several approaches can be pursued:

low-fidelity: using relative velocity and heading angle to
directly estimate damage of the collision;

medium-fidelity: use the involved agent’s kinematic to
determine acceleration and classify the damage conse-
quently;

high-fidelity: use FEM to precisely compute forces exerted
during the collision.

e: WEATHER
Adverse weather conditions are known to blur and darken
cameras’ output [116]; absorb and scatter RADARs’
pulses [117]; back-scatter and reduce surface reflectivity in
the case of LiDARs [118]. Replicating such complex phe-
nomena in the virtual environment is, at the moment of
writing, an extremely challenging task due to the need of
providing sensor-grade realism. Indeed, despite widespread
metrics exist to evaluate the quality of generated images, such
as the structural similarity (SSIM) [119], the actual focus is on
the human perception and a dual solution capable of grasping
sensors’ perception properties is still missing.
In [120], a model-based approach to introduce sensor-

specific rain effect via the post-processing manipulation of
the rendered frames is presented. The approach proposed
in [120] uses ray tracing to model rain-induced noise for
virtual cameras and an equivalent RCS for RADAR sensors.
The preliminary validation analysis performed demonstrates
that the proposed methodology enables achieving a higher
fidelity level for all the sensors’ types.

4) OTHER SOFTWARE COMPONENTS & VERIFICATION
The sub-components division proposed overarches most of
the ingredients making up the virtual toolchain. There are,
however, additional tools that need to be introduced in order
to carry out the virtual test. Among them: time steps, solvers,
and coupling algorithms beyond the craftsmanship required
to set up a simulation or a co-simulation framework.
Despite the adoption of validated sub-components, the

overall virtual test’s outcome might be far from reality due
to integration and software implementation issues which
shall be addressed using software verification techniques.
Namely [121],

code verification: concerned with the execution of test
demonstrating that no numerical/logical flaws affect the
virtual models;

calculation verification: deals with the estimation of
numerical errors affecting the M&S toolchain.

Code and calculation verification methods are a
well-established practice in many engineering applications.
For instance, in FEM/CFD (computational fluid dynamics)
simulations, the spatial and time discretization are typi-
cally iterated until the result converges to an equilibrium
value [122]. Nonetheless, the same concept is commonly
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overlooked for ADAS/ADS simulations, where time-step is
rarely discussed.

V. DISCUSSION
Despite the substantial scientific effort in the last years
concerning the definition of validation methodologies for
simulation models, several open research questions remain
unsolved.

Integrated testing procedures are exceptionally delicate
to handle as the ADS agent is interacting in a closed-loop
fashion with other traffic participants within the virtual envi-
ronment. Such a dynamic multi-agent modeling framework
is indeed noticeably different from a traditional engineering
simulation applications where the validation of the virtual
submodels would ensure the accuracy of the overall out-
put [123]. Moreover, most of the validation frameworks are
conceived for open-loop tests where the model under analysis
shows limited or null closed-loop interaction with internal
state variables of the environment, such as in FEM/CFD
simulation. That is not the case for ADS (especially for
high-automation level technology), where the driving agents
are capable of reasoning and producing emergent behaviors
based on the sensor data. From a sensitivity perspective,
it is also particularly hard to judge how small deficiencies in
reconstructing the virtual scenarios propagate throughout the
toolchain given the role played by the ADS, which can either
dampen or amplify the discrepancies [39], [124]. Unfortu-
nately, to the best of the authors’ knowledge, this aspect is
rarely discussed given the extremely high computational cost
that a sensitivity study over such a large parameter space
would imply.

Considering vehicle dynamics, most of the validation pro-
cedures are tailored to judge the validity of replicating a
specific dynamical effect, e.g. vertical dynamics, comfort or
handling. This limitation results from the narrow applica-
tion vehicle dynamical models have played in the technical
regulations and scientific literature in comparison to what
is expected from an ADS application where the full vehi-
cle is simulated, albeit with a degree of fidelity which is
yet to be established. Nonetheless, vehicle dynamics mod-
els benefit from the support of conceptual model validity
techniques [24], statistical testing [74], and sensitivity anal-
ysis methodologies [67] which increase the credibility of the
developed model with respect to other simulation modules
contributing to the ADS virtual tests.

Sensor models, on the other side, are still imma-
ture. Currently, no standard modeling framework has been
adopted (only an ‘‘informal’’ classification is available as
in Section IV-C1), no validation framework has been stan-
dardized both in terms of KPIs and via setting realistic
correlation thresholds. This lack of standardization results
in disconnected modeling validation methodologies, which
complicate the comparison of virtual sensor models fidelity.
Some specific aspects are reported to be particularly criti-
cal to replicate, which include noise figures [89], RCS, and
real-worldweather parametrization/replication capabilities of

the simulation environments. That is mainly true because
human-eye realism is commonly pursued with simulation
environments with respect to the sensor-grade realism that
should be pursued.

Eventually, the survey work has emphasized the infancy of
the validation approaches adopted for validation ADS-related
models: simple techniques and limited statistical assessment
characterize most of the approaches presented in Section IV
with respect to the state-of-the-art methods in Section III.
This is also unsurprisingly accentuated by the novelty of
the publications cited in our work. Most of the references
are indeed a few years old, which contrasts with the widely
recognized ASME/AIAA validation standards for FEM/CFD
applications grounded on decades of utilization.

VI. CONCLUSION
This work surveyed the most relevant contributions sup-
porting the virtual validation of simulation models for ADS
certification. The scientific effort pursued is agnostic to any
ADS structure and functionality and was primarily aimed
at establishing procedures to assess how a virtual testing
toolchain could be awarded the ‘‘virtual proving ground’’ trait
for the sake of ADS certification.

Our contribution started by summarizing the state-of-the-
art traditional simulation models validation to build up a
benchmark of validation techniques across different engineer-
ing fields. We clustered the methodologies in three classes
in Section III: conceptual validation, validation via response
analysis, and sensitivity & uncertainty. We spent particu-
lar effort on the quantitative methods within the response
analysis family, given the large variety of computational
tools available and their most widespread adoption as vali-
dation tools both in the scientific community and in techni-
cal regulations. We found conceptual analysis to have been
largely superseded by other validation tools for the field of
ADAS/ADS. On the other side, VV&UQ approaches are still
in an early stage of development. Nonetheless, they have huge
potential to increase the overall M&S credibility, especially
for complex simulation toolchains whose robustness is hard
to establish via conventional threshold-based validation cri-
teria.

We then investigated the literature contributions dealing
specifically with simulation models for ADS virtual testing
after briefly presenting what is meant with ‘‘simulation envi-
ronment’’ in Section IV. We found that two main approaches
can be outlined: integrated tests and submodels-based solu-
tions. For the integrated test category, we analyzed the most
relevant scientific efforts, and we outlined the authors’ selec-
tion of KPIs and validation methodologies. Similarly, for the
submodel category, we proposed a modeling framework in
Fig. 10, and we analyzed the literature concerning virtual
sensors, virtual vehicles, and virtual world models with their
corresponding validation strategy. Special emphasis was ded-
icated to the sensors’ models validation given the novelty of
the approaches proposed.
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Eventually, we summarized the open challenges in
Section V. Overall, the field of model validation for ADS
virtual certification is an emerging technologywith enormous
potential but still relatively immature with respect to other
simulation disciplines where widely acknowledged valida-
tion procedures have been established.
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